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	Introduction
This	book	covers	the	entire	syllabus	of	Cambridge	International	AS	&	A	Level	Physics	(9702)	for
examination	from	2022.	This	book	is	in	three	parts:

Chapters	 1–15	 and	 P1:	 the	 AS	 Level	 content,	 covered	 in	 the	 first	 year	 of	 the	 course,	 including	 a
chapter	(P1)	dedicated	to	the	development	of	your	practical	skills
Chapters	16–31	and	P2:	 the	A	Level	content,	 including	a	chapter	 (P2)	dedicated	 to	developing	your
ability	to	plan,	analyse	and	evaluate	practical	investigations
Appendices	of	useful	formulae,	a	Glossary	and	an	Index.

The	main	tasks	of	a	textbook	like	this	are	to	explain	the	various	concepts	of	physics	that	you	need	to
understand,	and	to	provide	you	with	questions	that	will	help	you	to	test	your	understanding	and	develop
the	key	skills	you	need	to	succeed	on	this	course.	You	will	find	a	visual	guide	to	the	structure	of	each
chapter	and	the	features	of	this	book	on	the	next	two	pages.
In	your	study	of	physics,	you	will	find	that	certain	key	concepts	are	repeated,	and	that	these	concepts
form	‘themes’	that	link	the	different	areas	of	physics	together.	It	will	help	you	to	progress	and	gain
confidence	in	your	understanding	of	physics	if	you	take	note	of	these	themes.	For	this	Coursebook,	these
key	concepts	include:

models	of	physical	systems
testing	predictions	against	evidence
mathematics	as	a	language	and	problem-solving	tool
matter,	energy	and	waves
forces	and	fields.

In	this	Coursebook,	the	mathematics	has	been	kept	to	the	minimum	required	by	the	Cambridge
International	AS	&	A	Level	Physics	syllabus	(9702).	If	you	are	also	studying	mathematics,	you	may	find
that	more	advanced	techniques	such	as	calculus	will	help	you	with	many	aspects	of	physics.
Studying	physics	is	a	stimulating	and	worthwhile	experience.	It	is	an	international	subject;	no	single
country	has	a	monopoly	on	the	development	of	the	ideas.	It	can	be	a	rewarding	exercise	to	discover	how
men	and	women	from	many	countries	have	contributed	to	our	knowledge	and	well-being,	through	their
research	into	and	application	of	the	concepts	of	physics.	We	hope	not	only	that	this	book	will	help	you	to
succeed	in	your	future	studies	and	career,	but	also	that	it	will	stimulate	your	curiosity	and	fire	your
imagination.	Today’s	students	become	the	next	generation	of	physicists	and	engineers,	and	we	hope	that
you	will	learn	from	the	past	to	take	physics	to	ever-greater	heights.
	
	



	
	



	How	to	use	this	book
Throughout	this	book,	you	will	notice	lots	of	different	features	that	will	help	your	learning.	These	are
explained	below.

LEARNING	INTENTIONS

These	set	the	scene	for	each	chapter,	help	with	navigation	through	the	Coursebook	and	indicate	the
important	concepts	in	each	topic.

BEFORE	YOU	START
This	contains	questions	and	activities	on	subject	knowledge	you	will	need	before	starting	this	chapter.

SCIENCE	IN	CONTEXT
This	feature	presents	real-world	examples	and	applications	of	the	content	in	a	chapter,	encouraging	you
to	look	further	into	topics.	There	are	discussion	questions	at	the	end	that	look	at	some	of	the	benefits
and	problems	of	these	applications.

PRACTICAL	ACTIVITIES
This	book	does	not	contain	detailed	instructions	for	doing	particular	experiments,	but	you	will	find
background	information	about	the	practical	work	you	need	to	do	in	these	boxes.	There	are	also	two
chapters,	P1	and	P2,	which	provide	detailed	information	about	the	practical	skills	you	need	to	develop
during	the	course.

Questions
Appearing	throughout	the	text,	questions	give	you	a	chance	to	check	that	you	have	understood	the	topic
you	have	just	read	about.	You	can	find	the	answers	to	these	questions	in	the	digital	Coursebook.

KEY	EQUATIONS
Key	equations	are	highlighted	in	the	text	when	an	equation	is	first	introduced.	Definitions	for	the
equation	and	further	information	are	given	in	the	margin.

KEY	WORDS
Key	vocabulary	is	highlighted	in	the	text	when	it	is	first	introduced.	If	you	hover	your	cursor	over	the
word,	the	definition	will	appear.

COMMAND	WORDS
Command	words	that	appear	in	the	syllabus	and	might	be	used	in	exams	are	highlighted	in	the	exam-
style	questions	when	they	are	first	introduced.	If	you	hover	your	cursor	over	the	word,	the	Cambridge
International	definition	will	appear.	*

WORKED	EXAMPLES

Wherever	you	need	to	know	how	to	use	a	formula	to	carry	out	a	calculation,	there	are	worked	examples
boxes	to	show	you	how	to	do	this.

KEY	IDEAS
Important	scientific	concepts,	facts	and	tips	are	given	in	these	boxes.

REFLECTION
These	activities	ask	you	to	look	back	on	the	topics	covered	in	the	chapter	and	test	how	well	you
understand	these	topics	and	encourage	you	to	reflect	on	your	learning.



SUMMARY

There	is	a	summary	of	key	points	at	the	end	of	each	chapter.

EXAM-STYLE	QUESTIONS
Questions	at	the	end	of	each	chapter	provide	more	demanding	exam-style	questions,	some	of	which	may
require	use	of	knowledge	from	previous	chapters.	Answers	to	these	questions	can	be	found	in	the
digital	Coursebook.

SELF-EVALUATION	CHECKLIST
The	summary	checklists	are	followed	by	‘I	can’	statements	that	match	the	Learning	intentions	at	the
beginning	of	the	chapter.	You	might	find	it	helpful	to	rate	how	confident	you	are	for	each	of	these
statements	when	you	are	revising.	You	should	revisit	any	topics	that	you	rated	‘Needs	more	work’	or
‘Almost	there’.

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

	 	 	 	 	

*	The	information	in	this	section	is	taken	from	the	Cambridge	International	syllabus	for	examination	from
2022.	You	should	always	refer	to	the	appropriate	syllabus	document	for	the	year	of	your	examination	to
confirm	the	details	and	for	more	information.	The	syllabus	document	is	available	on	the	Cambridge
International	website	at	www.cambridgeinternational.org.
	
	



Resource	index
The	resource	index	is	a	convenient	place	for	you	to	download	all	answer	files	for	this	resource.
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	Chapter	1

Kinematics:	describing	motion

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	and	use	displacement,	speed	and	velocity
draw	and	interpret	displacement–time	graphs
describe	laboratory	methods	for	determining	speed
understand	the	differences	between	scalar	and	vector	quantities	and	give	examples	of	each
use	vector	addition	to	add	and	subtract	vectors	that	are	in	the	same	plane.

BEFORE	YOU	START
Do	you	know	how	to	 rearrange	an	equation	 that	 involves	 fractions?	Choose	an	equation	 that	you
know	 from	 your	 previous	 physics	 course,	 such	 as	 ,	 and	 rearrange	 it	 to	make	R	 or	V	 the
subject	of	the	formula.
Can	you	write	down	a	direction	using	compass	bearings,	for	example,	as	014°,	N14°E	or	14°	east	of
north?

DESCRIBING	MOVEMENT
Our	eyes	are	good	at	detecting	movement.	We	notice	even	quite	small	movements	out	of	the	corners	of
our	eyes.	It’s	important	for	us	to	be	able	to	judge	movement	–	think	about	crossing	the	road,	cycling	or
driving,	or	catching	a	ball.
Figure	1.1	shows	a	way	in	which	movement	can	be	recorded	on	a	photograph.	This	is	a	stroboscopic
photograph	of	a	boy	juggling	three	balls.	As	he	juggles,	a	bright	lamp	flashes	several	times	a	second	so
that	the	camera	records	the	positions	of	the	balls	at	equal	intervals	of	time.
How	can	the	photograph	be	used	to	calculate	the	speed	of	the	upper	ball	horizontally	and	vertically	as
it	moves	through	the	air?	What	other	apparatus	is	needed?	You	can	discuss	this	with	someone	else.



Figure	 1.1:	 This	 boy	 is	 juggling	 three	 balls.	 A	 stroboscopic	 lamp	 flashes	 at	 regular	 intervals;	 the
camera	is	moved	to	one	side	at	a	steady	rate	to	show	separate	images	of	the	boy.
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1.1	Speed
We	can	calculate	the	average	speed	of	something	moving	if	we	know	the	distance	it	moves	and	the	time	it
takes:

In	symbols,	this	is	written	as:

where	v	is	the	average	speed	and	d	is	the	distance	travelled	in	time	t.
If	an	object	is	moving	at	a	constant	speed,	this	equation	will	give	us	its	speed	during	the	time	taken.	If	its
speed	is	changing,	then	the	equation	gives	us	its	average	speed.	Average	speed	is	calculated	over	a
period	of	time.
If	you	look	at	the	speedometer	in	a	car,	it	doesn’t	tell	you	the	car’s	average	speed;	rather,	it	tells	you	its
speed	at	the	instant	when	you	look	at	it.	This	is	the	car’s	instantaneous	speed.

KEY	EQUATION

Question
Look	at	Figure	1.2.	The	runner	has	just	run	10	000	m	in	a	time	of	27	minutes	5.17	s.	Calculate	his
average	speed	during	the	race.

Figure	1.2:	England’s	Mo	Farah	winning	his	second	gold	medal	at	the	Rio	Olympics	in	2016.

Units
In	the	Système	Internationale	d’Unités	(the	SI	system),	distance	is	measured	in	metres	(m)	and	time	in
seconds	(s).	Therefore,	speed	is	in	metres	per	second.	This	is	written	as	m	s−1	(or	as	m/s).	Here,	s−1	is	the
same	as	1/s,	or	‘per	second’.
There	are	many	other	units	used	for	speed.	The	choice	of	unit	depends	on	the	situation.	You	would
probably	give	the	speed	of	a	snail	in	different	units	from	the	speed	of	a	racing	car.	Table	1.1	includes
some	alternative	units	of	speed.

Note	that	in	many	calculations	it	is	necessary	to	work	in	SI	units	(m	s−1).

m	s−1 metres	per	second



2

a
b
c
d

3

cm	s−1 centimetres	per	second

km	s−1 kilometres	per	second

km	h−1	or	km/h kilometres	per	hour

mph miles	per	hour

Table	1.1:	Units	of	speed.

Questions
Here	are	some	units	of	speed:
m	s−1	mm	s−1	km	s−1	km	h−1
Which	of	these	units	would	be	appropriate	when	stating	the	speed	of	each	of	the	following?

a	tortoise
a	car	on	a	long	journey
light
a	sprinter.

A	snail	crawls	12	cm	in	one	minute.	What	is	its	average	speed	in	mm	s−1?

Determining	speed
You	can	find	the	speed	of	something	moving	by	measuring	the	time	it	takes	to	travel	between	two	fixed
points.	For	example,	some	motorways	have	emergency	telephones	every	2000	m.	Using	a	stopwatch	you
can	time	a	car	over	this	distance.	Note	that	this	can	only	tell	you	the	car’s	average	speed	between	the	two
points.	You	cannot	tell	whether	it	was	increasing	its	speed,	slowing	down	or	moving	at	a	constant	speed.

PRACTICAL	ACTIVITY	1.1

Laboratory	measurements	of	speed
Here	we	describe	four	different	ways	to	measure	the	speed	of	a	trolley	in	the	laboratory	as	it	travels
along	a	straight	line.	Each	can	be	adapted	to	measure	the	speed	of	other	moving	objects,	such	as	a
glider	on	an	air	track	or	a	falling	mass.

Measuring	speed	using	two	light	gates
The	leading	edge	of	the	card	in	Figure	1.3	breaks	the	light	beam	as	it	passes	the	first	light	gate.	This
starts	the	timer.	The	timer	stops	when	the	front	of	the	card	breaks	the	second	beam.	The	trolley’s	speed
is	calculated	from	the	time	interval	and	the	distance	between	the	light	gates.

Figure	1.3:	Using	two	light	gates	to	find	the	average	speed	of	a	trolley.

Measuring	speed	using	one	light	gate
The	timer	in	Figure	1.4	starts	when	the	leading	edge	of	the	card	breaks	the	light	beam.	It	stops	when
the	trailing	edge	passes	through.	In	this	case,	the	time	shown	is	the	time	taken	for	the	trolley	to	travel
a	distance	equal	to	the	length	of	the	card.	The	computer	software	can	calculate	the	speed	directly	by
dividing	the	distance	by	the	time	taken.
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Figure	1.4:	Using	a	single	light	gate	to	find	the	average	speed	of	a	trolley.

Measuring	speed	using	a	ticker-timer
The	ticker-timer	(Figure	1.5)	marks	dots	on	the	tape	at	regular	intervals,	usually	s	(i.e.	0.02	s).	(This	is
because	it	works	with	alternating	current,	and	in	most	countries	the	frequency	of	the	alternating	mains
is	50	Hz.)	The	pattern	of	dots	acts	as	a	record	of	the	trolley’s	movement.

Figure	1.5:	Using	a	ticker-timer	to	investigate	the	motion	of	a	trolley.

Start	by	inspecting	the	tape.	This	will	give	you	a	description	of	the	trolley’s	movement.	Identify	the
start	of	the	tape.	Then,	look	at	the	spacing	of	the	dots:

even	spacing	–	constant	speed
increasing	spacing	–	increasing	speed.

Now	you	can	make	some	measurements.	Measure	the	distance	of	every	fifth	dot	from	the	start	of	the
tape.	This	will	give	you	the	trolley’s	distance	at	intervals	of	0.10	s.	Put	the	measurements	in	a	table	and
draw	a	distance–time	graph.

Measuring	speed	using	a	motion	sensor
The	motion	sensor	(Figure	1.6)	transmits	regular	pulses	of	ultrasound	at	the	trolley.	It	detects	the
reflected	waves	and	determines	the	time	they	took	for	the	trip	to	the	trolley	and	back.	From	this,	the
computer	can	deduce	the	distance	to	the	trolley	from	the	motion	sensor.	It	can	generate	a	distance–
time	graph.	You	can	determine	the	speed	of	the	trolley	from	this	graph.
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Figure	1.6:	Using	a	motion	sensor	to	investigate	the	motion	of	a	trolley.

Choosing	the	best	method
Each	of	these	methods	for	finding	the	speed	of	a	trolley	has	its	merits.	In	choosing	a	method,	you	might
think	about	the	following	points:

Does	the	method	give	an	average	value	of	speed	or	can	it	be	used	to	give	the	speed	of	the	trolley	at
different	points	along	its	journey?
How	precisely	does	the	method	measure	time–to	the	nearest	millisecond?
How	simple	and	convenient	is	the	method	to	set	up	in	the	laboratory?

Questions
A	trolley	with	a	5.0	cm	long	card	passed	through	a	single	light	gate.	The	time	recorded	by	a	digital
timer	was	0.40	s.	What	was	the	average	speed	of	the	trolley	in	m	s−1?
Figure	1.7	shows	two	ticker-tapes.	Describe	the	motion	of	the	trolleys	that	produced	them.

Figure	1.7:	Two	ticker-tapes.	For	Question	5.

Four	methods	for	determining	the	speed	of	a	moving	trolley	have	been	described.	Each	could	be
adapted	to	investigate	the	motion	of	a	falling	mass.	Choose	two	methods	that	you	think	would	be
suitable,	and	write	a	paragraph	for	each	to	say	how	you	would	adapt	it	for	this	purpose.

	
	



1.2	Distance	and	displacement,	scalar	and
vector
In	physics,	we	are	often	concerned	with	the	distance	moved	by	an	object	in	a	particular	direction.	This	is
called	its	displacement.
Figure	1.8	illustrates	the	difference	between	distance	and	displacement.	It	shows	the	route	followed	by
walkers	as	they	went	from	town	A	to	town	C.

Figure	1.8:	If	you	go	on	a	long	walk,	the	distance	you	travel	will	be	greater	than	your	displacement.	In
this	example,	the	walkers	travel	a	distance	of	15	km,	but	their	displacement	is	only	10	km,	because	this
is	the	distance	from	the	start	to	the	finish	of	their	walk.

Their	winding	route	took	them	through	town	B,	so	that	they	covered	a	total	distance	of	15	km.	However,
their	displacement	was	much	less	than	this.	Their	finishing	position	was	just	10	km	from	where	they
started.	To	give	a	complete	statement	of	their	displacement,	we	need	to	give	both	distance	and	direction:

displacement	=	10	km	at	030°	or	30°	E	of	N

Displacement	is	an	example	of	a	vector	quantity.	A	vector	quantity	has	both	magnitude	(size)	and
direction.	Distance,	on	the	other	hand,	is	a	scalar	quantity.	Scalar	quantities	have	magnitude	only.
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1.3	Speed	and	velocity
It	is	often	important	to	know	both	the	speed	of	an	object	and	the	direction	in	which	it	is	moving.
Speed	and	direction	are	combined	in	another	quantity,	called	velocity.	The	velocity	of	an	object	can	be
thought	of	as	its	speed	in	a	particular	direction.	So,	like	displacement,	velocity	is	a	vector	quantity.	Speed
is	the	corresponding	scalar	quantity,	because	it	does	not	have	a	direction.
So,	to	give	the	velocity	of	something,	we	have	to	state	the	direction	in	which	it	is	moving.	For	example,
‘an	aircraft	flies	with	a	velocity	of	300	m	s−1	due	north’.
Since	velocity	is	a	vector	quantity,	it	is	defined	in	terms	of	displacement:

We	can	write	the	equation	for	velocity	in	symbols:

KEY	EQUATION

Alternatively,	we	can	say	that	velocity	is	the	rate	of	change	of	an	object’s	displacement:

where	the	symbol	Δ	(the	Greek	letter	delta)	means	‘change	in’.	It	does	not	represent	a	quantity	(in	the
way	that	s	and	t	do).	Another	way	to	write	Δs	would	be	s2	−	s1,	but	this	is	more	time-consuming	and	less
clear.
From	now	on,	you	need	to	be	clear	about	the	distinction	between	velocity	and	speed,	and	between
displacement	and	distance.	Table	1.2	shows	the	standard	symbols	and	units	for	these	quantities.

Quantity Symbol	for	quantity Symbol	for	unit

distance d m

displacement s,	x m

time t s

speed,	velocity v m	s−1

Table	1.2:	 Standard	 symbols	 and	 units.	 (Take	 care	 not	 to	 confuse	 italic	 s	 for	 displacement	with	 s	 for
seconds.	Notice	also	that	v	is	used	for	both	speed	and	velocity.)

Question
Do	these	statements	describe	speed,	velocity,	distance	or	displacement?	(Look	back	at	the	definitions
of	these	quantities.)

The	ship	sailed	south-west	for	200	miles.
I	averaged	7	mph	during	the	marathon.
The	snail	crawled	at	2	mm	s−1	along	the	straight	edge	of	a	bench.
The	sales	representative’s	round	trip	was	420	km.

Speed	and	velocity	calculations
The	equation	for	velocity,	 ,	can	be	rearranged	as	follows,	depending	on	which	quantity	we	want	to
determine:
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Note	that	each	of	these	equations	is	balanced	in	terms	of	units.	For	example,	consider	the	equation	for
displacement.	The	units	on	the	right-hand	side	are	m	s−1	×	s,	which	simplifies	to	m,	the	correct	unit	for
displacement.
We	can	also	rearrange	the	equation	to	find	distance	s	and	time	t:

WORKED	EXAMPLES

A	car	is	travelling	at	15	m	s−1.	How	far	will	it	travel	in	1	hour?
It	is	helpful	to	start	by	writing	down	what	you	know	and	what	you	want	to	know:

v					=	15	m	s−1

t					=	1	h	=	3600	s
s					=	?
Choose	the	appropriate	version	of	the	equation	and	substitute	in	the	values.	Remember	to
include	the	units:

The	car	will	travel	54	km	in	1	hour.
The	Earth	orbits	the	Sun	at	a	distance	of	150	000	000	km.	How	long	does	it	take	light	from	the	Sun
to	reach	the	Earth?	(Speed	of	light	in	space	=	3.0	×	108	m	s−1.)

Start	by	writing	what	you	know.	Take	care	with	units;	it	is	best	to	work	in	m	and	s.	You	need
to	be	able	to	express	numbers	in	scientific	notation	(using	powers	of	10)	and	to	work	with
these	on	your	calculator.

Substitute	the	values	in	the	equation	for	time:

Light	takes	500	s	(about	8.3	minutes)	to	travel	from	the	Sun	to	the	Earth.
Hint:	When	using	a	calculator,	to	calculate	the	time	t,	you	press	the	buttons	in	the	following
sequence:

[1.5]	[10n]	[11]	[÷]	[3]	[10n]	[8]

Making	the	most	of	units
In	Worked	example	1	and	Worked	example	2,	units	have	been	omitted	in	intermediate	steps	in	the
calculations.	However,	at	times	it	can	be	helpful	to	include	units	as	this	can	be	a	way	of	checking	that	you
have	used	the	correct	equation;	for	example,	that	you	have	not	divided	one	quantity	by	another	when	you
should	have	multiplied	them.	The	units	of	an	equation	must	be	balanced,	just	as	the	numerical	values	on
each	side	of	the	equation	must	be	equal.
If	you	take	care	with	units,	you	should	be	able	to	carry	out	calculations	in	non-SI	units,	such	as	kilometres
per	hour,	without	having	to	convert	to	metres	and	seconds.

For	example,	how	far	does	a	spacecraft	travelling	at	40	000	km	h−1	travel	in	one	day?	Since	there	are	24
hours	in	one	day,	we	have:
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Questions
A	submarine	uses	sonar	to	measure	the	depth	of	water	below	it.	Reflected	sound	waves	are	detected
0.40	s	after	they	are	transmitted.	How	deep	is	the	water?	(Speed	of	sound	in	water	=	1500	m	s−1.)
The	Earth	takes	one	year	to	orbit	the	Sun	at	a	distance	of	1.5	×	1011	m.	Calculate	its	speed.	Explain
why	this	is	its	average	speed	and	not	its	velocity.

	
	



1.4	Displacement–time	graphs
We	can	represent	the	changing	position	of	a	moving	object	by	drawing	a	displacement–time	graph.	The
gradient	(slope)	of	the	graph	is	equal	to	its	velocity	(Figure	1.9).	The	steeper	the	slope,	the	greater	the
velocity.	A	graph	like	this	can	also	tell	us	if	an	object	is	moving	forwards	or	backwards.	If	the	gradient	is
negative,	the	object’s	velocity	is	negative	–	it	is	moving	backwards.

Deducing	velocity	from	a	displacement–time	graph
A	toy	car	moves	along	a	straight	track.	Its	displacement	at	different	times	is	shown	in	Table	1.3.	This	data
can	be	used	to	draw	a	displacement–time	graph	from	which	we	can	deduce	the	car’s	velocity.

Displacement
s	/	m

1.0 3.0 5.0 7.0 7.0 7.0

Time	t	/	s 0.0 1.0 2.0 3.0 4.0 5.0

Table	1.3:	Displacement	s	and	time	t	data	for	a	toy	car.

It	is	useful	to	look	at	the	data	first,	to	see	the	pattern	of	the	car’s	movement.	In	this	case,	the
displacement	increases	steadily	at	first,	but	after	3.0	s	it	becomes	constant.	In	other	words,	initially	the
car	is	moving	at	a	steady	velocity,	but	then	it	stops.

Figure	1.9:	The	slope	of	a	displacement–time	(s–t)	graph	tells	us	how	fast	an	object	is	moving.

Now	we	can	plot	the	displacement–time	graph	(Figure	1.10).
We	want	to	work	out	the	velocity	of	the	car	over	the	first	3.0	seconds.	We	can	do	this	by	working	out	the
gradient	of	the	graph,	because:

velocity	=	gradient	of	displacement−time	graph

We	draw	a	right-angled	triangle	as	shown.	To	find	the	car’s	velocity,	we	divide	the	change	in	displacement
by	the	change	in	time.	These	are	given	by	the	two	sides	of	the	triangle	labelled	Δs	and	Δt.
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Figure	1.10:	Displacement–time	graph	for	a	toy	car;	data	as	shown	in	Table	1.3.

If	you	are	used	to	finding	the	gradient	of	a	graph,	you	may	be	able	to	reduce	the	number	of	steps	in	this
calculation.

Questions
The	displacement–time	sketch	graph	in	Figure	1.11	represents	the	journey	of	a	bus.	What	does	the
graph	tell	you	about	the	journey?

Figure	1.11:	For	Question	10.

Sketch	a	displacement–time	graph	to	show	your	motion	for	the	following	event.	You	are	walking	at	a
constant	speed	across	a	field	after	jumping	off	a	gate.	Suddenly	you	see	a	horse	and	stop.	Your	friend
says	there’s	no	danger,	so	you	walk	on	at	a	reduced	constant	speed.	The	horse	neighs,	and	you	run
back	to	the	gate.	Explain	how	each	section	of	the	walk	relates	to	a	section	of	your	graph.
Table	1.4	shows	the	displacement	of	a	racing	car	at	different	times	as	it	travels	along	a	straight	track
during	a	speed	trial.

Determine	the	car’s	velocity.
Draw	a	displacement–time	graph	and	use	it	to	find	the	car’s	velocity.

Displacement	/	m 0 85 170 255 340

Time	/	s 0 1.0 2.0 3.0 4.0

Table	1.4:	Displacement	s	and	time	t	data	for	Question	12.
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An	old	car	travels	due	south.	The	distance	it	travels	at	hourly	intervals	is	shown	in	Table	1.5.
Draw	a	distance–time	graph	to	represent	the	car’s	journey.
From	the	graph,	deduce	the	car’s	speed	in	km	h−1	during	the	first	three	hours	of	the	journey.
What	is	the	car’s	average	speed	in	km	h−1	during	the	whole	journey?

Time	/	h 0 1 2 3 4

Distance	/	km 0 23 46 69 84

Table	1.5:	Data	for	Question	13.
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1.5	Combining	displacements
The	walkers	shown	in	Figure	1.12	are	crossing	difficult	ground.	They	navigate	from	one	prominent	point
to	the	next,	travelling	in	a	series	of	straight	lines.	From	the	map,	they	can	work	out	the	distance	that	they
travel	and	their	displacement	from	their	starting	point:

distance	travelled	=	25	km

Figure	1.12:	In	rough	terrain,	walkers	head	straight	for	a	prominent	landmark.

(Lay	thread	along	route	on	map;	measure	thread	against	map	scale.)
displacement	=	15	km	in	the	direction	045°,	N45°	E	or	north-east
(Join	starting	and	finishing	points	with	straight	line;	measure	line	against	scale.)
A	map	is	a	scale	drawing.	You	can	find	your	displacement	by	measuring	the	map.	But	how	can	you
calculate	your	displacement?	You	need	to	use	ideas	from	geometry	and	trigonometry.	Worked	examples	3
and	4	show	how.

WORKED	EXAMPLES

A	spider	runs	along	two	sides	of	a	table	(Figure	1.13).	Calculate	its	final	displacement.

Figure	1.13:	The	spider	runs	a	distance	of	2.0	m.	For	Worked	example	3.

Because	the	two	sections	of	the	spider’s	run	(OA	and	AB)	are	at	right	angles,	we	can	add
the	two	displacements	using	Pythagoras’s	theorem:

Displacement	is	a	vector.	We	have	found	the	magnitude	of	this	vector,	but	now	we	have	to
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find	its	direction.	The	angle	θ	is	given	by:

So	the	spider’s	displacement	is	1.4	m	at	056°	or	N56°E	or	at	an	angle	of	34°	north	of	east.
An	aircraft	flies	30	km	due	east	and	then	50	km	north-east	(Figure	1.14).	Calculate	the	final
displacement	of	the	aircraft.

Figure	1.14:	For	Worked	example	4.

Here,	the	two	displacements	are	not	at	90°	to	one	another,	so	we	can’t	use	Pythagoras’s	theorem.
We	can	solve	this	problem	by	making	a	scale	drawing,	and	measuring	the	final	displacement.
(However,	you	could	solve	the	same	problem	using	trigonometry.)

Choose	a	suitable	scale.	Your	diagram	should	be	reasonably	large;	in	this	case,	a	scale	of	1
cm	to	represent	5	km	is	reasonable.
Draw	a	line	to	represent	the	first	vector.	North	is	at	the	top	of	the	page.	The	line	is	6	cm
long,	towards	the	east	(right).
Draw	a	line	to	represent	the	second	vector,	starting	at	the	end	of	the	first	vector.	The	line	is
10	cm	long,	and	at	an	angle	of	45°	(Figure	1.15).

Figure	1.15:	Scale	drawing	for	Worked	example	4.	Using	graph	paper	can	help	you	to	show	the
vectors	in	the	correct	directions.

To	find	the	final	displacement,	join	the	start	to	the	finish.	You	have	created	a	vector
triangle.	Measure	this	displacement	vector,	and	use	the	scale	to	convert	back	to
kilometres:
length	of	vector	=	14.8	cm
final	displacement	=	14.8	×	5	=	74	km
Measure	the	angle	of	the	final	displacement	vector:
angle	=	28°	N	of	E
Therefore	the	aircraft’s	final	displacement	is	74	km	at	28°	north	of	east,	062°	or	N62°E.

Questions
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You	walk	3.0	km	due	north,	and	then	4.0	km	due	east.
Calculate	the	total	distance	in	km	you	have	travelled.
Make	a	scale	drawing	of	your	walk,	and	use	it	to	find	your	final	displacement.	Remember	to	give
both	the	magnitude	and	the	direction.
Check	your	answer	to	part	b	by	calculating	your	displacement.

A	student	walks	8.0	km	south-east	and	then	12	km	due	west.
Draw	a	vector	diagram	showing	the	route.	Use	your	diagram	to	find	the	total	displacement.
Remember	to	give	the	scale	on	your	diagram	and	to	give	the	direction	as	well	as	the	magnitude	of
your	answer.
Calculate	the	resultant	displacement.	Show	your	working	clearly.

This	process	of	adding	two	displacements	together	(or	two	or	more	of	any	type	of	vector)	is	known	as
vector	addition.	When	two	or	more	vectors	are	added	together,	their	combined	effect	is	known	as	the
resultant	of	the	vectors.
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1.6	Combining	velocities
Velocity	is	a	vector	quantity	and	so	two	velocities	can	be	combined	by	vector	addition	in	the	same	way
that	we	have	seen	for	two	or	more	displacements.
Imagine	that	you	are	attempting	to	swim	across	a	river.	You	want	to	swim	directly	across	to	the	opposite
bank,	but	the	current	moves	you	sideways	at	the	same	time	as	you	are	swimming	forwards.	The	outcome
is	that	you	will	end	up	on	the	opposite	bank,	but	downstream	of	your	intended	landing	point.	In	effect,
you	have	two	velocities:

the	velocity	due	to	your	swimming,	which	is	directed	straight	across	the	river
the	 velocity	 due	 to	 the	 current,	 which	 is	 directed	 downstream,	 at	 right	 angles	 to	 your	 swimming
velocity.

These	combine	to	give	a	resultant	(or	net)	velocity,	which	will	be	diagonally	downstream.	In	order	to	swim
directly	across	the	river,	you	would	have	to	aim	upstream.	Then	your	resultant	velocity	could	be	directly
across	the	river.

WORKED	EXAMPLE

An	aircraft	is	flying	due	north	with	a	velocity	of	200	m	s−1.	A	side	wind	of	velocity	50	m	s−1	is
blowing	due	east.	What	is	the	aircraft’s	resultant	velocity	(give	the	magnitude	and	direction)?
Here,	the	two	velocities	are	at	90°.	A	sketch	diagram	and	Pythagoras’s	theorem	are	enough	to	solve
the	problem.

Draw	a	sketch	of	the	situation	–	this	is	shown	in	Figure	1.16a.
Now	sketch	a	vector	triangle.	Remember	that	the	second	vector	starts	where	the	first	one
ends.	This	is	shown	in	Figure	1.16b.

Figure	1.16:	Finding	the	resultant	of	two	velocities.	For	Worked	example	5.

Join	the	start	and	end	points	to	complete	the	triangle.
Calculate	the	magnitude	of	the	resultant	vector	v	(the	hypotenuse	of	the	right-angled
triangle).

Calculate	the	angle	θ:

θ	=	tan−1	(0.25)	≈	14°

So	the	aircraft’s	resultant	velocity	is	206	m	s−1	at	14°	east	of	north,	076°	or	N76°E.

Questions
A	swimmer	can	swim	at	2.0	m	s−1	in	still	water.	She	aims	to	swim	directly	across	a	river	that	is
flowing	at	0.80	m	s−1.	Calculate	her	resultant	velocity.	(You	must	give	both	the	magnitude	and	the
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direction.)
A	stone	is	thrown	from	a	cliff	and	strikes	the	surface	of	the	sea	with	a	vertical	velocity	of	18	m	s−1

and	a	horizontal	velocity	v.	The	resultant	of	these	two	velocities	is	25	m	s−1.
Draw	a	vector	diagram	showing	the	two	velocities	and	the	resultant.
Use	your	diagram	to	find	the	value	of	v.
Use	your	diagram	to	find	the	angle	between	the	stone	and	the	vertical	as	it	strikes	the	water.
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1.7	Subtracting	vectors
Sometimes,	vectors	need	to	be	subtracted	rather	than	added.	For	example,	if	you	are	in	a	car	moving	at
2.0	m	s−1	and	another	car	on	the	same	road	is	moving	in	the	same	direction	at	5.0	m	s−1,	then	you
approach	the	car	at	5.0	–	2.0	=	3.0	m	s−1.	You	are	subtracting	two	velocity	vectors.
Subtraction	of	vectors	can	be	done	using	the	formula:

A	−	B	=	A	+	(−	B)

where	A	and	B	are	vectors.

KEY	IDEA
To	subtract	a	vector,	add	on	the	vector	to	be	subtracted	in	the	opposite
direction.

So,	to	subtract,	just	add	the	negative	vector.
But	first	you	have	to	understand	what	the	negative	of	vector	B	means.	The	negative	of	vector	B	is	another
vector	of	the	same	size	as	B	but	in	the	opposite	direction.
This	is	straightforward	if	the	velocities	are	in	the	same	direction.	For	example,	to	subtract	a	velocity	of	4
m	s−1	north	from	a	velocity	of	10	m	s−1	north,	you	start	by	drawing	a	vector	10	m	s−1	north	and	then	add
a	vector	of	4	m	s−1	south.	The	answer	is	6	m	s−1	north.
It	is	less	straightforward	if	the	velocities	are	in	the	opposite	direction.	For	example,	to	subtract	a	velocity
of	4	m	s−1	south	from	a	velocity	of	10	m	s−1	north,	you	start	by	drawing	a	vector	10	m	s−1	north	and	then
add	a	vector	of	4	m	s−1	north.	The	answer	is	14	m	s−1	north.
The	example	in	Figure	1.17	shows	how	to	find	A	−	B	and	A	+	B	when	the	vectors	are	along	different
directions.

Question
A	velocity	of	5.0	m	s−1	is	due	north.	Subtract	from	this	velocity	another	velocity	that	is:

5.0	m	s−1	due	south
5.0	m	s−1	due	north

Figure	1.17:	Subtracting	and	adding	two	vectors	A	and	B	in	different	directions.

5.0	m	s−1	due	west
5.0	m	s−1	due	east

(You	can	do	a	scale	drawing	or	make	a	calculation	but	remember	to	give	the	direction	of	your	answers
as	well	as	their	size.)
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1.8	Other	examples	of	scalar	and	vector
quantities
Direction	matters	when	vectors	are	combined.	You	can	use	this	to	decide	whether	a	quantity	is	a	vector	or
a	scalar.	For	example,	if	you	walk	for	3	minutes	north	and	then	3	minutes	in	another	direction,	the	total
time	taken	is	6	minutes	whatever	direction	you	choose.	A	vector	of	3	units	added	to	another	vector	of	3
units	can	have	any	value	between	0	and	6	but	two	scalars	of	3	units	added	together	always	make	six
units.	So,	time	is	a	scalar.
Mass	and	density	are	also	both	scalar	quantities.
Force	and	acceleration,	as	you	will	see	in	later	chapters,	are	both	vector	quantities.	This	is	because,	if	an
object	is	pushed	with	the	same	force	in	two	opposite	directions,	the	forces	cancel	out.
Work	and	pressure,	which	you	will	also	study	in	later	chapters,	both	involve	force.	However,	work	and
pressure	are	both	scalar	quantities.	For	example,	if	you	pull	a	heavy	case	along	the	floor	north	and	then
the	same	distance	south,	the	total	work	done	is	clearly	not	zero.	You	just	add	scalar	quantities	even	if	they
are	in	the	opposite	direction.

REFLECTION
Write	down	anything	that	you	found	interesting	or	challenging	in	this	chapter.
Look	at	your	notes	later	when	you	revise	this	topic.

	
	



SUMMARY

Displacement	is	the	distance	travelled	in	a	particular	direction.

Velocity	is	defined	by	the	word	equation:

The	gradient	of	a	displacement–time	graph	is	equal	to	velocity:

Distance,	speed,	mass	and	time	are	scalar	quantities.	A	scalar	quantity	has	only	magnitude.

Displacement	and	velocity	are	vector	quantities.	A	vector	quantity	has	both	magnitude	and	direction.

Vector	quantities	may	be	combined	by	vector	addition	to	find	their	resultant.	The	second	vector	can	be
subtracted	from	the	first	by	adding	the	negative	of	the	second	vector,	which	acts	in	the	opposite
direction.
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EXAM-STYLE	QUESTIONS

Which	of	the	following	pairs	contains	one	vector	and	one	scalar	quantity? [1]

displacement	:	mass 	

displacement	:	velocity 	

distance	:	speed 	

speed	:	time 	

A	vector	P	of	magnitude	3.0	N	acts	towards	the	right	and	a	vector	Q	of
magnitude	4.0	N	acts	upwards. [1]

What	is	the	magnitude	and	direction	of	the	vector	(P	−	Q)? 	

1.0	N	at	an	angle	of	53°	downwards	to	the	direction	of	P 	

1.0	N	at	an	angle	of	53°	upwards	to	the	direction	of	P 	

5.0	N	at	an	angle	of	53°	downwards	to	the	direction	of	P 	

5.0	N	at	an	angle	of	53°	upwards	to	the	direction	of	P 	

A	car	travels	one	complete	lap	around	a	circular	track	at	a	constant	speed	of
120	km	h−1. 	

If	one	lap	takes	2.0	minutes,	show	that	the	length	of	the	track	is	4.0	km. [2]

Explain	why	values	for	the	average	speed	and	average	velocity	are
different. [1]

Determine	the	magnitude	of	the	displacement	of	the	car	in	a	time	of	1.0
min. [2]

(The	circumference	of	a	circle	=	2πR,	where	R	is	the	radius	of	the	circle.) [Total:	5]

A	boat	leaves	point	A	and	travels	in	a	straight	line	to	point	B.	The	journey	takes
60	s. 	

Figure	1.18
	

Calculate: 	

the	distance	travelled	by	the	boat [2]

the	total	displacement	of	the	boat [2]

the	average	velocity	of	the	boat. [2]

Remember	that	each	vector	quantity	must	be	given	a	direction	as	well	as	a
magnitude. [Total:	6]

A	boat	travels	at	2.0	m	s−1	east	towards	a	port,	2.2	km	away.	When	the	boat
reaches	the	port,	the	passengers	travel	in	a	car	due	north	for	15	minutes	at	60
km	h−1. 	

Calculate: 	

the	total	distance	travelled [2]

the	total	displacement [3]

the	total	time	taken [2]

the	average	speed	in	m	s−1 [2]

the	magnitude	of	the	average	velocity. [2]

	 [Total:	11]

A	river	flows	from	west	to	east	with	a	constant	velocity	of	1.0	m	s−1.	A	boat
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leaves	the	south	bank	heading	due	north	at	2.4	m	s−1.	Find	the	resultant
velocity	of	the	boat.

[3]

Define	displacement. [1]

Use	the	definition	of	displacement	to	explain	how	it	is	possible	for	an
athlete	to	run	round	a	track	yet	have	no	displacement. [2]

	 [Total:	6]

A	girl	is	riding	a	bicycle	at	a	constant	velocity	of	3.0	m	s−1	along	a	straight
road.	At	time	t	=	0,	she	passes	her	brother	sitting	on	a	stationary	bicycle.	At
time	t	=	0,	the	boy	sets	off	to	catch	up	with	his	sister.	His	velocity	increases
from	time	t	=	0	until	t	=	5.0	s,	when	he	has	covered	a	distance	of	10	m.	He
then	continues	at	a	constant	velocity	of	4.0	m	s−1. 	

Draw	the	displacement–time	graph	for	the	girl	from	t	=	0	to	t	=	12	s. [1]

On	the	same	graph	axes,	draw	the	displacement–time	graph	for	the	boy. [2]

Using	your	graph,	determine	the	value	of	t	when	the	boy	catches	up	with
his	sister. [1]

	 [Total:	4]

A	student	drops	a	small	black	sphere	alongside	a	vertical	scale	marked	in
centimetres.	A	number	of	flash	photographs	of	the	sphere	are	taken	at	0.10	s
intervals: 	

Figure	1.19
	

The	first	photograph	is	taken	with	the	sphere	at	the	top	at	time	t	=	0	s. 	

Explain	how	Figure	1.19	shows	that	the	sphere	reaches	a	constant	speed. [2]

Determine	the	constant	speed	reached	by	the	sphere. [2]

Determine	the	distance	that	the	sphere	has	fallen	when	t	=	0.80	s. [2]

In	a	real	photograph,	each	image	of	the	sphere	appears	slightly	blurred
because	each	flash	is	not	instantaneous	and	takes	a	time	of	0.0010	s. 	

Determine	the	absolute	uncertainty	that	this	gives	in	the	position	of	each
position	of	the	black	sphere	when	it	is	travelling	at	the	final	constant	speed. 	

Suggest	whether	this	should	be	observable	on	the	diagram. [2]

	 [Total:	8]

State	one	difference	between	a	scalar	quantity	and	a	vector	quantity	and
give	an	example	of	each. [3]

A	plane	has	an	air	speed	of	500	km	h−1	due	north.	A	wind	blows	at	100	km
h−1	from	east	to	west. 	

Draw	a	vector	diagram	to	calculate	the	resultant	velocity	of	the	plane.	Give
the	direction	of	travel	of	the	plane	with	respect	to	north. [4]

The	plane	flies	for	15	minutes.	Calculate	the	displacement	of	the	plane	in
this	time. [1]

	 [Total:	8]

A	small	aircraft	for	one	person	is	used	on	a	short	horizontal	flight.	On	its
journey	from	A	to	B,	the	resultant	velocity	of	the	aircraft	is	15	m	s−1	in	a
direction	60°	east	of	north	and	the	wind	velocity	is	7.5	m	s−1	due	north. 	



a

b

Figure	1.20

	

Show	that	for	the	aircraft	to	travel	from	A	to	B	it	should	be	pointed	due
east. [2]

After	flying	5	km	from	A	to	B,	the	aircraft	returns	along	the	same	path	from
B	to	A	with	a	resultant	velocity	of	13.5	m	s−1.	Assuming	that	the	time	spent
at	B	is	negligible,	calculate	the	average	speed	for	the	complete	journey
from	A	to	B	and	back	to	A. [3]

	 [Total:	5]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	and	use	displacement,	speed	and
velocity

1.1,	1.2,	1.3 	 	 	

draw	and	interpret	displacement–time
graphs

1.4 	 	 	

describe	laboratory	methods	for
determining	speed

1.1 	 	 	

understand	the	differences	between
scalar	and	vector	quantities	and	give
examples	of	each

1.2 	 	 	

use	vector	addition	to	add	and	subtract
vectors	that	are	in	the	same	plane.

1.6,	1.7 	 	 	
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	Chapter	2

Accelerated	motion

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	acceleration
draw	and	interpret	graphs	of	speed,	velocity	and	acceleration
calculate	displacement	from	the	area	under	a	velocity–time	graph
calculate	 velocity	 and	 acceleration	 using	 gradients	 of	 a	 displacement–time	 graph	 and	 a	 velocity–
time	graph
derive	and	use	the	equations	of	uniformly	accelerated	motion
describe	an	experiment	to	measure	the	acceleration	of	free	fall,	g
use	perpendicular	components	to	represent	a	vector
explain	projectile	motion	in	terms	of	uniform	velocity	and	uniform	acceleration.

BEFORE	YOU	START
Write	down	definitions	of	speed	and	velocity.
Write	a	list	of	all	the	vectors	that	you	know.	Why	are	some	quantities	classed	as	vectors?

QUICK	OFF	THE	MARK
The	cheetah	(Figure	2.1)	has	a	maximum	speed	of	more	than	30	m	s−1	(108	km/h).	A	cheetah	can	reach
20	m	s−1	from	a	standing	start	in	just	three	or	four	strides,	taking	only	two	seconds.
A	car	cannot	increase	its	speed	as	rapidly	but	on	a	long	straight	road	it	can	easily	travel	faster	than	a
cheetah.
How	do	you	think	such	measurements	can	be	made?	What	apparatus	is	needed?



Figure	2.1:	The	cheetah	is	the	world’s	fastest	land	animal.	Its	acceleration	is	impressive,	too.

	
	



2.1	The	meaning	of	acceleration
In	everyday	language,	the	term	accelerating	means	‘speeding	up’.	Anything	whose	speed	is	increasing	is
accelerating.	Anything	whose	speed	is	decreasing	is	decelerating.
To	be	more	precise	in	our	definition	of	acceleration,	we	should	think	of	it	as	changing	velocity.	Any	object
whose	speed	is	changing	or	which	is	changing	its	direction	has	acceleration.	Because	acceleration	is
linked	to	velocity	in	this	way,	it	follows	that	it	is	a	vector	quantity.
Some	examples	of	objects	accelerating	are	shown	in	Figure	2.2.

Figure	2.2:	Examples	of	objects	accelerating.

	
	



2.2	Calculating	acceleration
The	acceleration	of	something	indicates	the	rate	at	which	its	velocity	is	changing.	Language	can	get
awkward	here.	Looking	at	the	sprinter	in	Figure	2.3,	we	might	say,	‘The	sprinter	accelerates	faster	than
the	car.’	However,	‘faster’	really	means	‘greater	speed’.	It	is	better	to	say,	‘The	sprinter	has	a	greater
acceleration	than	the	car.’
Acceleration	is	defined	as	follows:

So	to	calculate	acceleration	a,	we	need	to	know	two	quantities	–	the	change	in	velocity	Δv	and	the	time
taken	Δt:

Sometimes	this	equation	is	written	differently.	We	write	u	for	the	initial	velocity	and	v	for	the	final	velocity
(because	u	comes	before	v	in	the	alphabet).	The	moving	object	accelerates	from	u	to	v	in	a	time	t	(this	is
the	same	as	the	time	represented	by	Δt	in	the	equation).	Then	the	acceleration	is	given	by	the	equation:

Figure	2.3:	The	sprinter	has	a	greater	acceleration	than	the	car,	but	her	top	speed	is	less.

You	must	learn	the	definition	of	acceleration.	It	can	be	put	in	words	or	symbols.	If	you	use	symbols	you
must	state	what	those	symbols	mean.
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2.3	Units	of	acceleration
The	unit	of	acceleration	is	m	s−2	(metres	per	second	squared).	The	sprinter	might	have	an	acceleration	of
5	m	s−2;	her	velocity	increases	by	5	m	s−1	every	second.	You	could	express	acceleration	in	other	units.
For	example,	an	advertisement	might	claim	that	a	car	accelerates	from	0	to	60	miles	per	hour	(mph)	in	10
s.	Its	acceleration	would	then	be	6	mph	s−1	(6	miles	per	hour	per	second).	However,	mixing	together
hours	and	seconds	is	not	a	good	idea,	and	so	acceleration	is	almost	always	given	in	the	standard	SI	unit	of
m	s−2.

WORKED	EXAMPLES

Leaving	a	bus	stop,	a	bus	reaches	a	velocity	of	8.0	m	s−1	after	10	s.	Calculate	the	acceleration	of
the	bus.

Note	that	the	bus’s	initial	velocity	is	0	m	s−1.
Therefore:

Substitute	these	values	in	the	equation	for	acceleration:

A	sprinter	starting	from	rest	has	an	acceleration	of	5.0	m	s−2	during	the	first	2.0	s	of	a	race.
Calculate	her	velocity	after	2.0	s.

Rearranging	the	equation	 	gives:

v	=	u	+	at
Substituting	the	values	and	calculating	gives:

v	=	0	+	(5.0	×	2.0)	=	10	m	s−1

A	train	slows	down	from	60	m	s−1	to	20	m	s−1	in	50	s.	Calculate	the	magnitude	of	the	deceleration
of	the	train.

Write	what	you	know:

u	=	60	m	s−1					v	=	20	m	s−1					t	=	50	s
Take	care!	Here	the	train’s	final	velocity	is	less	than	its	initial	velocity.	To	ensure	that	we
arrive	at	the	correct	answer,	we	will	use	the	alternative	form	of	the	equation	to	calculate	a.

The	minus	sign	(negative	acceleration)	indicates	that	the	train	is	slowing	down.	It	is
decelerating.	The	magnitude	of	the	deceleration	is	0.80	m	s−2.

Questions
A	car	accelerates	from	a	standing	start	and	reaches	a	velocity	of	18	m	s−1	after	6.0	s.	Calculate	its
acceleration.
A	car	driver	brakes	gently.	Her	car	slows	down	from	23	m	s−1	to	11	m	s−1	in	20	s.	Calculate	the
magnitude	(size)	of	her	deceleration.	(Note	that,	because	she	is	slowing	down,	her	acceleration	is
negative.)
A	stone	is	dropped	from	the	top	of	a	cliff.	Its	acceleration	is	9.81	m	s−2.	How	fast	is	it	moving:

after	1.0	s?
after	3.0	s?



	
	



2.4	Deducing	acceleration
The	gradient	of	a	velocity–time	graph	tells	us	whether	the	object’s	velocity	has	been	changing	at	a	high
rate	or	a	low	rate,	or	not	at	all	(Figure	2.4).	We	can	deduce	the	value	of	the	acceleration	from	the
gradient	of	the	graph:

acceleration	=	gradient	of	velocity–time	graph

KEY	IDEA

acceleration	=	gradient	of	velocity–time	graph

The	graph	(Figure	2.5)	shows	how	the	velocity	of	a	cyclist	changed	during	the	start	of	a	sprint	race.	We
can	find	his	acceleration	during	the	first	section	of	the	graph	(where	the	line	is	straight)	using	the
triangle	as	shown.
The	change	in	velocity	Δv	is	given	by	the	vertical	side	of	the	triangle.	The	time	taken	Δt	is	given	by	the
horizontal	side.

A	more	complex	example	where	the	velocity–time	graph	is	curved	is	shown	in	Figure	2.18.

Figure	2.4:	The	gradient	of	a	velocity–time	graph	is	equal	to	acceleration.



Figure	2.5:	Deducing	acceleration	from	a	velocity–time	graph.
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2.5	Deducing	displacement
We	can	also	find	the	displacement	of	a	moving	object	from	its	velocity–time	graph.	This	is	given	by	the
area	under	the	graph:

displacement	=	area	under	velocity–time	graph

KEY	IDEA
displacement	=	area	under	velocity–time	graph

It	is	easy	to	see	why	this	is	the	case	for	an	object	moving	at	a	constant	velocity.	The	displacement	is
simply	velocity	×	time,	which	is	the	area	of	the	shaded	rectangle	(Figure	2.6a).
For	changing	velocity,	again	the	area	under	the	graph	gives	displacement	(Figure	2.6b).

Figure	2.6:	The	area	under	the	velocity–time	graph	is	equal	to	the	displacement	of	the	object.

So,	for	this	simple	case	in	which	the	area	is	a	triangle,	we	have:

It	is	easy	to	confuse	displacement–time	graphs	and	velocity–time	graphs.	Check	by	looking	at	the	quantity
marked	on	the	vertical	axis.
For	more	complex	graphs,	you	may	have	to	use	other	techniques	such	as	counting	squares	to	deduce	the
area,	but	this	is	still	equal	to	the	displacement.
(Take	care	when	counting	squares:	it	is	easiest	when	the	sides	of	the	squares	stand	for	one	unit.	Check
the	axes,	as	the	sides	may	represent	2	units,	5	units	or	some	other	number.)

Questions
A	lorry	driver	is	travelling	at	the	speed	limit	on	a	motorway.	Ahead,	he	sees	hazard	lights	and
gradually	slows	down.	He	sees	that	an	accident	has	occurred,	and	brakes	suddenly	to	a	halt.	Sketch	a
velocity–time	graph	to	represent	the	motion	of	this	lorry.
Table	2.1	shows	how	the	velocity	of	a	motorcyclist	changed	during	a	speed	trial	along	a	straight	road.
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Draw	a	velocity–time	graph	for	this	motion.
From	the	table,	deduce	the	motorcyclist’s	acceleration	during	the	first	10	s.
Check	your	answer	by	finding	the	gradient	of	the	graph	during	the	first	10	s.
Determine	the	motorcyclist’s	acceleration	during	the	last	15	s.
Use	the	graph	to	find	the	total	distance	travelled	during	the	speed	trial.

Velocity	/	m	s−1 0 15 30 30 20 10 0

Time	/	s 0 5 10 15 20 25 30

Table	2.1:	Data	for	a	motorcyclist.

	
	



2.6	Measuring	velocity	and	acceleration
In	a	car	crash,	the	occupants	of	the	car	may	undergo	a	very	rapid	deceleration.	This	can	cause	them
serious	injury,	but	can	be	avoided	if	an	air-bag	is	inflated	within	a	fraction	of	a	second.	Figure	2.7	shows
the	tiny	accelerometer	at	the	heart	of	the	system,	which	detects	large	accelerations	and	decelerations.
The	acceleration	sensor	consists	of	two	rows	of	interlocking	teeth.	In	the	event	of	a	crash,	these	move
relative	to	one	another,	and	this	generates	a	voltage	that	triggers	the	release	of	the	air-bag.

Figure	 2.7:	 A	 micro-mechanical	 acceleration	 sensor	 is	 used	 to	 detect	 sudden	 accelerations	 and
decelerations	 as	 a	 vehicle	 travels	 along	 the	 road.	 This	 electron	 microscope	 image	 shows	 the	 device
magnified	about	1000	times.

At	the	top	of	the	photograph	(Figure	2.7),	you	can	see	a	second	sensor	that	detects	sideways
accelerations.	This	is	important	in	the	case	of	a	side	impact.
These	sensors	can	also	be	used	to	detect	when	a	car	swerves	or	skids,	perhaps	on	an	icy	road.	In	this
case,	they	activate	the	car’s	stability-control	systems.
	
	



2.7	Determining	velocity	and	acceleration	in
the	laboratory
In	Chapter	1,	we	looked	at	ways	of	finding	the	velocity	of	a	trolley	moving	in	a	straight	line.	These
involved	measuring	distance	and	time,	and	deducing	velocity.	Practical	Activity	2.1	shows	how	these
techniques	can	be	extended	to	find	the	acceleration	of	a	trolley.

PRACTICAL	ACTIVITY	2.1:	LABORATORY	MEASUREMENTS	OF	ACCELERATION

Measurements	using	light	gates
The	computer	records	the	time	for	the	first	‘interrupt’	section	of	the	card	to	pass	through	the	light
beam	of	the	light	gate	(Figure	2.8).	Given	the	length	of	the	interrupt,	it	can	work	out	the	trolley’s	initial
velocity	u.	This	is	repeated	for	the	second	interrupt	to	give	final	velocity	v.	The	computer	also	records
the	time	interval	t3	−	t1	between	these	two	velocity	measurements.	Now	it	can	calculate	the
acceleration	a	as	shown:

(l1	=	length	of	first	section	of	the	interrupt	card)

and

(l2	=	length	of	second	section	of	the	interrupt	card)

Therefore:

(Note	that	this	calculation	gives	only	an	approximate	value	for	a.	This	is	because	u	and	v	are	average
speeds	over	a	period	of	time;	for	an	accurate	answer	we	would	need	to	know	the	speeds	at	times	t1	and
t3.)

Sometimes	two	light	gates	are	used	with	a	card	of	length	l.	The	computer	can	still	record	the	times	as
shown	and	calculate	the	acceleration	in	the	same	way,	with	l1	=	l2	=	l.

Figure	2.8:	Determining	acceleration	using	a	single	light	gate.

Measurements	using	a	ticker-timer
The	practical	arrangement	is	the	same	as	for	measuring	velocity.	Now	we	have	to	think	about	how	to
interpret	the	tape	produced	by	an	accelerating	trolley	(Figure	2.9).



Figure	2.9:	Ticker-tape	for	an	accelerating	trolley.

The	tape	is	divided	into	sections,	as	before,	every	five	dots.	Remember	that	the	time	interval	between
adjacent	dots	is	0.02	s.	Each	section	represents	0.10	s.
By	placing	the	sections	of	tape	side	by	side,	you	can	picture	the	velocity–time	graph.
The	length	of	each	section	gives	the	trolley’s	displacement	in	0.10	s,	from	which	the	average	velocity
during	this	time	can	be	found.	This	can	be	repeated	for	each	section	of	the	tape,	and	a	velocity–time
graph	drawn.	The	gradient	of	this	graph	is	equal	to	the	acceleration.	Table	2.2	and	Figure	2.10	show
some	typical	results.
The	acceleration	is	calculated	to	be:

Section	of	tape Time	at	start	/	s Time	interval	/	s Length	of	section
/	cm

Velocity	/	m	s−1

1 0.0 0.10 2.3 0.23
2 0.10 0.10 7.0 0.70
3 0.20 0.10 11.6 1.16

Table	2.2:	Data	for	Figure	2.10.

Figure	2.10:	Deducing	acceleration	from	measurements	of	a	ticker-tape.

Measurements	using	a	motion	sensor
The	computer	software	that	handles	the	data	provided	by	the	motion	sensor	can	calculate	the
acceleration	of	a	trolley.	However,	because	it	deduces	velocity	from	measurements	of	position,	and	then
calculates	acceleration	from	values	of	velocity,	its	precision	is	relatively	poor.

Questions
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Sketch	a	section	of	ticker-tape	for	a	trolley	that	travels	at	a	steady	velocity	and	then	decelerates.
Figure	2.11	shows	the	dimensions	of	an	interrupt	card,	together	with	the	times	recorded	as	it	passed
through	a	light	gate.	Use	these	measurements	to	calculate	the	acceleration	of	the	card.	(Follow	the
steps	outlined	in	Practical	Activity	2.1.)

Figure	2.11:	For	Question	7.

Two	adjacent	five-dot	sections	of	a	ticker-tape	measure	10	cm	and	16	cm,	respectively.	The	interval
between	dots	is	0.02	s.	Deduce	the	acceleration	of	the	trolley	that	produced	the	tape.
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2.8	The	equations	of	motion
As	a	space	rocket	rises	from	the	ground,	its	velocity	steadily	increases.	It	is	accelerating	(Figure	2.12).
Eventually,	it	will	reach	a	speed	of	several	kilometres	per	second.	Any	astronauts	aboard	find	themselves
pushed	back	into	their	seats	while	the	rocket	is	accelerating.

Figure	2.12:	A	rocket	accelerates	as	it	lifts	off	from	the	ground.

The	engineers	who	planned	the	mission	must	be	able	to	calculate	how	fast	the	rocket	will	be	travelling
and	where	it	will	be	at	any	point	in	its	journey.	They	have	sophisticated	computers	to	do	this,	using	more
elaborate	versions	of	the	four	equations	of	motion.
There	is	a	set	of	equations	that	allows	us	to	calculate	the	quantities	involved	when	an	object	is	moving
with	a	constant	acceleration.
The	quantities	we	are	concerned	with	are:

displacement
initial	velocity
final	velocity
acceleration
time	taken

The	four	equations	of	motion	are	shown	above.
Take	care	using	the	equations	of	motion.	They	can	only	be	used	for:

motion	in	a	straight	line
an	object	with	constant	acceleration.

KEY	EQUATIONS
The	four	equations	of	motion:
equation	1:	

equation	2:	

equation	3:	

equation	4:	

To	get	a	feel	for	how	to	use	these	equations,	we	will	consider	some	worked	examples.	In	each	example,
we	will	follow	the	same	procedure:
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Step	1

Step	2

We	write	down	the	quantities	that	we	know,	and	the	quantity	we	want	to	find.
Then	we	choose	the	equation	that	links	these	quantities,	and	substitute	in	the	values.
Finally,	we	calculate	the	unknown	quantity.

We	will	look	at	where	these	equations	come	from	in	the	next	topic,	‘Deriving	the	equations	of	motion’.

WORKED	EXAMPLES

The	rocket	shown	in	Figure	2.12	lifts	off	from	rest	with	an	acceleration	of	20	m	s−2.	Calculate	its
velocity	after	50	s.

What	we	know:

and	what	we	want	to	know:	v	=	?
The	equation	linking	u,	a,	t	and	v	is	equation	1:
v	=	u	+	at
Substituting	gives:
v	=	0	+	(20	×	50)
Calculation	then	gives:

v	=	1000	m	s−1

So	the	rocket	will	be	travelling	at	1000	m	s−1	after	50	s.	This	makes	sense,	since	its	velocity
increases	by	20	m	s−1	every	second,	for	50	s.
You	could	use	the	same	equation	to	work	out	how	long	the	rocket	would	take	to	reach	a
velocity	of	2000	m	s−1,	or	the	acceleration	it	must	have	to	reach	a	speed	of	1000	m	s−1	in
40	s	and	so	on.

The	car	shown	in	Figure	2.13	is	travelling	along	a	straight	road	at	8.0	m	s−1.	It	accelerates	at	1.0	m
s−2	for	a	distance	of	18	m.	How	fast	is	it	then	travelling?

Figure	2.13:	For	Worked	example	5.	This	car	accelerates	for	a	short	distance	as	it	travels	along
the	road.

In	this	case,	we	will	have	to	use	a	different	equation,	because	we	know	the	distance	during	which
the	car	accelerates,	not	the	time.

What	we	know:

and	what	we	want	to	know:	v	=	?
The	equation	we	need	is	equation	4:

v2	=	u2	+	2as
Substituting	gives:

v2	=	8.02	+	(2	×	1.0	×	18)
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Calculation	then	gives:

v2	=	64	+	36	=	100	m2	s−2

v	=	10	m	s−1

So	the	car	will	be	travelling	at	10	m	s−1	when	it	stops	accelerating.
(You	may	find	it	easier	to	carry	out	these	calculations	without	including	the	units	of
quantities	when	you	substitute	in	the	equation.	However,	including	the	units	can	help	to
ensure	that	you	end	up	with	the	correct	units	for	the	final	answer.)

A	train	(Figure	2.14)	travelling	at	20	m	s−1	accelerates	at	0.50	m	s−2	for	30	s.	Calculate	the
distance	travelled	by	the	train	in	this	time.

Figure	2.14:	For	Worked	example	6.	This	train	accelerates	for	30	s.

What	we	know:

and	what	we	want	to	know:	s	=	?
The	equation	we	need	is	equation	3:

Substituting	gives:

Calculation	then	gives:
s	=	600	+	225	=	825	m
So	the	train	will	travel	825	m	while	it	is	accelerating.

The	cyclist	in	Figure	2.15	is	travelling	at	15	m	s−1.	She	brakes	so	that	she	doesn’t	collide	with	the
wall.	Calculate	the	magnitude	of	her	deceleration.

Figure	2.15:	For	Worked	example	7.	The	cyclist	brakes	to	stop	herself	colliding	with	the	wall.

This	example	shows	that	it	is	sometimes	necessary	to	rearrange	an	equation,	to	make	the	unknown
quantity	its	subject.	It	is	easiest	to	do	this	before	substituting	in	the	values.
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What	we	know:

and	what	we	want	to	know:	a	=	?
The	equation	we	need	is	equation	4:

v2	=	u2	+	2as
Rearranging	gives:

Calculation	then	gives:

a	=	−6.25	m	s−2	≈	−6.3	m	s−2

So	the	cyclist	will	have	to	brake	hard	to	achieve	a	deceleration	of	magnitude	6.3	m	s−2.	The
minus	sign	shows	that	her	acceleration	is	negative;	in	other	words,	a	deceleration.

Questions
A	car	is	initially	stationary.	It	has	a	constant	acceleration	of	2.0	m	s−2.

Calculate	the	velocity	of	the	car	after	10	s.
Calculate	the	distance	travelled	by	the	car	at	the	end	of	10	s.
Calculate	the	time	taken	by	the	car	to	reach	a	velocity	of	24	m	s−1.

A	train	accelerates	steadily	from	4.0	m	s−1	to	20	m	s−1	in	100	s.
Calculate	the	acceleration	of	the	train.
From	its	initial	and	final	velocities,	calculate	the	average	velocity	of	the	train.
Calculate	the	distance	travelled	by	the	train	in	this	time	of	100	s.

A	car	is	moving	at	8.0	m	s−1.	The	driver	makes	it	accelerate	at	1.0	m	s−2	for	a	distance	of	18	m.	What
is	the	final	velocity	of	the	car?

	
	



2.9	Deriving	the	equations	of	motion
We	have	seen	how	to	make	use	of	the	equations	of	motion.	But	where	do	these	equations	come	from?
They	arise	from	the	definitions	of	velocity	and	acceleration.
We	can	find	the	first	two	equations	from	the	velocity–time	graph	shown	in	Figure	2.16.	The	graph
represents	the	motion	of	an	object.	Its	initial	velocity	is	u.	After	time	t,	its	final	velocity	is	v.

Figure	2.16:	This	graph	shows	the	variation	of	velocity	of	an	object	with	time.	The	object	has	constant
acceleration.

Equation	1
The	graph	of	Figure	2.16	is	a	straight	line,	therefore	the	object’s	acceleration	a	is	constant.	The	gradient
(slope)	of	the	line	is	equal	to	acceleration.
The	acceleration	is	defined	as:

which	is	the	gradient	of	the	line.	Rearranging	this	gives	the	first	equation	of	motion:

v	=	u	+	at (equation	1)

Equation	2
Displacement	is	given	by	the	area	under	the	velocity–time	graph.	Figure	2.17	shows	that	the	object’s
average	velocity	is	half-way	between	u	and	v.	So	the	object’s	average	velocity,	calculated	by	averaging	its
initial	and	final	velocities,	is	given	by:

The	object’s	displacement	is	the	shaded	area	in	Figure	2.17.	This	is	a	rectangle,	and	so	we	have:

displacement	=	average	velocity	×	time	taken

and	hence:

(equation	2)



Figure	2.17:	The	average	velocity	is	half-way	between	u	and	v.

Equation	3
From	equations	1	and	2,	we	can	derive	equation	3:

v	=	u	+	at (equation	1)

(equation	2)

Substituting	v	from	equation	1	gives:

So

(equation	3)

Looking	at	Figure	2.16,	you	can	see	that	the	two	terms	on	the	right	of	the	equation	correspond	to	the
areas	of	the	rectangle	and	the	triangle	that	make	up	the	area	under	the	graph.	Of	course,	this	is	the	same
area	as	the	rectangle	in	Figure	2.17.

Equation	4
Equation	4	is	also	derived	from	equations	1	and	2:

v	=	u	+	at (equation	1)

(equation	2)

Substituting	for	time	t	from	equation	1	gives:

Rearranging	this	gives:

or	simply:

v2	=	u2	+	2as (equation	4)

Investigating	road	traffic	accidents
The	police	frequently	have	to	investigate	road	traffic	accidents.	They	make	use	of	many	aspects	of



12

13

physics,	including	the	equations	of	motion.	The	next	two	questions	will	help	you	to	apply	what	you	have
learned	to	situations	where	police	investigators	have	used	evidence	from	skid	marks	on	the	road.

Questions
Trials	on	the	surface	of	a	new	road	show	that,	when	a	car	skids	to	a	halt,	its	acceleration	is	−7.0	m	s
−2.	Estimate	the	skid-to-stop	distance	of	a	car	travelling	at	a	speed	limit	of	30	m	s−1	(approximately
110	km	h−1	or	70	mph).
At	the	scene	of	an	accident	on	a	country	road,	police	find	skid	marks	stretching	for	50	m.	Tests	on	the
road	surface	show	that	a	skidding	car	decelerates	at	6.5	m	s−2.	Was	the	car	that	skidded	exceeding
the	speed	limit	of	25	m	s−1	(90	km	h−1)	on	this	road?
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2.10	Uniform	and	nonuniform	acceleration
It	is	important	to	note	that	the	equations	of	motion	only	apply	to	an	object	that	is	moving	with	a	constant
acceleration.	If	the	acceleration	a	was	changing,	you	wouldn’t	know	what	value	to	put	in	the	equations.
Constant	acceleration	is	often	referred	to	as	uniform	acceleration.
The	velocity–time	graph	in	Figure	2.18	shows	non-uniform	acceleration.	It	is	not	a	straight	line;	its
gradient	is	changing	(in	this	case,	decreasing).

Figure	2.18:	This	curved	velocity–time	graph	cannot	be	analysed	using	the	equations	of	motion.

The	acceleration	at	any	instant	in	time	is	given	by	the	gradient	of	the	velocity–time	graph.	The	triangle	in
Figure	2.18	shows	how	to	find	the	acceleration	at	t	=	20	seconds:

At	the	time	of	interest,	mark	a	point	on	the	graph.
Draw	a	tangent	to	the	curve	at	that	point.
Make	a	large	right-angled	triangle,	and	use	it	to	find	the	gradient.

You	can	find	the	change	in	displacement	of	the	body	as	it	accelerates	by	determining	the	area	under	the
velocity–time	graph.
To	find	the	displacement	of	the	object	in	Figure	2.18	between	t	=	0	and	t	=	20	s,	the	most
straightforward,	but	lengthy,	method	is	just	to	count	the	number	of	small	squares.
In	this	case,	up	to	t	=	20	s,	there	are	about	250	small	squares.	This	is	tedious	to	count	but	you	can	save
yourself	a	lot	of	time	by	drawing	a	line	from	the	origin	to	the	point	at	20	s.	The	area	of	the	triangle	is	easy
to	find	(200	small	squares)	and	then	you	only	have	to	count	the	number	of	small	squares	between	the	line
you	have	drawn	and	the	curve	on	the	graph	(about	50	squares)

In	this	case,	each	square	is	1	m	s−1	on	the	y-axis	by	1	s	on	the	x-axis,	so	the	area	of	each	square	is	1	×	1
=	1	m	and	the	displacement	is	250	m.	In	other	cases,	note	carefully	the	value	of	each	side	of	the	square
you	have	chosen.

Questions
The	graph	in	Figure	2.19	represents	the	motion	of	an	object	moving	with	varying	acceleration.	Lay
your	ruler	on	the	diagram	so	that	it	is	tangential	to	the	graph	at	point	P.

What	are	the	values	of	time	and	velocity	at	this	point?
Estimate	the	object’s	acceleration	at	this	point.
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Figure	2.19:	For	Question	14.

The	velocity–time	graph	(Figure	2.20)	represents	the	motion	of	a	car	along	a	straight	road	for	a
period	of	30	s.

Describe	the	motion	of	the	car.
From	the	graph,	determine	the	car’s	initial	and	final	velocities	over	the	time	of	30	s.
Determine	the	acceleration	of	the	car.
By	calculating	the	area	under	the	graph,	determine	the	displacement	of	the	car.
Check	your	answer	to	part	d	by	calculating	the	car’s	displacement	using	 .

Figure	2.20:	For	Question	15.
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2.11	Acceleration	caused	by	gravity
If	you	drop	a	ball	or	stone,	it	falls	to	the	ground.	Figure	2.21,	based	on	a	multiflash	photograph,	shows	the
ball	at	equal	intervals	of	time.	You	can	see	that	the	ball’s	velocity	increases	as	it	falls	because	the	spaces
between	the	images	of	the	ball	increase	steadily.	The	ball	is	accelerating.
A	multiflash	photograph	is	useful	to	demonstrate	that	the	ball	accelerates	as	it	falls.	Usually,	objects	fall
too	quickly	for	our	eyes	to	be	able	to	observe	them	speeding	up.	It	is	easy	to	imagine	that	the	ball	moves
quickly	as	soon	as	you	let	it	go,	and	falls	at	a	steady	speed	to	the	ground.	Figure	2.21	shows	that	this	is
not	the	case.
If	we	measure	the	acceleration	of	a	freely	falling	object	on	the	surface	of	the	Earth,	we	find	a	value	of
about	9.81	m	s−2.	This	is	known	as	the	acceleration	of	free	fall,	and	is	given	the	symbol	g:

Figure	2.21:	 This	 diagram	of	 a	 falling	ball,	 based	on	a	multiflash	photo,	 clearly	 shows	 that	 the	ball’s
velocity	increases	as	it	falls.

acceleration	of	free	fall	g	=	9.81	m	s−2

The	value	of	g	depends	on	where	you	are	on	the	Earth’s	surface,	but	we	usually	take	g	=	9.81	m	s−2.

If	we	drop	an	object,	its	initial	velocity	u	=	0.	How	far	will	it	fall	in	time	t?	Substituting	in	
gives	displacement	s:

Hence,	by	timing	a	falling	object,	we	can	determine	g.

Questions
If	you	drop	a	stone	from	the	edge	of	a	cliff,	its	initial	velocity	u	=	0,	and	it	falls	with	acceleration	g	=
9.81	m	s−2.	You	can	calculate	the	distance	s	it	falls	in	a	given	time	t	using	an	equation	of	motion.

Copy	and	complete	Table	2.3,	which	shows	how	s	depends	on	t.
Draw	a	graph	of	s	against	t.
Use	your	graph	to	find	the	distance	fallen	by	the	stone	in	2.5	s.
Use	your	graph	to	find	how	long	it	will	take	the	stone	to	fall	to	the	bottom	of	a	cliff	40	m	high.
Check	your	answer	using	the	equations	of	motion.
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Time	/	s 0 1.0 2.0 3.0 4.0

Displacement	/	m 0 4.9 	 	 	

Table	2.3:	Time	t	and	displacement	s	data	fo

An	egg	falls	off	a	table.	The	floor	is	0.8	m	from	the	table-top.
Calculate	the	time	taken	to	reach	the	ground.
Calculate	the	velocity	of	impact	with	the	ground.

	
	



2.12	Determining	g
One	way	to	measure	the	acceleration	of	free	fall	g	would	be	to	try	bungee-jumping	(Figure	2.22).	You
would	need	to	carry	a	stopwatch,	and	measure	the	time	between	jumping	from	the	platform	and	the
moment	when	the	elastic	rope	begins	to	slow	your	fall.	If	you	knew	the	length	of	the	unstretched	rope,	you
could	calculate	g.
There	are	easier	methods	for	finding	g	that	can	be	used	in	the	laboratory.	These	are	described	in	Practical
Activity	2.2.

Figure	2.22:	A	bungee-jumper	falls	with	initial	acceleration	g.

PRACTICAL	ACTIVITY	2.2:	LABORATORY	MEASUREMENTS	OF	g

Measuring	g	using	an	electronic	timer
In	this	method,	a	steel	ball-bearing	is	held	by	an	electromagnet	(Figure	2.23).	When	the	current	to	the
magnet	is	switched	off,	the	ball	begins	to	fall	and	an	electronic	timer	starts.	The	ball	falls	through	a
trapdoor,	and	this	breaks	a	circuit	to	stop	the	timer.	This	tells	us	the	time	taken	for	the	ball	to	fall	from
rest	through	the	distance	h	between	the	bottom	of	the	ball	and	the	trapdoor.
Here	is	how	we	can	use	one	of	the	equations	of	motion	to	find	g:
displacement	s	=	h
time	taken	=	t
initial	velocity	u	=	0
acceleration	a	=	g

Substituting	in	 	gives:

and	for	any	values	of	h	and	t	we	can	calculate	a	value	for	g.



Figure	2.23:	The	timer	records	the	time	for	the	ball	to	fall	through	the	distance	h.

A	more	satisfactory	procedure	is	to	take	measurements	of	t	for	several	different	values	of	h.	The	height
of	the	ball	bearing	above	the	trapdoor	is	varied	systematically,	and	the	time	of	fall	measured	several
times	to	calculate	an	average	for	each	height.	Table	2.4	and	Figure	2.24	show	some	typical	results.	We
can	deduce	g	from	the	gradient	of	the	graph	of	h	against	t2.
The	equation	for	a	straight	line	through	the	origin	is:

y	=	mx

In	our	experiment	we	have:

h	/	m t	/	s t2	/	s2

0.27 0.25 0.063
0.39 0.30 0.090
0.56 0.36 0.130
0.70 0.41 0.168
0.90 0.46 0.212

Table	2.4:	Data	for	Figure	2.24.	These	are	mean	values.

The	gradient	of	the	straight	line	of	a	graph	of	h	against	t2	is	equal	to	 .

Figure	2.24:	The	acceleration	of	free	fall	can	be	determined	from	the	gradient.



Therefore:

g	=	4.2	×	2	=	8.4	m	s−2

Sources	of	uncertainty
The	electromagnet	may	retain	some	magnetism	when	it	is	switched	off,	and	this	may	tend	to	slow	the
ball’s	fall.	Consequently,	the	time	t	recorded	by	the	timer	may	be	longer	than	if	the	ball	were	to	fall
completely	freely.	From	 ,	it	follows	that,	if	t	is	too	great,	the	experimental	value	of	g	will	be	too
small.	This	is	an	example	of	a	systematic	error	–	all	the	results	are	systematically	distorted	so	that	they
are	too	great	(or	too	small)	as	a	consequence	of	the	experimental	design.
Measuring	the	height	h	is	awkward.	You	can	probably	only	find	the	value	of	h	to	within	±1	mm	at	best.
So	there	is	a	random	error	in	the	value	of	h,	and	this	will	result	in	a	slight	scatter	of	the	points	on	the
graph,	and	a	degree	of	uncertainty	in	the	final	value	of	g.
If	you	just	have	one	value	for	h	and	the	corresponding	value	for	t	you	can	use	the	uncertainty	in	h	and	t
to	find	the	uncertainty	in	g.
The	percentage	uncertainty	in	g	=	percentage	uncertainty	in	h	+	2	×	percentage	uncertainty	in	t.
For	more	about	errors	and	combining	uncertainties,	see	Chapter	P1.

Measuring	g	using	a	ticker-timer
Figure	2.25	shows	a	weight	falling.	As	it	falls,	it	pulls	a	tape	through	a	ticker-timer.	The	spacing	of	the
dots	on	the	tape	increases	steadily,	showing	that	the	weight	is	accelerating.	You	can	analyse	the	tape	to
find	the	acceleration,	as	discussed	in	Practical	Activity	2.1.

Figure	2.25:	A	falling	weight	pulls	a	tape	through	a	ticker-timer.

This	is	not	a	very	satisfactory	method	of	measuring	g.	The	main	problem	arises	from	friction	between	the
tape	and	the	ticker-timer.	This	slows	the	fall	of	the	weight	and	so	its	acceleration	is	less	than	g.	(This	is
another	example	of	a	systematic	error.)
The	effect	of	friction	is	less	of	a	problem	for	a	large	weight,	which	falls	more	freely.	If	measurements	are
made	for	increasing	weights,	the	value	of	acceleration	gets	closer	and	closer	to	the	true	value	of	g.

Measuring	g	using	a	light	gate
Figure	2.26	shows	how	a	weight	can	be	attached	to	a	card	‘interrupt’.	The	card	is	designed	to	break	the
light	beam	twice	as	the	weight	falls.	The	computer	can	then	calculate	the	velocity	of	the	weight	twice	as
it	falls,	and	hence	find	its	acceleration:

Therefore:
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The	weight	can	be	dropped	from	different	heights	above	the	light	gate.	This	allows	you	to	find	out
whether	its	acceleration	is	the	same	at	different	points	in	its	fall.	This	is	an	advantage	over	Method	1,
which	can	only	measure	the	acceleration	from	a	stationary	start.

Figure	 2.26:	 The	 weight	 accelerates	 as	 it	 falls.	 The	 upper	 section	 of	 the	 card	 falls	 more	 quickly
through	the	light	gate.

WORKED	EXAMPLE

To	get	a	rough	value	for	g,	a	student	dropped	a	stone	from	the	top	of	a	cliff.	A	second	student	timed
the	stone’s	fall	using	a	stopwatch.	Here	are	their	results:
estimated	height	of	cliff	=	30	m
time	of	fall	=	2.6	s
Use	the	results	to	estimate	a	value	for	g.

Calculate	the	average	speed	of	the	stone:

Find	the	values	of	v	and	u:

final	speed	v	=	2	×	11.5	m	s−1	=	23.0	m	s−1

initial	speed	u	=	0	m	s−1

Substitute	these	values	into	the	equation	for	acceleration:

Note	that	you	can	reach	the	same	result	more	directly	using	 ,	but	you	may	find
it	easier	to	follow	what	is	going	on	using	the	method	given	here.	We	should	briefly	consider
why	the	answer	is	less	than	the	expected	value	of	g	=	9.81	m	s−2.	It	might	be	that	the	cliff
was	higher	than	the	student’s	estimate.	The	timer	may	not	have	been	accurate	in	switching
the	stopwatch	on	and	off.	There	will	have	been	air	resistance	that	slowed	the	stone’s	fall.

Questions
A	steel	ball	falls	from	rest	through	a	height	of	2.10	m.	An	electronic	timer	records	a	time	of	0.67	s	for
the	fall.

Calculate	the	average	acceleration	of	the	ball	as	it	falls.
Suggest	reasons	why	the	answer	is	not	exactly	9.81	m	s−2.
Suppose	the	height	is	measured	accurately	but	the	time	is	measured	to	an	uncertainty	of	±0.02	s.
Calculate	the	percentage	uncertainty	in	the	time	and	the	percentage	uncertainty	in	the	average
acceleration.	You	can	do	this	by	repeating	the	calculation	for	g	using	a	time	of	0.65	s.	You	can	find
out	more	about	uncertainty	in	Chapter	P1.

In	an	experiment	to	determine	the	acceleration	due	to	gravity,	a	ball	was	timed	electronically	as	it	fell
from	rest	through	a	height	h.	The	times	t	shown	in	Table	2.5	were	obtained.

Plot	a	graph	of	h	against	t2.
From	the	graph,	determine	the	acceleration	of	free	fall	g.
Comment	on	your	answer.
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Height	h	/	m 0.70 1.03 1.25 1.60 1.99
Time	t	/	s 0.99 1.13 1.28 1.42 1.60

Table	2.5:	Height	h	and	time	t	data	for	Question	19.

In	Chapter	1,	we	looked	at	how	to	use	a	motion	sensor	to	measure	the	speed	and	position	of	a	moving
object.	Suggest	how	a	motion	sensor	could	be	used	to	determine	g.

	
	



2.13	Motion	in	two	dimensions:	projectiles
A	curved	trajectory
A	multiflash	photograph	can	reveal	details	of	the	path,	or	trajectory,	of	a	projectile.	Figure	2.27	shows	the
trajectories	of	a	projectile	–	a	bouncing	ball.	Once	the	ball	has	left	the	child’s	hand	and	is	moving	through
the	air,	the	only	force	acting	on	it	is	its	weight.
The	ball	has	been	thrown	at	an	angle	to	the	horizontal.	It	speeds	up	as	it	falls	–	you	can	see	that	the
images	of	the	ball	become	further	and	further	apart.	At	the	same	time,	it	moves	steadily	to	the	right.	You
can	see	this	from	the	even	spacing	of	the	images	across	the	picture.
The	ball’s	path	has	a	mathematical	shape	known	as	a	parabola.	After	it	bounces,	the	ball	is	moving	more
slowly.	It	slows	down,	or	decelerates,	as	it	rises	–	the	images	get	closer	and	closer	together.
We	interpret	this	picture	as	follows.	The	vertical	motion	of	the	ball	is	affected	by	the	force	of	gravity,	that
is,	its	weight.	When	it	rises	it	has	a	vertical	deceleration	of	magnitude	g,	which	slows	it	down,	and	when	it
falls	it	has	an	acceleration	of	g,	which	speeds	it	up.	The	ball’s	horizontal	motion	is	unaffected	by	gravity.
In	the	absence	of	air	resistance,	the	ball	has	a	constant	velocity	in	the	horizontal	direction.	We	can	treat
the	ball’s	vertical	and	horizontal	motions	separately,	because	they	are	independent	of	one	another.

Figure	2.27:	A	bouncing	ball	is	an	example	of	a	projectile.	This	multiflash	photograph	shows	details	of
its	motion	that	would	escape	the	eye	of	an	observer.

Components	of	a	vector
In	order	to	understand	how	to	treat	the	velocity	in	the	vertical	and	horizontal	directions	separately	we
start	by	considering	a	constant	velocity.
If	an	aeroplane	has	a	constant	velocity	v	at	an	angle	θ	as	shown	in	Figure	2.28,	then	we	say	that	this
velocity	has	two	effects	or	components,	vN	in	a	northerly	direction	and	vE	in	an	easterly	direction.	These
two	components	of	velocity	add	up	to	make	the	actual	velocity	v.
This	process	of	taking	a	velocity	and	determining	its	effect	along	another	direction	is	known	as	resolving
the	velocity	along	a	different	direction.	In	effect,	splitting	the	velocity	into	two	components	at	right	angles
is	the	reverse	of	adding	together	two	vectors	–	it	is	splitting	one	vector	into	two	vectors	along	convenient
directions.

KEY	EQUATIONS
For	a	velocity	v	at	an	angle	θ	to	the	x-direction	the	components	are:
x-direction:	v	cos	θ
y-direction:	v	sin	θ
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Figure	2.28:	Components	of	a	velocity.	The	component	due	north	is	vN	=	v	cosθ	and	the	component	due
east	is	vE	=	v	sinθ.

To	find	the	component	of	any	vector	(for	example,	displacement,	velocity,	acceleration)	in	a	particular
direction,	we	can	use	the	following	strategy:
Step	1	Find	the	angle	θ	between	the	vector	and	the	direction	of	interest.
Step	2	Multiply	the	vector	by	the	cosine	of	the	angle	θ.
So	the	component	of	an	object’s	velocity	v	at	angle	θ	to	v	is	equal	to	v	cos	θ	(Figure	2.28).

Question
Find	the	x-	and	y-components	of	each	of	the	vectors	shown	in	Figure	2.29.	(You	will	need	to	use	a
protractor	to	measure	angles	from	the	diagram.)

Figure	2.29:	The	vectors	for	Question	21.

	
	



2.14	Understanding	projectiles
We	will	first	consider	the	simple	case	of	a	projectile	thrown	straight	up	in	the	air,	so	that	it	moves
vertically.	Then	we	will	look	at	projectiles	that	move	horizontally	and	vertically	at	the	same	time.

Up	and	down
A	stone	is	thrown	upwards	with	an	initial	velocity	of	20	m	s−1.	Figure	2.30	shows	the	situation.
It	is	important	to	use	a	consistent	sign	convention	here.	We	will	take	upwards	as	positive,	and	downwards
as	negative.	So	the	stone’s	initial	velocity	is	positive,	but	its	acceleration	g	is	negative.	We	can	solve
various	problems	about	the	stone’s	motion	by	using	the	equations	of	motion.

How	high?
How	high	will	the	stone	rise	above	ground	level	of	the	cliff?
As	the	stone	rises	upwards,	it	moves	more	and	more	slowly	–	it	decelerates	because	of	the	force	of	gravity.

Figure	2.30:	Standing	at	 the	edge	of	 the	cliff,	you	throw	a	stone	vertically	upwards.	The	height	of	 the
cliff	is	25	m.

At	its	highest	point,	the	stone’s	velocity	is	zero.	So	the	quantities	we	know	are:

initial	velocity = u = 20	m	s−1

final	velocity = v = 0	m	s−1

acceleration = a = −9.81	m	s−2

displacement = s = ?

The	relevant	equation	of	motion	is	v2	=	u2	+	2as.	Substituting	values	gives:

The	stone	rises	20	m	upwards	before	it	starts	to	fall	again.

How	long?
How	long	will	it	take	from	leaving	your	hand	for	the	stone	to	fall	back	to	the	clifftop?
When	the	stone	returns	to	the	point	from	which	it	was	thrown,	its	displacement	s	is	zero.	So:
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Substituting	in	 	gives:

There	are	two	possible	solutions	to	this:
t	=	0	s;	in	other	words,	the	stone	had	zero	displacement	at	the	instant	it	was	thrown
t	=	4.1	s;	in	other	words,	the	stone	returned	to	zero	displacement	after	4.1	s,	which	is	the	answer	we
are	interested	in.

Falling	further
The	height	of	the	cliff	is	25	m.	How	long	will	it	take	the	stone	to	reach	the	foot	of	the	cliff?
This	is	similar	to	the	last	example,	but	now	the	stone’s	final	displacement	is	25	m	below	its	starting	point.
By	our	sign	convention,	this	is	a	negative	displacement	and	s	=	−25	m.

Questions
In	the	example	in	‘Falling	further’,	calculate	the	time	it	will	take	for	the	stone	to	reach	the	foot	of	the
cliff.
A	ball	is	fired	upwards	with	an	initial	velocity	of	30	m	s−1.	Table	2.6	shows	how	the	ball’s	velocity
changes.	(Take	g	=	9.81	m	s−2.)

Copy	and	complete	the	table.
Draw	a	graph	to	represent	the	data.
Use	your	graph	to	deduce	how	long	the	ball	took	to	reach	its	highest	point.

Velocity	/	m	s−1 30 20.19 	 	 	 	

Time	/	s 0 1.0 2.0 3.0 4.0 5.0

Table	2.6:	For	Question	23.

Vertical	and	horizontal	at	the	same	time
Here	is	an	example	to	illustrate	what	happens	when	an	object	travels	vertically	and	horizontally	at	the
same	time.
In	a	toy,	a	ball-bearing	is	fired	horizontally	from	a	point	0.4	m	above	the	ground.	Its	initial	velocity	is	2.5	m
s−1.	Its	positions	at	equal	intervals	of	time	have	been	calculated	and	are	shown	in	Table	2.7.	These	results
are	also	shown	in	Figure	2.31.	Study	the	table	and	the	graph.	You	should	notice	the	following:

The	horizontal	distance	increases	steadily.	This	is	because	the	ball’s	horizontal	motion	is	unaffected	by
the	force	of	gravity.	It	travels	at	a	steady	velocity	horizontally	so	we	can	use	 .

The	vertical	distances	do	not	show	the	same	pattern.	The	ball	is	accelerating	downwards	so	we	must
use	the	equations	of	motion.	(These	figures	have	been	calculated	using	g	=	9.81	m	s−2.)

Time	/	s Horizontal	distance	/	m Vertical	distance	/	m
0.00 0.00 0.000
0.04 0.10 0.008
0.08 0.20 0.031
0.12 0.30 0.071
0.16 0.40 0.126
0.20 0.50 0.196
0.24 0.60 0.283
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0.28 0.70 0.385

Table	2.7:	Data	for	the	example	of	a	moving	ball,	as	shown	in	Figure	2.31.

Figure	 2.31:	 This	 sketch	 shows	 the	 path	 of	 the	 ball	 projected	 horizontally.	 The	 arrows	 represent	 the
horizontal	and	vertical	components	of	its	velocity.

You	can	calculate	the	distance	s	fallen	using	the	equation	of	motion	 .	(The	initial	vertical
velocity	u	=	0.)
The	horizontal	distance	is	calculated	using:
horizontal	distance	=	2.5	×	t
The	vertical	distance	is	calculated	using:

KEY	IDEA
In	the	absence	of	air	resistance,	an	object	has	constant	velocity
horizontally	and	constant	acceleration	vertically.

WORKED	EXAMPLES

A	stone	is	thrown	horizontally	with	a	velocity	of	12	m	s−1	from	the	top	of	a	vertical	cliff.
Calculate	how	long	the	stone	takes	to	reach	the	ground	40	m	below	and	how	far	the	stone	lands	from
the	base	of	the	cliff.

Consider	the	ball’s	vertical	motion.	It	has	zero	initial	speed	vertically	and	travels	40	m	with
acceleration	9.81	m	s−2	in	the	same	direction.

So,	t	=	2.86	s.
Consider	the	ball’s	horizontal	motion.	The	ball	travels	with	a	constant	horizontal	velocity,	12
m	s−1,	as	long	as	there	is	no	air	resistance.
distance	travelled	=	u	×	t	=	12	×	2.86	=	34.3	m
Hint:	You	may	find	it	easier	to	summarise	the	information	like	this:
vertically	s	=	40	u	=	0	a	=	9.81	t	=	?	v	=	?
horizontally	u	=	12	v	=	12	a	=	0	t	=	?	s	=	?

A	ball	is	thrown	with	an	initial	velocity	of	20	m	s−1	at	an	angle	of	30°	to	the	horizontal	(Figure	2.32).
Calculate	the	horizontal	distance	travelled	by	the	ball	(its	range).
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Figure	2.32:	For	Worked	example	10.

Split	the	ball’s	initial	velocity	into	horizontal	and	vertical	components:

initial	velocity	=	u	=	20	m	s−1

horizontal	component	of	initial	velocity	v=	u	cos	θ	=	20	×	cos	30°	=	17.3	m	s−1

vertical	component	of	initial	velocity	=	u	sin	θ	=	20	×	sin	30°	=	10	m	s−1

Consider	the	ball’s	vertical	motion.	How	long	will	it	take	to	return	to	the	ground?	In	other
words,	when	will	its	displacement	return	to	zero?

u	=	10	m	s−1			a	=	−9.81	m	s−2			s	=	0			t	=	?

Using	 ,	we	have:

0	=	10t	−	4.905t2

This	gives	t	=	0	s	or	t	=	2.04	s.
So,	the	ball	is	in	the	air	for	2.04	s.
Consider	the	ball’s	horizontal	motion.	How	far	will	it	travel	horizontally	in	the	2.04	s	before	it
lands?	This	is	simple	to	calculate,	since	it	moves	with	a	constant	horizontal	velocity	of	17.3	m
s−1.

Hence	the	horizontal	distance	travelled	by	the	ball	(its	range)	is	about	35	m.

Questions
A	stone	is	thrown	horizontally	from	the	top	of	a	vertical	cliff	and	lands	4.0	s	later	at	a	distance	12.0	m
from	the	base	of	the	cliff.	Ignore	air	resistance.

Calculate	the	horizontal	speed	of	the	stone.
Calculate	the	height	of	the	cliff.

A	stone	is	thrown	with	a	velocity	of	8.0	m	s−1	into	the	air	at	an	angle	of	40°	to	the	horizontal.
Calculate	the	vertical	component	of	the	velocity.
State	the	value	of	the	vertical	component	of	the	velocity	when	the	stone	reaches	its	highest	point.
Ignore	air	resistance.
Use	your	answers	to	part	a	and	part	b	to	calculate	the	time	the	stone	takes	to	reach	its	highest
point.
Calculate	the	horizontal	component	of	the	velocity.
Use	your	answers	to	part	c	and	part	d	to	find	the	horizontal	distance	travelled	by	the	stone	as	it
climbs	to	its	highest	point.

The	range	of	a	projectile	is	the	horizontal	distance	it	travels	before	it	reaches	the	ground.	The	greatest
range	is	achieved	if	the	projectile	is	thrown	at	45°	to	the	horizontal.
A	ball	is	thrown	with	an	initial	velocity	of	40	m	s−1.	Calculate	its	greatest	possible	range	when	air
resistance	is	considered	to	be	negligible.

REFLECTION
Could	you	easily	teach	somebody	a	proof	of	the	equations	of	motion?	How	would	you	do	this?
What	do	you	find	unexpected	about	projectile	motion?

	
	



SUMMARY

Acceleration	is	equal	to	the	rate	of	change	of	velocity.	It	is	a	vector,	has	units	m	s−2	and	can	be	found
from	the	gradient	of	a	velocity–time	graph.	The	area	under	this	graph	is	the	change	in	displacement.

Acceleration,	velocity,	displacement	and	time	for	a	uniform	acceleration	are	related	by	the	equations
of	motion,	which	you	should	know	how	to	derive	and	use.

The	acceleration	of	free	fall	is	taken	as	9.81	m	s−2	and	you	should	know	an	experiment	to	measure
this	quantity.

Vector	quantities	can	be	resolved	into	components.	Components	at	right	angles	to	one	another	can	be
treated	independently.	For	a	velocity	v	at	an	angle	θ	to	the	x-direction	the	components	are:
x-direction:	v	cos	θ
y-direction:	v	sin	θ

In	the	absence	of	air	resistance,	projectiles	involve	a	constant	acceleration	downwards	and	a	constant
velocity	horizontally.	These	can	be	treated	independently	of	one	another.
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EXAM-STYLE	QUESTIONS

An	aircraft,	starting	from	rest	accelerates	uniformly	along	a	straight	runway.	It
reaches	a	speed	of	200	km	h–1	and	travels	a	distance	of	1.4	km. 	

What	is	the	acceleration	of	the	aircraft	along	the	runway? [1]

1.1	m	s–2 	

2.2	m	s–2 	

3.0	m	s–2 	

6.0	m	s–2 	

A	ball	is	thrown	with	a	velocity	of	10	m	s−1	at	an	angle	of	30°	to	the	horizontal.
Air	resistance	has	a	negligible	effect	on	the	motion	of	the	ball. 	

Figure	2.33
	

What	is	the	velocity	of	the	ball	at	the	highest	point	in	its	path? [1]

0 	

5.0	m	s−1 	

8.7	m	s−1 	

10	m	s−1 	

A	trolley	travels	along	a	straight	track.	The	variation	with	time	t	of	the	velocity
v	of	the	trolley	is	shown. [1]

Figure	2.34
	

Which	graph	shows	the	variation	with	time	of	the	acceleration	a	of	the	trolley? 	
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A	motorway	designer	can	assume	that	cars	approaching	a	motorway	enter	a
slip	road	with	a	velocity	of	10	m	s−1	and	reach	a	velocity	of	30	m	s−1	before
joining	the	motorway.	Calculate	the	minimum	length	for	the	slip	road,
assuming	that	vehicles	have	an	acceleration	of	4.0	m	s−2. [4]

A	train	is	travelling	at	50	m	s−1	when	the	driver	applies	the	brakes	and	gives
the	train	a	constant	deceleration	of	magnitude	0.50	m	s−2	for	100	s.	Describe
what	happens	to	the	train.	Calculate	the	distance	travelled	by	the	train	in	100
s. [7]

A	boy	stands	on	a	cliff	edge	and	throws	a	stone	vertically	upwards	at	time	t	=
0.	The	stone	leaves	his	hand	at	20	m	s−1.	Take	the	acceleration	of	the	ball	as
9.81	m	s−2. 	

Show	that	the	equation	for	the	displacement	of	the	ball	is: 	

s	=	20t	−	4.9t2 [2]

Calculate	the	height	of	the	stone	2.0	s	after	release	and	6.0	s	after	release. [3]

Calculate	the	time	taken	for	the	stone	return	to	the	level	of	the	boy’s	hand.
You	may	assume	the	boy’s	hand	does	not	move	vertically	after	the	ball	is
released. [4]

	 [Total:	9]

This	graph	shows	the	variation	of	velocity	with	time	of	two	cars,	A	and	B,
which	are	travelling	in	the	same	direction	over	a	period	of	time	of	40	s. 	

Figure	2.35
	

Car	A,	travelling	at	a	constant	velocity	of	40	m	s−1,	overtakes	car	B	at	time	t	=
0.	In	order	to	catch	up	with	car	A,	car	B	immediately	accelerates	uniformly	for
20	s	to	reach	a	constant	velocity	of	50	m	s−1.	Calculate: 	

the	distance	that	A	travels	during	the	first	20	s [2]

the	acceleration	and	distance	of	travel	of	B	during	the	first	20	s [5]

the	additional	time	taken	for	B	to	catch	up	with	A [2]

the	distance	each	car	will	have	then	travelled	since	t	=	0. [2]

	 [Total:	11]

An	athlete	competing	in	the	long	jump	leaves	the	ground	with	a	velocity	of	5.6
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m	s−1	at	an	angle	of	30°	to	the	horizontal. 	

Determine	the	vertical	component	of	the	velocity	and	use	this	value	to	find
the	time	between	leaving	the	ground	and	landing. [4]

Determine	the	horizontal	component	of	the	velocity	and	use	this	value	to
find	the	horizontal	distance	travelled. [4]

	 [Total:	8]

This	diagram	shows	an	arrangement	used	to	measure	the	acceleration	of	a
metal	plate	as	it	falls	vertically. 	

Figure	2.36
	

The	metal	plate	is	released	from	rest	and	falls	a	distance	of	0.200	m	before
breaking	light	beam	1.	It	then	falls	a	further	0.250	m	before	breaking	light
beam	2. 	

Calculate	the	time	taken	for	the	plate	to	fall	0.200	m	from	rest.	(You	may
assume	that	the	metal	plate	falls	with	an	acceleration	equal	to	the
acceleration	of	free	fall.) [2]

The	timer	measures	the	speed	of	the	metal	plate	as	it	falls	through	each
light	beam.	The	speed	as	it	falls	through	light	beam	1	is	1.92	m	s−1	and	the
speed	as	it	falls	through	light	beam	2	is	2.91	m	s−1. 	

Calculate	the	acceleration	of	the	plate	between	the	two	light	beams. [2]

State	and	explain	one	reason	why	the	acceleration	of	the	plate	is	not
equal	to	the	acceleration	of	free	fall. [2]

	 [Total:	6]

This	is	a	velocity–time	graph	for	a	vertically	bouncing	ball. 	

Figure	2.37
	

The	ball	is	released	at	A	and	strikes	the	ground	at	B.	The	ball	leaves	the
ground	at	D	and	reaches	its	maximum	height	at	E.	The	effects	of	air	resistance
can	be	neglected.

	

State: 	

why	the	velocity	at	D	is	negative [1]

why	the	gradient	of	the	line	AB	is	the	same	as	the	gradient	of	line	DE [1]

what	is	represented	by	the	area	between	the	line	AB	and	the	time	axis [1]

why	the	area	of	triangle	ABC	is	greater	than	the	area	of	triangle	CDE. [1]
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The	ball	is	dropped	from	rest	from	an	initial	height	of	1.2	m.	After	hitting
the	ground	the	ball	rebounds	to	a	height	of	0.80	m.	The	ball	is	in	contact
with	the	ground	between	B	and	D	for	a	time	of	0.16	s. 	

Using	the	acceleration	of	free	fall,	calculate: 	

the	speed	of	the	ball	immediately	before	hitting	the	ground [2]

the	speed	of	the	ball	immediately	after	hitting	the	ground [2]

the	acceleration	of	the	ball	while	it	is	in	contact	with	the	ground.	State
the	direction	of	this	acceleration. [3]

	 [Total:	11]

A	student	measures	the	speed	v	of	a	trolley	as	it	moves	down	a	slope.	The
variation	of	v	with	time	t	is	shown	in	this	graph. 	

Figure	2.38
	

Use	the	graph	to	find	the	acceleration	of	the	trolley	when	t	=	0.70	s. [2]

State	how	the	acceleration	of	the	trolley	varies	between	t	=	0	and	t	=	1.0	s.
Explain	your	answer	by	reference	to	the	graph. [3]

Determine	the	distance	travelled	by	the	trolley	between	t	=	0.60	and	t	=
0.80	s. [3]

The	student	obtained	the	readings	for	v	using	a	motion	sensor.	The
readings	may	have	random	errors	and	systematic	errors.	Explain	how
these	two	types	of	error	affect	the	velocity–time	graph. [2]

	 [Total:	10]

A	car	driver	is	travelling	at	speed	v	on	a	straight	road.	He	comes	over	the	top
of	a	hill	to	find	a	fallen	tree	on	the	road	ahead.	He	immediately	brakes	hard	but
travels	a	distance	of	60	m	at	speed	v	before	the	brakes	are	applied.	The	skid
marks	left	on	the	road	by	the	wheels	of	the	car	are	of	length	140	m,	as	shown. 	

Figure	2.39

	

The	police	investigate	whether	the	driver	was	speeding	and	establish	that	the
car	decelerates	at	2.0	m	s−2	during	the	skid. 	

Determine	the	initial	speed	v	of	the	car	before	the	brakes	are	applied. [2]

Determine	the	time	taken	between	the	driver	coming	over	the	top	of	the
hill	and	applying	the	brakes.	Suggest	whether	this	shows	whether	the
driver	was	alert	to	the	danger. [2]
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The	speed	limit	on	the	road	is	100	km/h.	Determine	whether	the	driver	was
breaking	the	speed	limit. [2]

	 [Total:	6]

A	hot-air	balloon	rises	vertically.	At	time	t	=	0,	a	ball	is	released	from	the
balloon.	This	graph	shows	the	variation	of	the	ball’s	velocity	v	with	t.	The	ball
hits	the	ground	at	t	=	4.1	s. 	

Figure	2.40
	

Explain	how	the	graph	shows	that	the	acceleration	of	the	ball	is	constant. [1]

Use	the	graph	to: 	

determine	the	time	at	which	the	ball	reaches	its	highest	point [1]

show	that	the	ball	rises	for	a	further	12	m	between	release	and	its
highest	point [2]

determine	the	distance	between	the	highest	point	reached	by	the	ball
and	the	ground. [2]

The	equation	relating	v	and	t	is	v	=	15	−	9.81t.	State	the	significance	in
the	equation	of: 	

the	number	15 [1]

the	negative	sign. [1]

	 [Total:	8]

An	aeroplane	is	travelling	horizontally	at	a	speed	of	80	m	s−1	and	drops	a	crate
of	emergency	supplies. 	

Figure	2.41
	

To	avoid	damage,	the	maximum	vertical	speed	of	the	crate	on	landing	is	20	m	s
−1.	You	may	assume	air	resistance	is	negligible. 	

Calculate	the	maximum	height	of	the	aeroplane	when	the	crate	is	dropped. [2]

Calculate	the	time	taken	for	the	crate	to	reach	the	ground	from	this	height. [2]

The	aeroplane	is	travelling	at	the	maximum	permitted	height.	Calculate	the
horizontal	distance	travelled	by	the	crate	after	it	is	released	from	the
aeroplane. [1]



	 [Total:	5]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	acceleration 2.1 	 	 	

calculate	displacement	from	the	area
under	a	velocity–time	graph

2.5 	 	 	

calculate	velocity	using	the	gradient	of
a	displacement–time	graph

2.6 	 	 	

calculate	acceleration	using	the
gradient	of	a	velocity–time	graph

2.4 	 	 	

derive	and	use	the	equations	of
uniformly	accelerated	motion

2.10 	 	 	

describe	an	experiment	to	measure	the
acceleration	of	free	fall,	g

2.11,	2.12 	 	 	

use	perpendicular	components	to
represent	a	vector

2.13 	 	 	

explain	projectile	motion	using	uniform
velocity	in	one	direction	and	uniform
acceleration	in	a	perpendicular
direction	and	do	calculations	on	this
motion.

2.14 	 	 	
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	Chapter	3

Dynamics:	explaining	motion

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
recognise	that	mass	is	a	property	of	an	object	that	resists	change	in	motion
identify	the	forces	acting	on	a	body	in	different	situations
describe	how	the	motion	of	a	body	is	affected	by	the	forces	acting	on	it
recall	F	=	ma	and	solve	problems	using	it,	understanding	that	acceleration	and	resultant	force	are
always	in	the	same	direction
state	and	apply	Newton’s	first	and	third	laws	of	motion
recall	that	the	weight	of	a	body	is	equal	to	the	product	of	its	mass	and	the	acceleration	of	free	fall
relate	derived	units	to	base	units	in	the	SI	system	and	use	base	units	to	check	the	homogeneity	of
an	equation
recall	and	use	a	range	of	prefixes.

BEFORE	YOU	START
Make	a	 list	of	all	 the	different	 types	of	 force	 that	you	know	about.	Do	you	have	 the	 same	 list	as
someone	else?	Discuss	any	differences	and	describe	the	types	of	force	to	each	other.
What	prefixes	do	you	know	that	may	be	placed	before	a	unit?	For	example,	the	‘c’	in	cm	is	the	prefix
‘centi’	and	means	times	10−2.	Write	down	those	that	you	know	and	what	they	mean	then	see	if	you
are	correct.

DYNAMIC	AEROPLANES
Figure	3.1	shows	a	modern	aeroplane.	To	decrease	cost	and	the	effect	on	the	environment,	such	an
aircraft	must	reduce	air	resistance	and	weight,	yet	be	able	to	use	air	resistance	and	other	forces	to	stop



when	landing.	If	you	have	ever	flown	in	an	aeroplane	you	will	know	how	the	back	of	the	seat	pushes	you
forwards	when	the	aeroplane	accelerates	down	the	runway.	The	pilot	must	control	many	forces	on	the
aeroplane	in	take-off,	flying	and	landing.
In	Chapters	1	and	2	we	saw	how	motion	can	be	described	in	terms	of	displacement,	velocity,
acceleration	and	so	on.	Now	we	are	going	to	look	at	how	we	can	explain	how	an	object	moves	in	terms
of	the	forces	that	change	its	motion.
Apart	from	air	resistance,	see	how	many	other	forces	you	can	discover	that	act	on	an	aeroplane.
Compare	your	list	with	someone	else.	What	causes	all	these	forces?

Figure	3.1:	A	modern	aircraft	flying	over	the	ocean.

	
	



3.1	Force,	mass	and	acceleration
Figure	3.2a	shows	how	we	represent	the	force	that	the	motors	on	a	train	provide	to	cause	it	to	accelerate.
The	resultant	force	is	represented	by	a	green	arrow.	The	direction	of	the	arrow	shows	the	direction	of	the
resultant	force.	The	magnitude	(size)	of	the	resultant	force	of	20	000	N	is	also	shown.

Figure	3.2:	A	force	is	needed	to	make	the	train	a	accelerate,	and	b	decelerate.

To	calculate	the	acceleration	a	of	the	train	produced	by	the	resultant	force	F,	we	must	also	know	the
train’s	mass	m	(Table	3.1).	These	quantities	are	related	by:

KEY	EQUATION

Quantity Symbol Unit

resultant	force F N	(newtons)

mass m kg	(kilograms)

acceleration a m	s−2	(metres	per	second
squared)

Table	3.1:	The	quantities	related	by	F	=	ma.

In	this	example,	we	have	F	=	20	000	N	and	m	=	10	000	kg,	and	so:

In	Figure	3.2b,	the	train	is	decelerating	as	it	comes	into	a	station.	Its	acceleration	is	−3.0	m	s−2.	What
force	must	be	provided	by	the	braking	system	of	the	train?

F	=	ma	=	10	000	×	−3	=	−30	000	N

The	minus	sign	shows	that	the	force	must	act	towards	the	right	in	the	diagram,	in	the	opposite	direction
to	the	motion	of	the	train.

Newton’s	second	law	of	motion
The	equation	we	used,	F	=	ma,	is	a	simplified	version	of	Newton’s	second	law	of	motion:	For	a	body	of
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constant	mass,	its	acceleration	is	directly	proportional	to	the	resultant	force	applied	to	it.
An	alternative	form	of	Newton’s	second	law	is	given	in	Chapter	6,	when	you	have	studied	momentum.
Since	Newton’s	second	law	holds	for	objects	that	have	a	constant	mass,	this	equation	can	be	applied	to	a
train	whose	mass	remains	constant	during	its	journey.

The	equation	 	relates	acceleration,	resultant	force	and	mass.	In	particular,	it	shows	that	the	bigger
the	force,	the	greater	the	acceleration	it	produces.	You	will	probably	feel	that	this	is	an	unsurprising
result.	For	a	given	object,	the	acceleration	is	directly	proportional	to	the	resultant	force:

The	equation	also	shows	that	the	acceleration	produced	by	a	force	depends	on	the	mass	of	the	object.	The
mass	of	an	object	is	a	measure	of	its	inertia,	or	its	ability	to	resist	any	change	in	its	motion.	The	greater
the	mass,	the	smaller	the	acceleration	that	results.	If	you	push	your	hardest	against	a	small	car	(which
has	a	small	mass),	you	will	have	a	greater	effect	than	if	you	push	against	a	more	massive	car	(Figure	3.3).
So,	for	a	constant	force,	the	acceleration	is	inversely	proportional	to	the	mass:

The	train	driver	knows	that	when	the	train	is	full	during	the	rush	hour,	it	has	a	smaller	acceleration.	This
is	because	its	mass	is	greater	when	it	is	full	of	people.	Similarly,	it	is	more	difficult	to	stop	the	train	once
it	is	moving.	The	brakes	must	be	applied	earlier	to	avoid	the	train	overshooting	the	platform	at	the
station.

Figure	3.3:	It	is	easier	to	make	a	small	mass	accelerate	than	a	large	mass.

WORKED	EXAMPLES

A	cyclist	of	mass	60	kg	rides	a	bicycle	of	mass	20	kg.	When	starting	off,	the	cyclist	provides	a	force
of	200	N.	Calculate	the	initial	acceleration.

This	is	a	straightforward	example.	First,	we	must	calculate	the	combined	mass	m	of	the
bicycle	and	its	rider:
m	=	20	+	60	=	80	kg
We	are	given	the	force	F:
force	causing	acceleration	F	=	200	N
Substituting	these	values	gives:

So	the	cyclist’s	acceleration	is	2.5	m	s−2.

A	car	of	mass	500	kg	is	travelling	at	20	m	s−1.	The	driver	sees	a	red	traffic	light	ahead,	and	slows	to
a	halt	in	10	s.	Calculate	the	braking	force	provided	by	the	car.

In	this	example,	we	must	first	calculate	the	acceleration	required.	The	car’s	final	velocity	is
0	m	s−1,	so	its	change	in	velocity	Δv	=	0	−	20	=	−20	m	s−1
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To	calculate	the	force,	we	use:
F	=	ma	=	500	×	−2	=	−1000	N
So	the	brakes	must	provide	a	force	of	1000	N.	(The	minus	sign	shows	a	force	decreasing	the
velocity	of	the	car.)

Questions
Calculate	the	force	needed	to	give	a	car	of	mass	800	kg	an	acceleration	of	2.0	m	s−2.
A	rocket	has	a	mass	of	5000	kg.	At	a	particular	instant,	the	resultant	force	acting	on	the	rocket	is	200
000	N.	Calculate	its	acceleration.
(In	this	question,	you	will	need	to	make	use	of	the	equations	of	motion	that	you	studied	in	Chapter	2.)
A	motorcyclist	of	mass	60	kg	rides	a	bike	of	mass	40	kg.	As	she	sets	off	from	the	lights,	the	forward
force	on	the	bike	is	200	N.	Assuming	the	resultant	force	on	the	bike	remains	constant,	calculate	the
bike’s	velocity	after	5.0	s.

	
	



3.2	Identifying	forces
It	is	important	to	be	able	to	identify	the	forces	which	act	on	an	object.	When	we	know	what	forces	are
acting,	we	can	predict	how	the	object	will	move.	Table	3.2	shows	some	important	forces,	how	they	arise
and	how	we	represent	them	in	diagrams.
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3.3	Weight,	friction	and	gravity
Now	we	need	to	consider	some	specific	forces	–	such	as	weight	and	friction.
When	Isaac	Newton	was	confined	to	his	rural	home	to	avoid	the	plague	which	was	spreading
uncontrollably	in	other	parts	of	England,	he	is	said	to	have	noticed	an	apple	fall	to	the	ground.	From	this,
he	developed	his	theory	of	gravity	that	relates	the	motion	of	falling	objects	here	on	Earth	to	the	motion	of
the	Moon	around	the	Earth,	and	the	planets	around	the	Sun.

Diagram Force Important
situations

Pushes	and	pulls.	You	can	make	an	object	accelerate	by
pushing	and	pulling	it.	Your	force	is	shown	by	an	arrow
pushing	(or	pulling)	the	object.

The	engine	of	a	car	provides	a	force	to	push	backwards	on
the	road.	Frictional	forces	from	the	road	on	the	tyre	push	the
car	forwards.

pushing	and
pulling
lifting
force	of	car
engine
attraction	and
repulsion	by
magnets	and
by	electric
charges

Weight.	This	is	the	force	of	gravity	acting	on	the	object.	It	is
usually	shown	by	an	arrow	pointing	vertically	downwards
from	the	object’s	centre	of	gravity.

any	object	in	a
gravitational
field
less	on	the
Moon

Friction.	This	is	the	force	that	arises	when	two	surfaces	rub
over	one	another.	If	an	object	is	sliding	along	the	ground,
friction	acts	in	the	opposite	direction	to	its	motion.	If	an
object	is	stationary,	but	tending	to	slide	–	perhaps	because	it
is	on	a	slope	–	the	force	of	friction	acts	up	the	slope	to	stop	it
from	sliding	down.	Friction	always	acts	along	a	surface,	never
at	an	angle	to	it.

pulling	an
object	along
the	ground
vehicles
cornering	or
skidding
sliding	down	a
slope

Drag.	This	force	is	similar	to	friction.	When	an	object	moves
through	air,	there	is	friction	between	it	and	the	air.	Also,	the
object	has	to	push	aside	the	air	as	it	moves	along.	Together,
these	effects	make	up	drag.

Similarly,	when	an	object	moves	through	a	liquid,	it
experiences	a	drag	force.

Drag	acts	to	oppose	the	motion	of	an	object;	it	acts	in	the
opposite	direction	to	the	object’s	velocity.	It	can	be	reduced
by	giving	the	object	a	streamlined	shape.

vehicles
moving
aircraft	flying
parachuting
objects	falling
through	air	or
water
ships	sailing

Upthrust.	Any	object	placed	in	a	fluid	such	as	water	or	air
experiences	an	upwards	force.	This	is	what	makes	it	possible
for	something	to	float	in	water.

Upthrust	arises	from	the	pressure	that	a	fluid	exerts	on	an
object.	The	deeper	you	go,	the	greater	the	pressure.	So	there
is	more	pressure	on	the	lower	surface	of	an	object	than	on	the
upper	surface,	and	this	tends	to	push	it	upwards.	If	upthrust
is	greater	than	the	object’s	weight,	it	will	float	up	to	the
surface.

boats	and
icebergs
floating
people
swimming
divers
surfacing
a	hot	air
balloon	rising

Contact	force.	When	you	stand	on	the	floor	or	sit	on	a	chair,
there	is	usually	a	force	that	pushes	up	against	your	weight,
and	which	supports	you	so	that	you	do	not	fall	down.	The
contact	force	is	sometimes	known	as	the	normal	contact	force
of	the	floor	or	chair.	(In	this	context,	normal	means
‘perpendicular’.)

standing	on
the	ground
one	object
sitting	on	top
of	another
leaning
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The	contact	force	always	acts	at	right	angles	to	the	surface
that	produces	it.	The	floor	pushes	straight	upwards;	if	you
lean	against	a	wall,	it	pushes	back	against	you	horizontally.

against	a	wall
one	object
bouncing	off
another

Tension.	This	is	the	force	in	a	rope	or	string	when	it	is
stretched.	If	you	pull	on	the	ends	of	a	string,	it	tends	to
stretch.	The	tension	in	the	string	pulls	back	against	you.	It
tries	to	shorten	the	string.

Tension	can	also	act	in	springs.	If	you	stretch	a	spring,	the
tension	pulls	back	to	try	to	shorten	the	spring.	If	you	squash
(compress)	the	spring,	the	tension	acts	to	expand	the	spring.

pulling	with	a
rope
squashing	or
stretching	a
spring

Table	3.2:	Some	important	forces.

The	force	that	caused	the	apple	to	accelerate	was	the	pull	of	the	Earth’s	gravity.	Another	name	for	this
force	is	the	weight	of	the	apple.	The	force	is	shown	as	an	arrow,	pulling	vertically	downwards	on	the
apple	(Figure	3.4).	It	is	usual	to	show	the	arrow	coming	from	the	centre	of	the	apple	–	its	centre	of
gravity.	The	centre	of	gravity	of	an	object	is	defined	as	the	point	where	its	entire	weight	appears	to	act.

Figure	3.4:	The	weight	of	an	object	is	a	force	caused	by	the	Earth’s	gravity.	It	acts	vertically	down	on
the	object.

Large	and	small
A	large	rock	has	a	greater	weight	than	a	small	rock,	but	if	you	push	both	rocks	over	a	cliff	at	the	same
time,	they	will	fall	at	the	same	rate.	In	other	words,	they	have	the	same	acceleration,	regardless	of	their
mass.	This	is	a	surprising	result.	Common	sense	may	suggest	that	a	heavier	object	will	fall	faster	than	a
lighter	one.	It	is	said	that	Galileo	dropped	a	large	cannon	ball	and	a	small	cannon	ball	from	the	top	of	the
Leaning	Tower	of	Pisa	in	Italy,	and	showed	that	they	landed	at	the	same	time.	The	story	illustrates	that
results	are	not	always	what	you	think	they	will	be	–	if	everyone	thought	that	the	two	cannon	balls	would
accelerate	at	the	same	rate,	there	would	not	have	been	any	experiment	or	story.
In	fact,	we	are	used	to	lighter	objects	falling	more	slowly	than	heavy	ones.	A	feather	drifts	down	to	the
floor,	while	a	stone	falls	quickly.	But	this	is	because	of	air	resistance.	The	force	of	air	resistance	has	a
large	effect	on	the	falling	feather,	and	almost	no	effect	on	the	falling	stone.	When	astronauts	visited	the
Moon	(where	there	is	virtually	no	atmosphere	and	so	no	air	resistance),	they	were	able	to	show	that	a
feather	and	a	stone	fell	side-by-side	to	the	ground.
As	we	saw	in	Chapter	2,	an	object	falling	freely	close	to	the	Earth’s	surface	has	an	acceleration	of	roughly
9.81	m	s−2,	the	acceleration	of	free	fall	g.
We	can	find	the	force	causing	this	acceleration	using	F	=	ma.	This	force	is	the	object’s	weight.	Hence,	the
weight	W	of	an	object	is	given	by:

weight	=	mass	×	acceleration	of	free	fall

or

W	=	mg

KEY	EQUATION
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Question
Estimate	the	mass	and	weight	of	each	of	the	following	at	the	surface	of	the	Earth:

a	kilogram	of	potatoes
an	average	student
a	mouse
a	40-tonne	truck.

(For	estimates,	use	g	=	10	m	s−2;	1	tonne	=	1000	kg.)

On	the	Moon
The	Moon	is	smaller	and	has	less	mass	than	the	Earth,	and	so	its	gravity	is	weaker.	If	you	were	to	drop	a
stone	on	the	Moon,	it	would	have	a	smaller	acceleration.	Your	hand	is	about	1	m	above	ground	level;	a
stone	takes	about	0.45	s	to	fall	through	this	distance	on	the	Earth,	but	about	1.1	s	on	the	surface	of	the
Moon.	The	acceleration	of	free	fall	on	the	Moon	is	about	one-sixth	of	that	on	the	Earth:

gMoon	=	1.6	m	s−2

It	follows	that	objects	weigh	less	on	the	Moon	than	on	the	Earth.	They	are	not	completely	weightless,
because	the	Moon’s	gravity	is	not	zero.

Mass	and	weight
We	have	now	considered	two	related	quantities,	mass	and	weight.	It	is	important	to	distinguish	carefully
between	these	(Table	3.3).

Quantity Symbol Unit In	terms	of	base
units

Comment

mass m kg kg this	does	not	vary	from
place	to	place

weight mg N kg	m	s−2 this	is	a	force	–	it	depends
on	the	strength	of	gravity

Table	3.3:	Distinguishing	between	mass	and	weight.

Figure	3.5	shows	a	vehicle	used	to	travel	on	the	moon,	named	a	moon-buggy.	If	the	moon-buggy	breaks
down,	it	will	be	no	easier	to	get	it	moving	on	the	Moon	than	on	the	Earth.	This	is	because	its	mass	does
not	change,	because	it	is	made	from	the	same	atoms	and	molecules	wherever	it	is.	From	F	=	ma,	it
follows	that	if	m	does	not	change,	you	will	need	the	same	force	F	to	start	it	moving.

Figure	 3.5:	 The	 mass	 of	 a	 moon-buggy	 is	 the	 same	 on	 the	 Moon	 as	 on	 the	 Earth,	 but	 its	 weight	 is
smaller.



However,	your	moon-buggy	will	be	easier	to	lift	on	the	Moon,	because	its	weight	will	be	less.	From	W	=
mg,	since	g	is	less	on	the	Moon,	it	has	a	smaller	weight	than	when	on	the	Earth.
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3.4	Mass	and	inertia
It	took	a	long	time	for	scientists	to	develop	correct	ideas	about	forces	and	motion.	We	will	start	by
thinking	about	some	wrong	ideas,	and	then	consider	why	Galileo,	Newton	and	others	decided	new	ideas
were	needed.

Observations	and	ideas
Here	are	some	observations	to	think	about.

The	large	tree	trunk	shown	in	Figure	3.6	is	being	pulled	from	a	forest.	The	elephant	provides	the
force	needed	to	pull	it	along.	If	the	elephant	stops	pulling,	the	tree	trunk	will	stop	moving.
A	horse	is	pulling	a	cart.	If	the	horse	stops	pulling,	the	cart	stops.
You	are	riding	a	bicycle.	If	you	stop	pedaling,	the	bicycle	will	come	to	a	halt.
You	are	driving	along	the	road.	You	must	keep	your	foot	on	the	accelerator	pedal,	otherwise	the	car
will	not	keep	moving.
You	kick	a	football.	The	ball	rolls	along	the	ground	and	gradually	stops.

In	each	of	these	cases,	there	is	a	force	that	makes	something	move	–	the	pull	of	the	elephant	or	the	horse,
your	push	on	the	bicycle	pedals,	the	force	of	the	car	engine,	the	push	of	your	foot.	Without	the	force,	the
moving	object	comes	to	a	halt.	So	what	conclusion	might	we	draw?
A	moving	object	needs	a	force	to	keep	it	moving.
This	might	seem	a	sensible	conclusion	to	draw,	but	it	is	wrong.	We	have	not	thought	about	all	the	forces
involved.	The	missing	force	is	friction.
In	each	example,	friction	(or	air	resistance)	makes	the	object	slow	down	and	stop	when	there	is	no	force
pushing	or	pulling	it	forwards.	For	example,	if	you	stop	pedaling	your	cycle,	air	resistance	will	slow	you
down.	There	is	also	friction	at	the	axles	of	the	wheels,	and	this	too	will	slow	you	down.	If	you	could
lubricate	your	axles	and	cycle	in	a	vacuum,	you	could	travel	along	at	a	steady	speed	forever,	without
pedaling!

Figure	3.6:	An	elephant	provides	the	force	needed	to	pull	this	tree	from	the	forest.

In	the	17th	century,	astronomers	began	to	use	telescopes	to	observe	the	night	sky.	They	saw	that	objects
such	as	the	planets	could	move	freely	through	space.	They	simply	kept	on	moving,	without	anything
providing	a	force	to	push	them.	Galileo	came	to	the	conclusion	that	this	was	the	natural	motion	of	objects.

An	object	at	rest	will	stay	at	rest,	unless	a	force	causes	it	to	start	moving.
A	moving	object	will	continue	to	move	at	a	steady	speed	in	a	straight	line,	unless	a	force	acts	on	it.

So	objects	move	with	a	constant	velocity,	unless	a	force	acts	on	them.	(Being	stationary	is	simply	a
particular	case	of	this,	where	the	velocity	is	zero.)	Nowadays,	it	is	much	easier	to	appreciate	this	law	of
motion,	because	we	have	more	experience	of	objects	moving	with	little	or	no	friction	such	as	roller-skates
with	low-friction	bearings,	ice	skates	and	spacecraft	in	empty	space.	In	Galileo’s	day,	people’s	everyday
experience	was	of	dragging	things	along	the	ground,	or	pulling	things	on	carts	with	high-friction	axles.
Before	Galileo,	the	orthodox	scientific	idea	was	that	a	force	must	act	all	the	time	to	keep	an	object	moving
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–	this	had	been	handed	down	from	the	time	of	the	ancient	Greek	philosopher	Aristotle.	So	it	was	a	great
achievement	when	scientists	were	able	to	develop	a	picture	of	a	world	without	friction.

The	idea	of	inertia
The	tendency	of	a	moving	object	to	carry	on	moving	is	sometimes	known	as	inertia.

An	object	with	a	 large	mass	 is	difficult	 to	 stop	moving	–	 think	about	catching	a	 football,	 compared
with	a	less	massive	tennis	ball	moving	at	the	same	speed.
Similarly,	a	stationary	object	with	a	large	mass	is	difficult	to	start	moving	–	think	about	pushing	a	car
to	get	it	started.
It	 is	 difficult	 to	 make	 a	 massive	 object	 change	 direction	 –	 think	 about	 the	 way	 a	 fully	 laden
supermarket	trolley	tries	to	keep	moving	in	a	straight	line.

All	of	these	examples	suggest	another	way	to	think	of	an	object’s	mass;	it	is	a	measure	of	its	inertia	–	how
difficult	it	is	to	change	the	object’s	motion.	Uniform	motion	is	the	natural	state	of	motion	of	an	object.
Here,	uniform	motion	means	‘moving	with	constant	velocity’	or	‘moving	at	a	steady	speed	in	a	straight
line’.

Newton’s	first	law	of	motion
The	findings	on	inertia	and	uniform	motion	can	be	summarised	as	Newton’s	first	law	of	motion:
In	fact,	this	is	already	contained	in	the	simple	equation	we	have	been	using	to	calculate	acceleration,	F	=
ma.	If	no	resultant	force	acts	on	an	object	(F	=	0),	it	will	not	accelerate	(a	=	0).	The	object	will	either
remain	stationary	or	it	will	continue	to	travel	at	a	constant	velocity.	If	we	rewrite	the	equation	as	 ,
we	can	see	that	the	greater	the	mass	m,	the	smaller	the	acceleration	a	produced	by	a	force	F.

Questions
Use	the	idea	of	inertia	to	explain	why	some	large	cars	have	power-assisted	brakes.
A	car	crashes	head-on	into	a	brick	wall.	Use	the	idea	of	inertia	to	explain	why	the	driver	is	more	likely
to	come	out	through	the	windscreen	if	he	or	she	is	not	wearing	a	seat	belt.

Top	speed
The	vehicle	shown	in	Figure	3.7	is	capable	of	speeds	as	high	as	760	mph,	greater	than	the	speed	of
sound.	Its	streamlined	shape	is	designed	to	cut	down	air	resistance	and	its	jet	engines	provide	a	strong
forwards	force	to	accelerate	it	up	to	top	speed.
All	vehicles	have	a	top	speed.	But	why	can’t	they	go	any	faster?	Why	can’t	a	car	driver	keep	pressing	on
the	accelerator	pedal,	and	simply	go	faster	and	faster?
To	answer	this,	we	have	to	think	about	the	two	forces	already	mentioned:	air	resistance	and	the	forwards
thrust	(force)	of	the	engine.	The	vehicle	will	accelerate	so	long	as	the	thrust	is	greater	than	the	air
resistance.	When	the	two	forces	are	equal,	the	resultant	force	on	the	vehicle	is	zero	and	the	vehicle
moves	at	a	steady	velocity.

Balanced	and	unbalanced	forces
If	an	object	has	two	or	more	forces	acting	on	it,	we	have	to	consider	whether	or	not	they	are	‘balanced’
(Figure	3.8).	Forces	on	an	object	are	balanced	when	the	resultant	force	on	the	object	is	zero.	The	object
will	either	remain	at	rest	or	have	a	constant	velocity.
We	can	calculate	the	resultant	force	by	adding	up	two	(or	more)	forces	that	act	in	the	same	straight	line.
We	must	take	account	of	the	direction	of	each	force.	In	the	examples	in	Figure	3.8,	forces	to	the	right	are
positive	and	forces	to	the	left	are	negative.
When	a	car	travels	slowly,	it	encounters	little	air	resistance.	However,	the	faster	it	goes,	the	more	air	it
has	to	push	out	of	the	way	each	second	and	so	the	greater	the	air	resistance.	Eventually,	the	backwards
force	of	air	resistance	equals	the	forwards	force	provided	between	the	tyres	and	the	road,	and	the	forces
on	the	car	are	balanced.	It	can	go	no	faster–it	has	reached	its	top	speed.

Free	fall
Skydivers	(Figure	3.9)	are	rather	like	cars–at	first,	they	accelerate	freely.	At	the	start	of	the	fall,	the	only
force	acting	on	the	diver	is	his	or	her	weight.	The	acceleration	of	the	diver	at	the	start	must	therefore	be
g.	Then	increasing	air	resistance	opposes	their	fall	and	their	acceleration	decreases.	Eventually,	they
reach	a	maximum	velocity,	known	as	the	terminal	velocity.



At	the	terminal	velocity,	the	air	resistance	is	equal	to	the	weight.	The	terminal	velocity	is	approximately
120	miles	per	hour	(about	50	m	s−1),	but	it	depends	on	the	skydiver’s	weight	and	orientation.	Head-first
is	fastest.

Figure	3.7:	The	Thrust	SSC	rocket	car	broke	 the	world	 land-speed	 record	 in	1997.	 It	 achieved	a	 top
speed	of	763	mph	(just	over	340	m	s−1)	over	a	distance	of	1	mile	(1.6	km).

Figure	3.8:	Balanced	and	unbalanced	forces.



Figure	3.9:	A	skydiver	falling	freely.

The	idea	of	a	parachute	is	to	greatly	increase	the	air	resistance.	Then	terminal	velocity	is	reduced,	and
the	parachutist	can	land	safely.	Figure	3.10	shows	how	a	parachutist’s	velocity	might	change	during
descent.
Terminal	velocity	depends	on	the	weight	and	surface	area	of	the	object.	For	insects,	air	resistance	is	much
greater	relative	to	their	weight	than	for	a	human	being	and	so	their	terminal	velocity	is	quite	low.	Insects
can	be	swept	up	several	kilometres	into	the	atmosphere	by	rising	air	streams.	Later,	they	fall	back	to
Earth	uninjured.	It	is	said	that	mice	can	survive	a	fall	from	a	high	building	for	the	same	reason.

Figure	 3.10:	 The	 velocity	 of	 a	 parachutist	 varies	 during	 a	 descent.	 The	 force	 arrows	 show	 weight
(downwards)	and	air	resistance	(upwards).

	
	



3.5	Moving	through	fluids
Air	resistance	is	just	one	example	of	the	resistive	force	(or	viscous	force)	that	objects	experience	when
they	move	through	a	fluid,	a	liquid	or	a	gas.	If	you	have	ever	run	down	the	beach	and	into	the	sea,	or	tried
to	wade	quickly	through	the	water	of	a	swimming	pool,	you	will	have	experienced	the	force	of	drag.	The
deeper	the	water	gets,	the	more	it	resists	your	movement	and	the	harder	you	have	to	work	to	make
progress	through	it.	In	deep	water,	it	is	easier	to	swim	than	to	wade.
You	can	observe	the	effect	of	drag	on	a	falling	object	if	you	drop	a	key	or	a	coin	into	the	deep	end	of	a
swimming	pool.	For	the	first	few	centimetres,	it	speeds	up,	but	for	the	remainder	of	its	fall,	it	has	a	steady
speed.	(If	it	fell	through	the	same	distance	in	air,	it	would	accelerate	all	the	way.)	The	drag	of	water
means	that	the	falling	object	reaches	its	terminal	velocity	very	soon	after	it	is	released.	Compare	this	with
a	skydiver,	who	has	to	fall	hundreds	of	metres	before	reaching	terminal	velocity.

Moving	through	air
We	rarely	experience	drag	in	air.	This	is	because	air	is	much	less	dense	than	water;	its	density	is	roughly
that	of	water.	At	typical	walking	speed,	we	do	not	notice	the	effects	of	drag.	However,	if	you	want	to	move
faster,	the	effects	can	be	important.	Racing	cyclists,	like	the	one	shown	in	Figure	3.11,	wear	tight-fitting
clothing	and	streamlined	helmets.

Figure	3.11:	A	racing	cyclist	adopts	a	posture	that	helps	to	reduce	drag.	Clothing,	helmet	and	even	the
cycle	itself	are	designed	to	allow	them	to	go	as	fast	as	possible.

Other	athletes	may	take	advantage	of	the	drag	of	air.	The	runner	in	Figure	3.12	is	undergoing	resistance
training.	The	parachute	provides	a	backwards	force	against	which	his	muscles	must	work.	This	should
help	to	develop	his	muscles.
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Figure	3.12:	A	runner	making	use	of	air	resistance	to	build	up	his	muscles.

WORKED	EXAMPLES

A	car	of	mass	500	kg	is	travelling	along	a	flat	road.	The	forward	force	provided	between	the	car
tyres	and	the	road	is	300	N	and	the	air	resistance	is	200	N.	Calculate	the	acceleration	of	the	car.

Start	by	drawing	a	diagram	of	the	car,	showing	the	forces	mentioned	in	the	question
(Figure	3.13).	Calculate	the	resultant	force	on	the	car;	the	force	to	the	right	is	taken	as
positive:
resultant	force	=	300	−	200	=	100	N
Now	use	F	=	ma	to	calculate	the	car’s	acceleration:

So	the	car’s	acceleration	is	0.20	m	s−2.

Figure	3.13:	The	forces	on	an	accelerating	car.

The	maximum	forward	force	a	car	can	provide	is	500	N.	The	air	resistance	F	that	the	car
experiences	depends	on	its	speed	according	to	F	=	0.2v2,	where	v	is	the	speed	in	m	s−1.	Determine
the	top	speed	of	the	car.

From	the	equation	F	=	0.2v2,	you	can	see	that	the	air	resistance	increases	as	the	car	goes
faster.	Top	speed	is	reached	when	the	forward	force	equals	the	air	resistance.	So,	at	top
speed:

500	=	0.2v2

Rearranging	gives:

So	the	car’s	top	speed	is	50	m	s−1	(this	is	about	180	km	h−1).

Questions
If	you	drop	a	large	stone	and	a	small	stone	from	the	top	of	a	tall	building,	which	one	will	reach	the
ground	first?	Explain	your	answer.
In	a	race,	downhill	skiers	want	to	travel	as	quickly	as	possible.	They	are	always	looking	for	ways	to
increase	their	top	speed.	Explain	how	they	might	do	this.	Think	about:

their	skis
their	clothing
their	muscles
the	slope.
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Skydivers	jump	from	a	plane	at	intervals	of	a	few	seconds.	If	two	divers	wish	to	join	up	as	they	fall,
the	second	must	catch	up	with	the	first.

If	one	diver	is	more	massive	than	the	other,	who	should	jump	first?	Use	the	idea	of	forces	and
terminal	velocity	to	explain	your	answer.
If	both	divers	are	equally	massive,	suggest	what	the	second	might	do	to	catch	up	with	the	first.

Contact	forces	and	upthrust
We	will	now	think	about	the	forces	that	act	when	two	objects	are	in	contact	with	each	other.	When	two
objects	touch	each	other,	each	exerts	a	force	on	the	other.	These	are	called	contact	forces.	For	example,
when	you	stand	on	the	floor	(Figure	3.14),	your	feet	push	downwards	on	the	floor	and	the	floor	pushes
back	upwards	on	your	feet.	This	is	a	vital	force	–	the	upward	push	of	the	floor	prevents	you	from	falling
downwards	under	the	pull	of	your	weight.
Where	do	these	contact	forces	come	from?	When	you	stand	on	the	floor,	the	floor	becomes	slightly
compressed.	Its	atoms	are	pushed	slightly	closer	together,	and	the	interatomic	forces	push	back	against
the	compressing	force.	At	the	same	time,	the	atoms	in	your	feet	are	also	pushed	together	so	that	they
push	back	in	the	opposite	direction.	(It	is	hard	to	see	the	compression	of	the	floor	when	you	stand	on	it,
but	if	you	stand	on	a	soft	material	such	as	foam	rubber	or	a	mattress	you	will	be	able	to	see	the
compression	clearly.)

Figure	3.14:	Equal	and	opposite	contact	forces	act	when	you	stand	on	the	floor.

You	can	see	from	Figure	3.14	that	the	two	contact	forces	act	in	opposite	directions.	They	are	also	equal	in
magnitude.	As	we	will	see	shortly,	this	is	a	consequence	of	Newton’s	third	law	of	motion.
When	an	object	is	immersed	in	a	fluid	(a	liquid	or	a	gas),	it	experiences	an	upward	force	called	upthrust.
It	is	the	upthrust	of	water	that	keeps	a	boat	floating	(Figure	3.15),	and	the	upthrust	of	air	that	lifts	a	hot
air	balloon	upwards.
The	upthrust	of	water	on	a	boat	can	be	thought	of	as	the	contact	force	of	the	water	on	the	boat.	It	is
caused	by	the	pressure	of	the	water	pushing	upwards	on	the	boat.	Pressure	arises	from	the	motion	of	the
water	molecules	colliding	with	the	boat	and	the	net	effect	of	all	these	collisions	is	an	upwards	force.
An	object	in	air,	such	as	a	ball,	has	a	very	small	upthrust	acting	on	it,	because	the	density	of	the	air
around	it	is	low.	Molecules	hit	the	top	surface	of	the	ball	pushing	down,	but	only	a	few	more	molecules
push	upwards	on	the	bottom	of	the	ball,	so	the	resultant	force	upwards,	or	the	upthrust,	is	low.	If	the	ball
is	falling,	air	resistance	is	greater	than	this	small	upthrust	but	both	these	forces	are	acting	upwards	on
the	ball.



10
a
b
c
d
e
f

11
12

a
b

Figure	3.15:	Without	sufficient	upthrust	from	the	water,	the	boat	would	sink.

Questions
Name	these	forces:

the	upward	push	of	water	on	a	submerged	object
the	force	that	wears	away	two	surfaces	as	they	move	over	one	another
the	force	that	pulled	the	apple	off	Isaac	Newton’s	tree
the	force	that	stops	you	falling	through	the	floor
the	force	in	a	string	that	is	holding	up	an	apple
the	force	that	makes	it	difficult	to	run	through	shallow	water.

Draw	a	diagram	to	show	the	forces	that	act	on	a	car	as	it	travels	along	a	level	road	at	its	top	speed.
Imagine	throwing	a	shuttlecock	straight	up	in	the	air.	Air	resistance	is	more	important	for
shuttlecocks	than	for	a	tennis	ball.	Air	resistance	always	acts	in	the	opposite	direction	to	the	velocity
of	an	object.
Draw	diagrams	to	show	the	two	forces,	weight	and	air	resistance,	acting	on	the	shuttlecock:

as	it	moves	upwards
as	it	falls	back	downwards.

	
	



•
•
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3.6	Newton’s	third	law	of	motion
For	completeness,	we	should	now	consider	Newton’s	third	law	of	motion.	(There	is	more	about	this	in
Chapter	6.)
When	two	objects	interact,	each	exerts	a	force	on	the	other.	Newton’s	third	law	says	that	these	forces	are
equal	and	opposite	to	each	other:
When	two	bodies	interact,	the	forces	they	exert	on	each	other	are	equal	in	magnitude	and	opposite	in
direction.
(These	two	forces	are	sometimes	described	as	action	and	reaction,	but	this	is	misleading	as	it	sounds	as
though	one	force	arises	as	a	consequence	of	the	other.
In	fact,	the	two	forces	appear	at	the	same	time	and	we	can’t	say	that	one	caused	the	other.)
The	two	forces	that	make	up	a	‘Newton’s	third	law	pair’	have	the	following	characteristics:

They	act	on	different	objects.
They	are	equal	in	magnitude.
They	are	opposite	in	direction.
They	are	forces	of	the	same	type.

What	does	it	mean	to	say	that	the	forces	are	‘of	the	same	type’?	We	need	to	think	about	the	type	of
interaction	which	causes	the	forces	to	appear.

Two	objects	may	attract	each	other	because	of	 the	gravity	of	 their	masses	–	 these	are	gravitational
forces.
Two	objects	may	attract	or	repel	because	of	their	electrical	charges	–	electrical	forces.
Two	objects	may	touch	–	contact	forces.
Two	objects	may	be	attached	by	a	string	and	pull	on	each	other	–	tension	forces.
Two	objects	may	attract	or	repel	because	of	their	magnetic	fields	–	magnetic	forces.

Figure	3.16:	For	each	of	the	forces	that	the	Earth	exerts	on	you,	an	equal	and	opposite	force	acts	on	the
Earth.

Figure	3.16	shows	a	person	standing	on	the	Earth’s	surface.	The	two	gravitational	forces	are	a	Newton’s
third	law	pair,	as	are	the	two	contact	forces.	Don’t	be	misled	into	thinking	that	the	person’s	weight	and
the	contact	force	of	the	floor	are	a	Newton’s	third	law	pair.	Although	they	are	‘equal	and	opposite’,	they
do	not	act	on	different	objects	and	they	are	not	of	the	same	type.
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Question
Describe	one	‘Newton’s	third	law	pair’	of	forces	involved	in	the	following	situations.	In	each	case,
state	the	object	that	each	force	acts	on,	the	type	of	force	and	the	direction	of	the	force.

You	step	on	someone’s	toe.
A	car	hits	a	brick	wall	and	comes	to	rest.
A	car	slows	down	by	applying	the	brakes.
You	throw	a	ball	upwards	into	the	air.

	
	



3.7	Understanding	SI	units
Throughout	physics,	we	calculate,	measure	and	use	many	quantities.	All	quantities	consist	of	a	value	and
a	unit.	In	physics,	we	mostly	use	units	from	the	SI	system.	These	units	are	all	defined	with	extreme	care,
and	for	a	good	reason.	In	science	and	engineering,	every	measurement	must	be	made	on	the	same	basis,
so	that	measurements	obtained	in	different	laboratories	can	be	compared.	This	is	important	for
commercial	reasons,	too.	Suppose	an	engineering	firm	in	Taiwan	is	asked	to	produce	a	small	part	for	the
engine	of	a	car	that	is	to	be	assembled	in	India.	The	dimensions	are	given	in	millimetres	and	the	part
must	be	made	with	an	accuracy	of	a	tiny	fraction	of	a	millimetre.	All	concerned	must	know	that	the	part
will	fit	correctly	–	it	would	not	be	acceptable	to	use	a	different	millimetre	scale	in	Taiwan	and	India.

KEY	IDEA
All	physical	quantities	have	a	numerical	magnitude	(a	numerical	size)	and
a	unit

Base	units,	derived	units
The	metre,	kilogram	and	second	are	three	of	the	seven	SI	base	units.	These	are	defined	with	great
precision	so	that	every	standards	laboratory	can	reproduce	them	correctly.

Other	units,	such	as	units	of	speed	(m	s−1)	and	acceleration	(m	s−2)	are	known	as	derived	units	because
they	are	combinations	of	base	units.	Some	derived	units,	such	as	the	newton	and	the	joule,	have	special
names	that	are	more	convenient	to	use	than	giving	them	in	terms	of	base	units.	The	definition	of	the
newton	will	show	you	how	this	works.

Defining	the	newton
Isaac	Newton	(1642–1727)	played	a	significant	part	in	developing	the	scientific	idea	of	force.	Building	on
Galileo’s	earlier	thinking,	he	explained	the	relationship	between	force,	mass	and	acceleration,	which	we
now	write	as	F	=	ma.	For	this	reason,	the	SI	unit	of	force	is	named	after	him.
We	can	use	the	equation	F	=	ma	to	define	the	newton	(N).

One	newton	is	the	force	that	will	give	a	1	kg	mass	an	acceleration	of	1	m	s−2	in	the	direction	of	the	force.

1	N	=	1	kg	×	1	m	s−2	or	1	N	=	1	kg	m	s−2

The	seven	base	units
In	mechanics	(the	study	of	forces	and	motion),	the	units	we	use	are	based	on	three	base	units:	the	metre,
kilogram	and	second.	As	we	move	into	studying	electricity,	we	will	need	to	add	another	base	unit,	the
ampere.	Heat	requires	another	base	unit,	the	kelvin	(the	unit	of	temperature).
Table	3.4	shows	the	seven	base	units	of	the	SI	system.	Remember	that	all	other	units	can	be	derived	from
these	seven.	The	equations	that	relate	them	are	the	equations	that	you	will	learn	as	you	go	along	(just	as
F	=	ma	relates	the	newton	to	the	kilogram,	metre	and	second).	The	unit	of	luminous	intensity	is	not	part
of	the	AS	&	A	Level	courses.

Base	unit Symbol Base	unit

length x,	l,	s	and	so	on m	(metre)

mass m kg	(kilogram)

time t s	(second)

electric	current I A	(ampere)

thermodynamic	temperature T K	(kelvin)

amount	of	substance n mol	(mole)

luminous	intensity I cd	(candela)

Table	 3.4:	 SI	 base	 quantities	 and	 units.	 In	 this	 course,	 you	 will	 learn	 about	 all	 of	 these	 except	 the
candela.
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KEY	IDEA
Length,	mass,	time,	current	and	temperature	are	base	units	in	mechanics.

Question
The	pull	of	the	Earth’s	gravity	on	an	apple	(its	weight)	is	about	1	newton.	We	could	devise	a	new
international	system	of	units	by	defining	our	unit	of	force	as	the	weight	of	an	apple.	State	as	many
reasons	as	you	can	why	this	would	not	be	a	very	useful	definition.

Other	SI	units
Using	only	seven	base	units	means	that	only	this	number	of	quantities	have	to	be	defined	with	great
precision.	It	would	be	confusing	if	more	units	were	also	defined.	For	example,	if	the	density	of	water	were
defined	as	exactly	1	g	cm−3,	then	1000	cm3	of	a	sample	of	water	would	have	a	mass	of	exactly	1	kg.
However,	it	is	unlikely	that	the	mass	of	this	volume	of	water	would	equal	exactly	the	mass	of	the	standard
kilogram.
All	other	units	can	be	derived	from	the	base	units.	This	is	done	using	the	definition	of	the	quantity.	For
example,	speed	is	defined	as	 ,	and	so	the	base	units	of	speed	in	the	SI	system	are	m	s−1.

Since	the	defining	equation	for	force	is	F	=	ma,	the	base	units	for	force	are	kg	m	s−2.
Equations	that	relate	different	quantities	must	have	the	same	base	units	on	each	side	of	the	equation.	If
this	does	not	happen	the	equation	must	be	wrong.
When	each	term	in	an	equation	has	the	same	base	units	the	equation	is	said	to	be	homogeneous.

KEY	IDEA
Base	units	on	each	side	of	a	physics	equation	are	the	same.

WORKED	EXAMPLE

It	is	suggested	that	the	time	T	for	one	oscillation	of	a	swinging	pendulum	is	given	by	the	equation	
	where	l	is	the	length	of	the	pendulum	and	g	is	the	acceleration	due	to	gravity.	Show

that	this	equation	is	homogeneous.
For	the	equation	to	be	homogeneous,	the	term	on	the	left-hand	side	must	have	the	same	base	units
as	all	the	terms	on	the	right-hand	side.

The	base	unit	of	time	T	is	s.	The	base	unit	of	the	left-hand	side	of	the	equation	is	therefore
s2.

The	base	unit	of	l	is	m.	The	base	units	of	g	are	m	s−2.	Therefore,	the	base	unit	of	the	right-
hand	side	is	 .

(Notice	that	the	constant	4π2	has	no	units.)
Since	the	base	units	on	the	left-hand	side	of	the	equation	are	the	same	as	those	on	the	right,	the
equation	is	homogeneous.

Questions
Determine	the	base	units	of:

energy	(=	force	×	distance)

Use	base	units	to	prove	that	the	following	equations	are	homogeneous.
pressure	=	density	×	acceleration	due	to	gravity	×	depth

Prefixes
Each	unit	in	the	SI	system	can	have	multiples	and	sub-multiples	to	avoid	using	very	high	or	low
numbers.	For	example,	1	millimetre	(mm)	is	one	thousandth	of	a	metre	and	1	micrometre	(µm)	is	one
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millionth	of	a	metre.
The	prefix	comes	before	the	unit.	In	the	unit	mm,	the	first	m	is	the	prefix	milli	and	the	second	m	is	the
unit	metre.	You	will	need	to	recognise	a	number	of	prefixes	for	the	AS	&	A	Level	courses,	as	shown	in
Table	3.5.
You	must	take	care	when	using	prefixes.

Multiples Sub-multiples

Multiple Prefix Symbol Multiple Prefix Symbol

103 kilo k 10−1 deci d

106 mega M 10−2 centi c

109 giga G 10−3 milli m

1012 tera T 10−6 micro µ

	 	 	 10−9 nano n

	 	 	 10−12 pico p

Table	3.5:	Multiples	and	sub-multiples.

Squaring	or	cubing	prefixes
For	example:

Writing	units
You	must	leave	a	small	space	between	each	unit	when	writing	a	speed	such	as	3	m	s−1,	because	if	you
write	it	as	3	ms−1	it	would	mean	3	millisecond−1.

WORKED	EXAMPLE

The	density	of	water	is	1.0	g	cm−3.	Calculate	this	value	in	kg	m−3.
Find	the	conversions	for	the	units:

1	g	=	1	×	10−3	kg

1	cm3	=	1	×	10−6	m3

Use	these	in	the	value	for	the	density	of	water:

Questions
a				Find	the	area	of	one	page	of	this	book	in	cm2	and	then	convert	your	value	to	m2.

If	the	uncertainty	in	measuring	one	side	of	the	page	is	0.1	cm	find	the	uncertainty	in	the	area.
This	can	be	done	by	either	taking	the	largest	value	of	each	side	when	you	multiply	them	together
and	then	finding	the	difference	from	you	value	in	part	a	or	using	a	combination	of	the	percentage
uncertainties	(see	Chapter	P1).	Try	both	methods.

Write	down,	in	powers	of	ten,	the	values	of	these	quantities:
60	pA
500	MW
20	000	mm.



REFLECTION
Did	you	find	it	difficult	to	understand	that	Newton’s	third	law	of	motion	relates	forces	that	act	on
different	bodies?

	
	



SUMMARY

An	object	will	remain	at	rest	or	in	a	state	of	uniform	motion	unless	it	is	acted	on	by	an	external	force.
This	is	Newton’s	first	law	of	motion.

For	a	body	of	constant	mass,	the	acceleration	is	directly	proportional	to	the	resultant	force	applied	to
it.	Resultant	force	F,	mass	m	and	acceleration	a	are	related	by	the	equation:

resultant	force	=	mass	×	acceleration	(F	=	ma)

This	is	a	form	of	Newton’s	second	law	of	motion.

When	two	bodies	interact,	the	forces	they	exert	on	each	other	are	equal	in	magnitude	and	opposite	in
direction.	This	is	Newton’s	third	law	of	motion.

The	acceleration	produced	by	a	force	is	in	the	same	direction	as	the	force.	Where	there	are	two	or
more	forces,	we	must	determine	the	resultant	force.

A	newton	(N)	is	the	force	required	to	give	a	mass	of	1	kg	an	acceleration	of	1	m	s−2	in	the	direction	of
the	force.

The	greater	the	mass	of	an	object,	the	more	it	resists	changes	in	its	motion.	Mass	is	a	measure	of	the
object’s	inertia.

The	weight	of	an	object	is	a	result	of	the	pull	of	gravity	on	it:

weight	=	mass	×	acceleration	of	free	fall	(W	=	mg)

Terminal	velocity	is	reached	when	the	fluid	resistance	is	equal	to	the	weight	of	the	object.

Physics	equations	are	homogenous	and	have	the	same	base	units	on	each	side.	The	main	base	units
are	m,	kg,	s,	A	and	K	(the	thermodynamic	unit	for	temperature).
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EXAM-STYLE	QUESTIONS

Which	list	contains	only	SI	base	units? [1]

ampere,	kelvin,	gram 	

kilogram,	metre,	newton 	

newton,	second,	ampere 	

second,	kelvin,	kilogram 	

The	speed	v	of	a	wave	travelling	a	wire	is	given	by	the	equation 	

	

where	T	is	the	tension	in	the	wire	that	has	mass	m	and	length	l. 	

In	order	for	the	equation	to	be	homogenous,	what	is	the	value	of	n? [1]

	

1 	

2 	

4 	

When	a	golfer	hits	a	ball	his	club	is	in	contact	with	the	ball	for	about	0.000	50	s
and	the	ball	leaves	the	club	with	a	speed	of	70	m	s−1.	The	mass	of	the	ball	is	46
g. 	

Determine	the	mean	accelerating	force. [4]

What	mass,	resting	on	the	ball,	would	exert	the	same	force	as	in	part	a? [2]

	 [Total:	6]

The	mass	of	a	spacecraft	is	70	kg.	As	the	spacecraft	takes	off	from	the	Moon,
the	upwards	force	on	the	spacecraft	caused	by	the	engines	is	500	N.	The
acceleration	of	free	fall	on	the	Moon	is	1.6	N	kg−1. 	

Determine: 	

the	weight	of	the	spacecraft	on	the	Moon [2]

the	resultant	force	on	the	spacecraft [2]

the	acceleration	of	the	spacecraft. [2]

	 [Total:	6]

A	metal	ball	is	dropped	into	a	tall	cylinder	of	oil.	The	ball	initially	accelerates
but	soon	reaches	a	terminal	velocity. 	

By	considering	the	forces	on	the	metal	ball	bearing,	explain	why	it	first
accelerates	but	then	reaches	terminal	velocity. [3]

State	how	you	would	show	that	the	metal	ball	reaches	terminal	velocity.
Suggest	one	cause	of	random	errors	in	your	readings. [4]

	 [Total:	7]

Determine	the	speed	in	m	s−1	of	an	object	that	travels: 	

3.0	μm	in	5.0	ms [2]

6.0	km	in	3.0	Ms [2]

8.0	pm	in	4.0	ns. [2]

	 [Total:	6]

This	diagram	shows	a	man	who	is	just	supporting	the	weight	of	a	box.	Two	of
the	forces	acting	are	shown	in	the	diagram.	According	to	Newton’s	third	law,
each	of	these	forces	is	paired	with	another	force. 	
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For	a	the	weight	of	the	box,	and	b	the	force	of	the	ground	on	the	man,	state: 	

the	body	that	the	other	force	acts	upon [2]

the	direction	of	the	other	force [2]

the	type	of	force	involved. [2]

	 [Total:	6]

A	car	starts	to	move	along	a	straight,	level	road.	For	the	first	10	s,	the	driver
maintains	a	constant	acceleration	of	1.5	m	s−2.	The	mass	of	the	car	is	1.1	×
103	kg. 	

Calculate	the	driving	force	provided	by	the	wheels,	when: 	

the	force	opposing	motion	is	negligible [1]

the	total	force	opposing	the	motion	of	the	car	is	600	N. [1]

Calculate	the	distance	travelled	by	the	car	in	the	first	10	s. [2]

	 [Total:	4]

These	are	the	speed–time	graphs	for	two	falling	balls: 	

Figure	3.18
	

Determine	the	terminal	velocity	of	the	plastic	ball. [1]

Both	balls	are	of	the	same	size	and	shape	but	the	metal	ball	has	a	greater
mass. 	

Explain,	in	terms	of	Newton’s	laws	of	motion	and	the	forces	involved,	why
the	plastic	ball	reaches	a	constant	velocity	but	the	metal	ball	does	not. [3]

Explain	why	both	balls	have	the	same	initial	acceleration. [2]

	 [Total:	6]

A	car	of	mass	1200	kg	accelerates	from	rest	to	a	speed	of	8.0	m	s−1	in	a	time	of
2.0	s. 	

Calculate	the	forward	driving	force	acting	on	the	car	while	it	is
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accelerating.	Assume	that,	at	low	speeds,	all	frictional	forces	are
negligible. [2]

At	high	speeds	the	resistive	frictional	force	F	produced	by	air	on	a	body
moving	with	velocity	v	is	given	by	the	equation	F	=	bv2,	where	b	is	a
constant. 	

Derive	the	base	units	of	force	in	the	SI	system. [1]

Determine	the	base	units	of	b	in	the	SI	system. [1]

The	car	continues	with	the	same	forward	driving	force	and	accelerates
until	it	reaches	a	top	speed	of	50	m	s−1.	At	this	speed	the	resistive
force	is	given	by	the	equation	F	=	bv2.	Determine	the	value	of	b	for	the
car. [2]

Use	your	value	for	b	in	iii	and	the	driving	force	calculated	in	part	a	to
calculate	the	acceleration	of	the	car	when	the	speed	is	30	m	s−1. [2]

Sketch	a	graph	showing	how	the	value	of	F	varies	with	v	over	the
range	0	to	50	m	s−1.	Use	your	graph	to	describe	what	happens	to	the
acceleration	of	the	car	during	this	time. [2]

	 [Total:	10]

Explain	what	is	meant	by	the	mass	of	a	body	and	the	weight	of	a	body. [3]

State	and	explain	one	situation	in	which	the	weight	of	a	body	changes
while	its	mass	remains	constant. [2]

State	the	difference	between	the	base	units	of	mass	and	weight	in	the	SI
system. [2]

	 [Total:	7]

State	Newton’s	second	law	of	motion	in	terms	of	acceleration. [2]

When	you	jump	from	a	wall	on	to	the	ground,	it	is	advisable	to	bend	your
knees	on	landing. 	

State	how	bending	your	knees	affects	the	time	it	takes	to	stop	when
hitting	the	ground. [1]

Using	Newton’s	second	law	of	motion,	explain	why	it	is	sensible	to
bend	your	knees. [2]

	 [Total:	5]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

recognise	that	mass	is	a	property	of	an
object	that	resists	change	in	motion

3.1 	 	 	

identify	the	forces	acting	on	a	body	in
different	situations

3.2,	3.3 	 	 	

recall	F	=	ma	and	solve	problems	using
it

3.3 	 	 	

state	and	apply	Newton’s	first	and	third
laws	of	motion

3.4,	3.6 	 	 	

recall	that	the	weight	of	a	body	is	equal
to	the	product	of	its	mass	and	the
acceleration	of	free	fall

3.3 	 	 	

relate	derived	units	to	base	units	in	the
SI	system	and	use	base	units	to	check
the	homogeneity	of	an	equation

3.7 	 	 	

recall	and	use	a	range	of	prefixes. 3.7 	 	 	
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	Chapter	4

Forces:	vectors	and	moments

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
use	 a	 vector	 triangle	 to	 represent	 coplanar	 forces	 in	 equilibrium	 and	 add	 two	 or	more	 coplanar
forces
resolve	a	force	into	perpendicular	components
represent	the	weight	of	a	body	as	acting	at	a	single	point	known	as	its	centre	of	gravity
define	and	apply	the	moment	of	a	force	and	the	torque	of	a	couple
state	and	apply	the	principle	of	moments
use	 the	 idea	 that,	 when	 there	 is	 no	 resultant	 force	 and	 no	 resultant	 torque,	 a	 system	 is	 in
equilibrium.

BEFORE	YOU	START
Write	down	what	a	vector	is.	List	some	examples.
Is	force	is	a	vector?	Discuss	with	a	partner.

SAILING	AHEAD
Force	is	a	vector	quantity.	Sailors	know	a	lot	about	the	vector	nature	of	forces.	For	example,	they	can
sail	‘into	the	wind’.	The	sails	of	a	yacht	can	be	angled	to	provide	a	‘component’	of	force	(in	other	words,
an	effect	of	the	force	in	the	forward	direction)	and	the	boat	can	then	sail	at	almost	45°	to	the	wind.	The
boat	tends	to	‘heel	over’	and	the	crew	sit	on	the	side	of	the	boat	to	provide	a	turning	effect	in	the
opposite	direction	(Figure	4.1).	If	the	wind	has	an	effect	forwards,	what	stops	the	boat	from	moving
sideways	due	to	the	‘component’	of	the	wind	sideways?	(Hint:	find	out	about	the	shape	of	the	bottom	of
the	boat.)



Figure	4.1:	Sailing	into	the	wind.
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4.1	Combining	forces
You	will	have	learned	that	a	vector	quantity	has	both	magnitude	and	direction.	An	object	may	have	two	or
more	forces	acting	on	it	and,	since	these	are	vectors,	we	must	use	vector	addition	(Chapter	1)	to	find
their	combined	effect	(their	resultant).
There	are	several	forces	acting	on	the	car	(Figure	4.2)	as	it	struggles	up	the	steep	hill.	They	are:

its	weight	W	(=	mg)
the	normal	contact	force	N	of	the	road
air	resistance	D
the	forward	force	F	caused	by	friction	between	the	car	tyres	and	the	road.

If	we	knew	the	magnitude	and	direction	of	each	of	these	forces,	we	could	work	out	their	combined	effect
on	the	car.	Will	it	accelerate	up	the	hill?	Or	will	it	slide	backwards	down	the	hill?

Figure	4.2:	Four	forces	act	on	this	car	as	it	moves	uphill.

The	combined	effect	of	several	forces	is	known	as	the	resultant	force.	To	see	how	to	work	out	the
resultant	of	two	or	more	forces,	we	will	start	with	a	relatively	simple	example.

Two	forces	in	a	straight	line
We	saw	some	examples	in	Chapter	3	of	two	forces	acting	in	a	straight	line.	For	example,	a	falling	tennis
ball	may	be	acted	on	by	two	forces:	its	weight	mg,	downwards,	and	air	resistance	D,	upwards	(Figure
4.3).	The	resultant	force	is	then:
resultant	force	=	mg	−	D	=	1.0	−	0.2	=	0.8	N
When	adding	two	or	more	forces	that	act	in	a	straight	line,	we	have	to	take	account	of	their	directions.	A
force	may	be	positive	or	negative;	we	adopt	a	sign	convention	to	help	us	decide	which	is	which.	In
setting	up	the	sign	convention	you	decide	for	yourself	which	direction	is	positive.	In	Figure	4.3,	for
example,	we	have	taken	the	direction	downwards	as	positive	so	the	weight	is	+1.0	N,	a	positive	force,	and
the	force	upwards	is	−0.2	N,	a	negative	force.	The	resultant	is	+0.8	N,	which	tells	us	the	resultant	is
downwards.
You	might	choose	the	upwards	direction	as	positive,	but	if	you	apply	a	sign	convention	correctly,	the	sign
of	your	final	answer	will	tell	you	the	direction	of	the	resultant	force	(and	hence	acceleration).



•

•

•

•
•

•
•
•

Figure	4.3:	Two	forces	on	a	falling	tennis	ball.

Two	forces	at	right	angles
Figure	4.4	shows	a	shuttlecock	falling	on	a	windy	day.	There	are	two	forces	acting	on	the	shuttlecock:	its
weight	vertically	downwards,	and	the	horizontal	push	of	the	wind.	(It	helps	if	you	draw	the	force	arrows
of	different	lengths,	to	show	which	force	is	greater.)	We	must	add	these	two	forces	together	to	find	the
resultant	force	acting	on	the	shuttlecock.
We	add	the	forces	by	drawing	two	arrows,	head-to-tail,	as	shown	on	the	right	of	Figure	4.4.

First,	draw	a	horizontal	arrow	to	represent	the	6.0	N	push	of	the	wind.

Figure	4.4:	Two	forces	act	on	this	shuttlecock	as	 it	 travels	through	the	air;	 the	vector	triangle	shows
how	to	find	the	resultant	force.

Next,	starting	from	the	end	of	this	arrow,	draw	a	second	arrow,	downwards,	representing	the	weight
of	8.0	N.
Now,	 draw	 a	 line	 from	 the	 start	 of	 the	 first	 arrow	 to	 the	 end	 of	 the	 second	 arrow.	 This	 arrow
represents	the	resultant	force	R,	in	both	magnitude	and	direction.

The	arrows	are	added	by	drawing	them	end-to-end;	the	end	of	the	first	arrow	is	the	start	of	the	second
arrow.	Now	we	can	find	the	resultant	force	either	by	scale	drawing	or	by	calculation.	In	this	case,	we	have
a	3–4–5	right-angled	triangle,	so	calculation	is	simple:

So	the	resultant	force	is	10	N,	at	an	angle	of	53°	below	the	horizontal.	This	is	a	reasonable	answer;	the
weight	is	pulling	the	shuttlecock	downwards	and	the	wind	is	pushing	it	to	the	right.	The	angle	is	greater
than	45°	because	the	downward	force	is	greater	than	the	horizontal	force.

KEY	IDEA
When	you	draw	a	scale	drawing	you	should:

state	the	scale	used
draw	a	large	diagram	to	reduce	the	uncertainty.

Three	or	more	forces
The	spider	shown	in	Figure	4.5	is	hanging	by	a	thread.	It	is	blown	sideways	by	the	wind.	The	diagram
shows	the	three	forces	acting	on	it:

weight	acting	downwards
the	tension	in	the	thread
the	push	of	the	wind.

The	diagram	also	shows	how	these	can	be	added	together.	In	this	case,	we	arrive	at	an	interesting	result.
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Arrows	are	drawn	to	represent	each	of	the	three	forces,	end-to-end.	The	end	of	the	third	arrow	coincides
with	the	start	of	the	first	arrow,	so	the	three	arrows	form	a	closed	triangle.	This	tells	us	that	the	resultant
force	R	on	the	spider	is	zero,	that	is,	R	=	0.	The	closed	triangle	in	Figure	4.5	is	known	as	a	triangle	of
forces.

Figure	4.5:	Blowing	in	the	wind–this	spider	is	hanging	in	equilibrium.

So	there	is	no	resultant	force.	The	forces	on	the	spider	balance	each	other	out,	and	we	say	that	the	spider
is	in	equilibrium.	If	the	wind	blew	a	little	harder,	there	would	be	an	unbalanced	force	on	the	spider,	and
it	would	move	off	to	the	right.
We	can	use	this	idea	in	two	ways:

If	we	work	out	the	resultant	force	on	an	object	and	find	that	it	is	zero,	this	tells	us	that	the	object	is	in
equilibrium.
If	we	know	that	an	object	is	in	equilibrium,	we	know	that	the	forces	on	it	must	add	up	to	zero.	We	can
use	this	to	work	out	the	values	of	one	or	more	unknown	forces.

Questions
A	parachutist	weighs	1000	N.	When	she	opens	her	parachute,	it	pulls	upwards	on	her	with	a	force	of
2000	N.

Draw	a	diagram	to	show	the	forces	acting	on	the	parachutist.
Calculate	the	resultant	force	acting	on	her.
What	effect	will	this	force	have	on	her?

The	ship	shown	in	Figure	4.6	is	travelling	at	a	constant	velocity.
Is	the	ship	in	equilibrium	(in	other	words,	is	the	resultant	force	on	the	ship	equal	to	zero)?	How
do	you	know?
What	is	the	upthrust	U	of	the	water?
What	is	the	drag	D	of	the	water?

Figure	4.6:	 For	Question	 2.	 The	 force	D	 is	 the	 frictional	 drag	 of	 the	water	 on	 the	 boat.	 Like	 air
resistance,	drag	is	always	in	the	opposite	direction	to	the	object’s	motion.
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A	stone	is	dropped	into	a	fast-flowing	stream.	It	does	not	fall	vertically	because	of	the	sideways	push
of	the	water	(Figure	4.7).

Calculate	the	resultant	force	on	the	stone.
Is	the	stone	in	equilibrium?

Figure	4.7:	For	Question	3.
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4.2	Components	of	vectors
Look	back	to	Figure	4.5.	The	spider	is	in	equilibrium,	even	though	three	forces	are	acting	on	it.	We	can
think	of	the	tension	in	the	thread	as	having	two	effects.	It	is:

pulling	upwards,	to	counteract	the	downward	effect	of	gravity
pulling	to	the	left,	to	counteract	the	effect	of	the	wind.

We	can	say	that	this	force	has	two	effects	or	components:	an	upwards	(vertical)	component	and	a
sideways	(horizontal)	component.	It	is	often	useful	to	split	up	a	vector	quantity	into	components	like	this,
just	as	we	did	with	velocity	in	Chapter	2.	The	components	are	in	two	directions	at	right	angles	to	each
other,	often	horizontal	and	vertical.	The	process	is	called	resolving	the	vector.
Then	we	can	think	about	the	effects	of	each	component	separately;	we	say	that	the	perpendicular
components	are	independent	of	one	another.	Because	the	two	components	are	at	90°	to	each	other,	a
change	in	one	will	have	no	effect	on	the	other.	Figure	4.8	shows	how	to	resolve	a	force	F	into	its
horizontal	and	vertical	components.	These	are:

horizontal	component	of	F,	Fx	=	F	cos	θ

vertical	component	of	F,	Fy	=	F	sin	θ

Figure	4.8:	Resolving	a	vector	into	two	components	at	right	angles.

Making	use	of	components
When	the	trolley	shown	in	Figure	4.9	is	released,	it	accelerates	down	the	ramp.	This	happens	because	of
the	weight	of	the	trolley.	The	weight	acts	vertically	downwards,	although	this	by	itself	does	not	determine
the	resulting	motion.	However,	the	weight	has	a	component	that	acts	down	the	slope.	By	calculating	the
component	of	the	trolley’s	weight	down	the	slope,	we	can	determine	its	acceleration.

Figure	4.9:	This	student	is	investigating	the	acceleration	of	a	trolley	down	a	sloping	ramp.
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Figure	4.10	shows	the	forces	acting	on	the	trolley.	To	simplify	the	situation,	we	will	assume	there	is	no
friction.	The	forces	are:

the	weight	of	the	trolley,	W,	which	acts	vertically	downwards
the	contact	force	of	the	ramp,	N,	which	acts	at	right	angles	to	the	ramp.

Figure	4.10:	A	force	diagram	for	a	trolley	on	a	ramp.

You	can	see	at	once	from	Figure	4.10	that	the	forces	cannot	be	balanced,	since	they	do	not	act	in	the
same	straight	line.
To	find	the	component	of	W	down	the	slope,	we	need	to	know	the	angle	between	W	and	the	slope.	The
slope	makes	an	angle	θ	with	the	horizontal,	and	from	the	diagram	we	can	see	that	the	angle	between	the
weight	and	the	ramp	is	(90°	−	θ).	Using	the	rule	for	calculating	the	component	of	a	vector	given
previously,	we	have:

component	of	W	down	the	slope	=	W	cos	(90°	−	θ)	=	W	sin	θ

(It	is	helpful	to	recall	that	cos	(90°	−	θ)	=	sin	θ;	you	can	see	this	from	Figure	4.10.)
Does	the	contact	force	N	help	to	accelerate	the	trolley	down	the	ramp?	To	answer	this,	we	must	calculate
its	component	down	the	slope.	The	angle	between	N	and	the	slope	is	90°.	So:

component	of	N	down	the	slope	=	N	cos	90°	=	0

The	cosine	of	90°	is	zero,	and	so	N	has	no	component	down	the	slope.	This	shows	why	it	is	useful	to	think
in	terms	of	the	components	of	forces;	we	don’t	know	the	value	of	N,	but,	since	it	has	no	effect	down	the
slope,	we	can	ignore	it.
(There’s	no	surprise	about	this	result.	The	trolley	runs	down	the	slope	because	of	the	influence	of	its
weight,	not	because	it	is	pushed	by	the	contact	force	N.)

Changing	the	slope
If	the	students	in	Figure	4.9	increase	the	slope	of	their	ramp,	the	trolley	will	move	down	the	ramp	with
greater	acceleration.	They	have	increased	θ,	and	so	the	component	of	W	down	the	slope	will	have
increased.
Now	we	can	work	out	the	trolley’s	acceleration.	If	the	trolley’s	mass	is	m,	its	weight	is	mg.	So	the	force	F
making	it	accelerate	down	the	slope	is:

F	=	mg	sin	θ

Since	from	Newton’s	second	law	for	constant	mass	we	have	 ,	the	trolley’s	acceleration	a	is	given
by:

We	could	have	arrived	at	this	result	simply	by	saying	that	the	trolley’s	acceleration	would	be	the
component	of	g	down	the	slope	(Figure	4.11).	The	steeper	the	slope,	the	greater	the	value	of	sin	θ,	and
hence	the	greater	the	trolley’s	acceleration.
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Figure	4.11:	Resolving	g	down	the	ramp.

Questions
The	person	in	Figure	4.12	is	pulling	a	large	box	using	a	rope.	Use	the	idea	of	components	of	a	force	to
explain	why	they	are	more	likely	to	get	the	box	to	move	if	the	rope	is	horizontal	(as	in	a)	than	if	it	is
sloping	upwards	(as	in	b).

Figure	4.12:	Why	is	it	easier	to	move	the	box	with	the	rope	horizontal?	For	Question	4.

A	crate	is	sliding	down	a	slope.	The	weight	of	the	crate	is	500	N.	The	slope	makes	an	angle	of	30°
with	the	horizontal.

Draw	a	diagram	to	show	the	situation.	Include	arrows	to	represent	the	weight	of	the	crate	and	the
contact	force	of	the	slope	acting	on	the	crate.
Calculate	the	component	of	the	weight	down	the	slope.
Explain	why	the	contact	force	of	the	slope	has	no	component	down	the	slope.
What	third	force	might	act	to	oppose	the	motion?	In	which	direction	would	it	act?

Solving	problems	by	resolving	forces
A	force	can	be	resolved	into	two	components	at	right	angles	to	each	other;	these	can	then	be	treated
independently	of	one	another.	This	idea	can	be	used	to	solve	problems,	as	illustrated	in	Worked	example
1.

WORKED	EXAMPLE

A	boy	of	mass	40	kg	is	on	a	waterslide	that	slopes	at	30°	to	the	horizontal.	The	frictional	force	up
the	slope	is	120	N.	Calculate	the	boy’s	acceleration	down	the	slope.	Take	the	acceleration	of	free
fall	g	to	be	9.81	m	s−2.
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Figure	4.13:	For	Worked	example	1.

Draw	a	labelled	diagram	showing	all	the	forces	acting	on	the	object	of	interest	(Figure
4.13).	This	is	known	as	a	free-body	force	diagram.	The	forces	are:
the	boy’s	weight	W	=	40	×	9.81	=	392	N
the	frictional	force	up	the	slope	F	=	120	N
the	contact	force	N	at	90°	to	the	slope.
We	are	trying	to	find	the	resultant	force	on	the	boy	that	makes	him	accelerate	down	the
slope.	We	resolve	the	forces	down	the	slope,	i.e.,	we	find	their	components	in	that	direction.
component	of	W	down	the	slope	=	392	×	sin	30°	=	196	N
component	of	F	down	the	slope	=	−120	N	(negative	because	F	is	directed	up	the	slope)
component	of	N	down	the	slope	=	0	(because	it	is	at	90°	to	the	slope)
It	is	convenient	that	N	has	no	component	down	the	slope,	since	we	do	not	know	the	value	of
N.
Calculate	the	resultant	force	on	the	boy:
resultant	force	=	196	−	120	=	76	N
Calculate	his	acceleration:

So	the	boy’s	acceleration	down	the	slope	is	1.9	m	s−2.	We	could	have	arrived	at	the	same
result	by	resolving	vertically	and	horizontally,	but	that	would	have	led	to	two	simultaneous
equations	from	which	we	would	have	had	to	eliminate	the	unknown	force	N.	It	often	helps
to	resolve	forces	at	90°	to	an	unknown	force.

Question
A	child	of	mass	40	kg	is	on	a	water	slide.	The	slide	slopes	down	at	25°	to	the	horizontal.	The
acceleration	of	free	fall	is	9.81	m	s−2.	Calculate	the	child’s	acceleration	down	the	slope:

when	there	is	no	friction	and	the	only	force	acting	on	the	child	is	his	weight
if	a	frictional	force	of	80	N	acts	up	the	slope.

	
	



4.3	Centre	of	gravity
We	have	weight	because	of	the	force	of	gravity	of	the	Earth	on	us.	Each	part	of	our	body	–	arms,	legs,
head,	for	example	–	experiences	a	force,	caused	by	the	force	of	gravity.	However,	it	is	much	simpler	to
picture	the	overall	effect	of	gravity	as	acting	at	a	single	point.	This	is	our	centre	of	gravity	–	the	point
where	all	the	weight	of	the	object	may	be	considered	to	act.
For	a	person	standing	upright,	the	centre	of	gravity	is	roughly	in	the	middle	of	the	body,	behind	the	navel.
For	a	sphere,	it	is	at	the	centre.	It	is	much	easier	to	solve	problems	if	we	simply	indicate	an	object’s
weight	by	a	single	force	acting	at	the	centre	of	gravity,	rather	than	a	large	number	of	forces	acting	on
each	part	of	the	object.	Figure	4.14	illustrates	this	point.	The	athlete	performs	a	complicated	manoeuvre.
However,	we	can	see	that	his	centre	of	gravity	follows	a	smooth,	parabolic	path	through	the	air,	just	like
the	paths	of	projectiles	we	discussed	in	Chapter	2.

Figure	 4.14:	 The	 dashed	 line	 indicates	 the	 path	 of	 the	 athlete’s	 centre	 of	 gravity,	 which	 follows	 a
smooth	 trajectory	 through	 the	 air.	 With	 his	 body	 curved	 like	 this,	 the	 athlete’s	 centre	 of	 gravity	 is
actually	outside	his	body,	just	below	the	small	of	his	back.	At	no	time	is	the	whole	of	his	body	above	the
bar.

PRACTICAL	ACTIVITY	4.1

Finding	the	centre	of	gravity
The	centre	of	gravity	of	a	thin	sheet,	or	lamina,	of	cardboard	or	metal	can	be	found	by	suspending	it
freely	from	two	or	three	points	(Figure	4.15).

Figure	4.15:	The	centre	of	gravity	is	located	at	the	intersection	of	the	lines.

Small	holes	are	made	round	the	edge	of	the	irregularly	shaped	object.	A	pin	is	put	through	one	of	the
holes	and	held	firmly	in	a	clamp	and	stand	so	the	object	can	swing	freely.	A	length	of	string	is	attached



to	the	pin.	The	other	end	of	the	string	has	a	heavy	mass	attached	to	it.	This	arrangement	is	called	a
plumb	line.
The	object	will	stop	swinging	when	its	centre	of	gravity	is	vertically	below	the	point	of	suspension.	A
line	is	drawn	on	the	object	along	the	vertical	string	of	the	plumb	line.	The	centre	of	gravity	must	lie	on
this	line.	To	find	the	position	of	the	centre	of	gravity,	the	process	is	repeated	with	the	object	suspended
from	different	holes.	The	centre	of	gravity	will	be	at	the	point	of	intersection	of	the	lines	drawn	on	the
object.
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4.4	The	turning	effect	of	a	force
Forces	can	make	things	accelerate.	They	can	do	something	else	as	well:	they	can	make	an	object	turn
round.	We	say	that	they	can	have	a	turning	effect.	Figure	4.16	shows	how	to	use	a	spanner	to	turn	a	nut
(a	fastener	with	a	threaded	hole).
To	maximise	the	turning	effect	of	his	force,	the	operator	pulls	close	to	the	end	of	the	spanner,	as	far	as
possible	from	the	pivot	(the	centre	of	the	nut)	and	at	90°	to	the	spanner.

Figure	4.16:	A	mechanic	turns	a	nut.

Moment	of	a	force
The	quantity	that	tells	us	about	the	turning	effect	of	a	force	is	its	moment.	The	moment	of	a	force
depends	on	two	quantities,	the:

magnitude	of	the	force	(the	bigger	the	force,	the	greater	its	moment)
perpendicular	 distance	 of	 the	 force	 from	 the	 pivot	 (the	 further	 the	 force	 acts	 from	 the	 pivot,	 the
greater	its	moment).

The	moment	of	a	force	=	force	×	perpendicular	distance	of	the	pivot	from	the	line	of	action	of	the	force.
Figure	4.17a	shows	these	quantities.	The	force	F1	is	pushing	down	on	the	lever,	at	a	perpendicular
distance	x1	from	the	pivot.	The	moment	of	the	force	F1	about	the	pivot	is	then	given	by:

The	unit	of	moment	is	the	newton	metre	(N	m).	This	is	a	unit	that	does	not	have	a	special	name.	You	can
also	determine	the	moment	of	a	force	in	N	cm.

Figure	4.17:	The	quantities	involved	in	calculating	the	moment	of	a	force.

Figure	4.17b	shows	a	slightly	more	complicated	situation.	F2	is	pushing	at	an	angle	θ	to	the	lever,	rather
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Step	1

than	at	90°.	This	makes	it	have	less	turning	effect.	There	are	two	ways	to	calculate	the	moment	of	the
force.

Method	1
Draw	a	perpendicular	line	from	the	pivot	to	the	line	of	the	force.
Find	the	distance	x2.	Calculate	the	moment	of	the	force,	F2	×	x2.	From	the	right-angled	triangle,	we	can
see	that:

x2	=	d	sin	θ

Hence:
moment	of	force	=	F2	×	d	sin	θ	=	F2	d	sin	θ

Method	2
Calculate	the	component	of	F2	that	is	at	90°	to	the	lever.

This	is	F2	sin	θ.	Multiply	this	by	d.

moment	=	F2	sin	θ	×	d

We	get	the	same	result	as	Method	1:

moment	of	force	=	F2	d	sin	θ

Note	that	any	force	(such	as	the	component	F2	cos	θ)	that	passes	through	the	pivot	has	no	turning	effect,
because	the	distance	from	the	pivot	to	the	line	of	the	force	is	zero.
Note	also	that	we	can	calculate	the	moment	of	a	force	about	any	point,	not	just	the	pivot.	However,	in
solving	problems,	it	is	often	most	convenient	to	take	moments	about	the	pivot	as	there	is	often	an
unknown	force	acting	through	the	pivot	(its	contact	force	on	the	object).

Balanced	or	unbalanced?
We	can	use	the	idea	of	the	moment	of	a	force	to	solve	two	sorts	of	problem.	We	can:

check	whether	an	object	will	remain	balanced	or	start	to	rotate
calculate	an	unknown	force	or	distance	if	we	know	that	an	object	is	balanced.

We	can	use	the	principle	of	moments	to	solve	problems.	The	principle	of	moments	states	that,	for	any
object	that	is	in	equilibrium,	the	sum	of	the	clockwise	moments	about	any	point	provided	by	the	forces
acting	on	the	object	equals	the	sum	of	the	anticlockwise	moments	about	that	same	point.
Note	that,	for	an	object	to	be	in	equilibrium,	we	also	require	that	no	resultant	force	acts	on	it.	Worked
examples	2,	3	and	4	illustrate	how	we	can	use	these	ideas	to	determine	unknown	forces.

WORKED	EXAMPLES

Is	the	see-saw	shown	in	Figure	4.18	in	equilibrium	(balanced),	or	will	it	start	to	rotate?

Figure	4.18:	Will	these	forces	make	the	see-saw	rotate,	or	are	their	moments	balanced?

The	see-saw	will	remain	balanced,	because	the	20	N	force	is	twice	as	far	from	the	pivot	as	the	40	N
force.
To	prove	this,	we	need	to	think	about	each	force	individually.	Which	direction	is	each	force	trying	to
turn	the	see-saw,	clockwise	or	anticlockwise?	The	20	N	force	is	tending	to	turn	the	see-saw
anticlockwise,	while	the	40	N	force	is	tending	to	turn	it	clockwise.

Determine	the	anticlockwise	moment:
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moment	of	anticlockwise	force	=	20	×	2.0	=	40	N	m
Determine	the	clockwise	moment:
moment	of	clockwise	force	=	40	×	1.0	=	40	N	m
We	can	see	that:
clockwise	moment	=	anticlockwise	moment
So	the	see-saw	is	balanced	and	therefore	does	not	rotate.	The	see-saw	is	in	equilibrium.

The	beam	shown	in	Figure	4.19	is	in	equilibrium.	Determine	the	force	X.

Figure	4.19:	For	Worked	example	3.

The	unknown	force	X	is	tending	to	turn	the	beam	anticlockwise.	The	other	two	forces	(10	N	and	20
N)	are	tending	to	turn	the	beam	clockwise.	We	will	start	by	calculating	their	moments	and	adding
them	together.

Determine	the	clockwise	moments:

Determine	the	anticlockwise	moment:
moment	of	anticlockwise	force	=	X	×	0.8
Since	we	know	that	the	beam	must	be	balanced,	we	can	write:
sum	of	clockwise	moments	=	sum	of	anticlockwise	moments

So	a	force	of	25	N	at	a	distance	of	0.8	m	from	the	pivot	will	keep	the	beam	still	and	prevent
it	from	rotating	(keep	it	balanced).

Figure	4.20	shows	the	internal	structure	of	a	human	arm	holding	an	object.	The	biceps	is	a	muscle
attached	to	one	of	the	bones	of	the	forearm.	This	muscle	provides	an	upwards	force.

Figure	4.20:	The	human	arm.	For	Worked	example	4.

An	object	of	weight	50	N	is	held	in	the	hand	with	the	forearm	at	right	angles	to	the	upper	arm.	Use
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the	principle	of	moments	to	determine	the	muscular	force	F	provided	by	the	biceps,	given	the
following	data:
weight	of	forearm	=	15	N
distance	of	biceps	from	elbow	=	4.0	cm
distance	of	centre	of	gravity	of	forearm	from	elbow	=	16	cm
distance	of	object	in	the	hand	from	elbow	=	35	cm

There	is	a	lot	of	information	in	this	question.	It	is	best	to	draw	a	simplified	diagram	of	the
forearm	that	shows	all	the	forces	and	the	relevant	distances	(Figure	4.21).	All	distances
must	be	from	the	pivot,	which	in	this	case	is	the	elbow.

Figure	4.21:	Simplified	diagram	showing	forces	on	the	forearm.	For	Worked	example	4.	Note	that
another	force	acts	on	the	arm	at	the	elbow;	we	do	not	know	the	size	or	direction	of	this	force	but
we	can	ignore	it	by	taking	moments	about	the	elbow.

Determine	the	clockwise	moments:

Determine	the	anticlockwise	moment:
moment	of	anticlockwise	force	=	F	×	0.04
Since	the	arm	is	in	balance,	according	to	the	principle	of	moments	we	have:
sum	of	clockwise	moments	=	sum	of	anticlockwise	moments

The	biceps	provides	a	force	of	500	N–a	force	large	enough	to	lift	500	apples!

Questions
A	wheelbarrow	is	loaded	as	shown	in	Figure	4.22.

Calculate	the	force	that	the	person	needs	to	exert	to	hold	the	wheelbarrow’s	legs	off	the	ground.
Calculate	the	force	exerted	by	the	ground	on	the	legs	of	the	wheelbarrow	(taken	both	together)
when	the	gardener	is	not	holding	the	handles.
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Figure	4.22:	For	Question	7.

A	traditional	pair	of	scales	uses	sliding	masses	of	10	g	and	100	g	to	achieve	a	balance.	A	diagram	of
the	arrangement	is	shown	in	Figure	4.23.	The	bar	itself	is	supported	with	its	centre	of	gravity	at	the
pivot.

Calculate	the	value	of	the	mass	M,	attached	at	X.
State	one	advantage	of	this	method	of	measuring	mass.
Determine	the	upwards	force	of	the	pivot	on	the	bar.

Figure	4.23:	For	Question	8.

Figure	4.24	shows	a	beam	with	four	forces	acting	on	it.
For	each	force,	calculate	the	moment	of	the	force	about	point	P.
State	whether	each	moment	is	clockwise	or	anticlockwise.
State	whether	or	not	the	moments	of	the	forces	are	balanced.

Figure	4.24:	For	Question	9.
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4.5	The	torque	of	a	couple
Figure	4.25	shows	the	forces	needed	to	turn	a	car’s	steering	wheel.	The	two	forces	balance	up	and	down
(15	N	up	and	15	N	down),	so	the	wheel	will	not	move	up,	down	or	sideways.	However,	the	wheel	is	not	in
equilibrium.	The	pair	of	forces	will	cause	it	to	rotate.

Figure	4.25:	Two	forces	act	on	this	steering	wheel	to	make	it	turn.

A	pair	of	forces	like	that	in	Figure	4.25	is	known	as	a	couple.
A	couple	has	a	turning	effect,	but	does	not	cause	an	object	to	accelerate.	To	form	a	couple,	the	two	forces
must	be:

equal	in	magnitude
parallel,	but	opposite	in	direction
separated	by	a	distance	d.

The	turning	effect	or	moment	of	a	couple	is	known	as	its	torque.
We	can	calculate	the	torque	of	the	couple	in	Figure	4.25	by	adding	the	moments	of	each	force	about	the
centre	of	the	wheel:

We	could	have	found	the	same	result	by	multiplying	one	of	the	forces	by	the	perpendicular	distance
between	them:

torque	of	a	couple	=	15	×	0.4	=	6.0	N	m

The	torque	of	a	couple	is	defined	as	follows:

torque	of	a	couple	=	one	of	the	forces	×	perpendicular	distance	between	the	forces

Question
The	driving	wheel	of	a	car	travelling	at	a	constant	velocity	has	a	torque	of	137	N	m	applied	to	it	by
the	axle	that	drives	the	car	(Figure	4.26).	The	radius	of	the	tyre	is	0.18	m.	Calculate	the	driving	force
provided	by	this	wheel.
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Figure	4.26:	For	Question	10.

Pure	turning	effect
When	we	calculate	the	moment	of	a	single	force,	the	result	depends	on	the	point	or	pivot	about	which	the
moment	acts.	The	further	the	force	is	from	the	pivot,	the	greater	the	moment.	A	couple	is	different;	the
moment	of	a	couple	does	not	depend	on	the	point	about	which	it	acts,	only	on	the	perpendicular	distance
between	the	two	forces.	A	single	force	acting	on	an	object	will	tend	to	make	the	object	accelerate	(unless
there	is	another	force	to	balance	it).	A	couple,	however,	is	a	pair	of	equal	and	opposite	forces,	so	it	will
not	make	the	object	accelerate.	This	means	we	can	think	of	a	couple	as	a	pure	‘turning	effect’,	the	size	of
which	is	given	by	its	torque.
For	an	object	to	be	in	equilibrium,	two	conditions	must	be	met	at	the	same	time:

The	resultant	force	acting	on	the	object	is	zero.
The	resultant	moment	is	zero.

KEY	IDEA
If	a	body	is	in	equilibrium,	there	is	no	resultant	force	and	no	resultant
torque	or	moment	about	any	point.

REFLECTION
Are	there	any	things	that	you	need	more	help	with	to	fully	understand	vectors	and	moments?
Work	out	a	simple	way	for	yourself	to	remember	which	component	is	which.	Check	your	method	by
explaining	it	to	someone	else	with	lots	of	examples.

	
	



SUMMARY

Forces	are	vector	quantities	that	can	be	added	by	means	of	a	vector	triangle.	Their	resultant	can	be
determined	using	trigonometry	or	by	scale	drawing.

Forces	can	be	resolved	into	components.	Components	at	right	angles	to	one	another	can	be	treated
independently	of	one	another.	For	a	force	F	at	an	angle	θ	to	the	x-direction,	the	components	are:

x-direction:	F	cos	θ

y-direction:	F	sin	θ

The	moment	of	a	force	=	force	×	perpendicular	distance	of	the	pivot	from	the	line	of	action	of	the
force.

The	principle	of	moments	states	that,	for	any	object	in	equilibrium,	the	sum	of	the	clockwise	moments
about	any	point	provided	by	the	forces	acting	on	the	object	is	equal	to	the	sum	of	the	anticlockwise
moments	about	that	same	point.

A	couple	is	a	pair	of	equal,	parallel	but	opposite	forces	whose	effect	is	to	produce	a	turning	effect	on	a
body	without	giving	it	linear	acceleration.

torque	of	a	couple	=	one	of	the	forces	×	perpendicular	distance	between	the	forces

For	an	object	in	equilibrium,	the	resultant	force	acting	on	the	object	must	be	zero	and	the	resultant
moment	must	be	zero.
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EXAM-STYLE	QUESTIONS

A	force	F	is	applied	at	a	distance	d	from	the	hinge	H	and	an	angle	x	to	the
door. 	

Figure	4.27
	

What	is	the	moment	of	the	force	F	about	the	point	H? [1]

Fd	cos	x 	

	

Fd	sin	x 	

	

The	angle	between	two	forces,	each	of	magnitude	5.0	N,	is	120°. 	

Figure	4.28
	

What	is	the	magnitude	of	the	resultant	of	these	two	forces? [1]

1.7	N 	

5.0	N 	

8.5	N 	

10	N 	

A	ship	is	pulled	at	a	constant	speed	by	two	small	boats,	A	and	B,	as	shown.	The
engine	of	the	ship	does	not	produce	any	force. 	

Figure	4.29
	

The	tension	in	each	cable	between	A	and	B	and	the	ship	is	4000	N. 	

Draw	a	free-body	diagram	showing	the	three	horizontal	forces	acting	on
the	ship. [2]

Draw	a	vector	diagram	to	scale	showing	these	three	forces	and	use	your
diagram	to	find	the	value	of	the	drag	force	on	the	ship. [2]

	 [Total:	4]

A	block	of	mass	1.5	kg	is	at	rest	on	a	rough	surface	which	is	inclined	at	20°	to
the	horizontal	as	shown. 	



a
b
c

d

e

5

a

b
c
d

e

6

Figure	4.30

	

Draw	a	free-body	diagram	showing	the	three	forces	acting	on	the	block. [2]

Calculate	the	component	of	the	weight	that	acts	down	the	slope. [2]

Use	your	answer	to	part	b	to	determine	the	force	of	friction	that	acts	on
the	block. [2]

If	the	angle	of	the	surface	is	actually	measured	as	19°	and	21°	determine
the	absolute	uncertainty	in	this	angle	and	the	uncertainty	this	produces	in
the	value	for	part	b. [3]

Determine	the	normal	contact	force	between	the	block	and	the	surface. [3]

	 [Total:	12]

This	free-body	diagram	shows	three	forces	that	act	on	a	stone	hanging	at	rest
from	two	strings. 	

Figure	4.31
	

Calculate	the	horizontal	component	of	the	tension	in	each	string.	State	why
these	two	components	are	equal	in	magnitude? [5]

Calculate	the	vertical	component	of	the	tension	in	each	string. [4]

Use	your	answer	to	part	b	to	calculate	the	weight	of	the	stone. [2]

Draw	a	vector	diagram	of	the	forces	on	the	stone.	This	should	be	a	triangle
of	forces. [1]

Use	your	diagram	in	part	d	to	calculate	the	weight	of	the	stone. [2]

	 [Total:	14]

The	force	F	shown	here	has	a	moment	of	40	N	m	about	the	pivot.	Calculate	the
magnitude	of	the	force	F. [4]

Figure	4.32
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The	asymmetric	bar	shown	has	a	weight	of	7.6	N	and	a	centre	of	gravity	that	is
0.040	m	from	the	wider	end,	on	which	there	is	a	load	of	3.3	N.	It	is	pivoted	a
distance	of	0.060	m	from	its	centre	of	gravity.	Calculate	the	force	P	that	is
needed	at	the	far	end	of	the	bar	in	order	to	maintain	equilibrium. [4]

Figure	4.33
	

State	what	is	meant	by: 	

a	couple [1]

torque. [2]

The	engine	of	a	car	produces	a	torque	of	200	N	m	on	the	axle	of	the	wheel
in	contact	with	the	road.	The	car	travels	at	a	constant	velocity	towards	the
right: 	

Figure	4.34
	

Copy	the	diagram	of	the	wheel	and	show	the	direction	of	rotation	of	the
wheel,	and	the	horizontal	component	of	the	force	that	the	road	exerts
on	the	wheel. [2]

State	the	resultant	torque	on	the	wheel.	Explain	your	answer. [2]

The	diameter	of	the	car	wheel	is	0.58	m.	Determine	the	value	of	the
horizontal	component	of	the	force	of	the	road	on	the	wheel. [1]

	 [Total:	8]

Explain	what	is	meant	by	the	centre	of	gravity	of	an	object. [2]

A	flagpole	of	mass	25	kg	is	held	in	a	horizontal	position	by	a	cable	as
shown.	The	centre	of	gravity	of	the	flagpole	is	at	a	distance	of	1.5	m	from
the	fixed	end. 	
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Figure	4.35

	

Write	an	equation	to	represent	taking	moments	about	the	left-hand	end
of	the	flagpole.	Use	your	equation	to	find	the	tension	T	in	the	cable. [4]

Determine	the	vertical	component	of	the	force	at	the	left-hand	end	of
the	flagpole. [2]

	 [Total:	8]

State	the	two	conditions	necessary	for	an	object	to	be	in	equilibrium. [2]

A	metal	rod	of	length	90	cm	has	a	disc	of	radius	24	cm	fixed	rigidly	at	its
centre,	as	shown.	The	assembly	is	pivoted	at	its	centre. 	

Figure	4.36
	

Two	forces,	each	of	magnitude	30	N,	are	applied	normal	to	the	rod	at	each
end	so	as	to	produce	a	turning	effect	on	the	rod.	A	rope	is	attached	to	the
edge	of	the	disc	to	prevent	rotation. 	

Calculate: 	

the	torque	of	the	couple	produced	by	the	30	N	forces [1]

the	tension	T	in	the	rope. [3]

	 [Total:	6]

State	what	is	meant	by	the	torque	of	a	couple. [2]

Three	strings,	A,	B	and	C,	are	attached	to	a	circular	ring,	as	shown	in
Figure	4.35. 	

The	strings	and	the	ring	all	lie	on	a	smooth	horizontal	surface	and	are	at
rest.	The	tension	in	string	A	is	8.0	N.	Calculate	the	tension	in	strings	B	and
C. [4]
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Figure	4.37

	

	 [Total:	6]

This	diagram	shows	a	picture	hanging	symmetrically	by	two	cords	from	a	nail
fixed	to	a	wall.	The	picture	is	in	equilibrium. 	

Figure	4.38
	

Explain	what	is	meant	by	equilibrium. [2]

Draw	a	vector	diagram	to	represent	the	three	forces	acting	on	the	picture
in	the	vertical	plane.	Label	each	force	clearly	with	its	name	and	show	the
direction	of	each	force	with	an	arrow. [2]

The	tension	in	the	cord	is	45	N	and	the	angle	that	each	end	of	the	cord
makes	with	the	horizontal	is	50°.	Calculate: 	

the	vertical	component	of	the	tension	in	the	cord [1]

the	weight	of	the	picture. [1]

	 [Total:	6]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

add	forces	using	a	vector	triangle 4.1 	 	 	

resolve	forces	into	perpendicular
components

4.2 	 	 	

represent	the	weight	of	a	body	at	a
single	point	known	as	its	centre	of
gravity

4.3 	 	 	

define	and	apply	the	moment	of	a	force
and	the	torque	of	a	couple

4.4,	4.5 	 	 	

state	and	apply	the	principle	of
moments

4.4 	 	 	

use	the	idea	that,	when	there	is	no
resultant	force	and	no	resultant	torque,
a	system	is	in	equilibrium.

4.5 	 	 	
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	Chapter	5

Work,	energy	and	power

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
use	the	concept	of	work	and	energy
recall	and	apply	the	principle	of	conservation	of	energy
recall	and	understand	that	the	efficiency	of	a	system	is	the	ratio	of	useful	energy	output	from	the
system	to	the	total	energy	input
use	the	concept	of	efficiency	to	solve	problems

define	and	use	the	equation	for	power	using	 	and	derive	P	=	Fv

derive	and	use	the	formulae	for	kinetic	energy	and	gravitational	potential	energy.

BEFORE	YOU	START
Write	down	definitions	for	energy,	work	and	power.
Write	 down	 all	 that	 you	 know	 about	 these	 topics	 and	 share	 your	 ideas	 with	 someone	 else.	 Be
prepared	to	discuss	your	answers	with	the	rest	of	the	class.

THE	IDEA	OF	ENERGY
The	Industrial	Revolution	started	in	the	late	18th	century	in	Britain.	Today,	many	other	countries	have
become	or	are	becoming	industrialised	(Figure	5.1).	Industrialisation	is	the	development	of	new
machines	capable	of	doing	the	work	of	hundreds	of	craftsmen	and	labourers.	At	first,	people	used	water
and	wind	to	power	machines.	Water	stored	behind	a	dam	was	used	to	turn	a	wheel,	which	turned	many
machines.	Steam	engines	were	developed,	initially	for	pumping	water	out	of	mines.	Steam	engines	use
a	fuel	such	as	coal;	there	is	much	more	energy	stored	in	1	kg	of	coal	than	in	1	kg	of	water	held	behind	a
dam.
Nowadays,	most	factories	rely	on	electrical	power,	generated	by	burning	coal	or	gas	at	a	power	station.



High-pressure	steam	is	generated,	and	this	turns	a	turbine	that	turns	a	generator.	Even	in	the	most
efficient	coal-fired	power	station,	only	about	40%	of	the	energy	from	the	fuel	is	transferred	to	the
electrical	energy	that	the	station	supplies	to	the	electricity	grid.

Figure	5.1:	Anshan	steel	works,	China.

Engineers	worked	hard	to	develop	machines	that	made	the	most	efficient	use	of	the	energy	supplied	to
them.	At	the	same	time,	scientists	were	working	out	the	basic	ideas	of	energy	transfer	and	energy
transformations.	The	idea	of	energy	itself	had	to	be	developed;	it	was	not	obvious	at	first	that	heat,
light,	electrical	energy	were	all	forms	of	the	same	thing:	energy.	What	is	the	history	of	your	country	in
developing	the	use	of	machines,	generating	electrical	power	and	increasing	efficiency?
The	earliest	steam	engines	had	very	low	efficiencies–many	converted	less	than	1%	of	the	energy
supplied	to	them	into	useful	work.	The	understanding	of	the	relationship	between	work	and	energy	led
to	many	clever	ways	of	making	the	most	of	the	energy	supplied	by	fuel.

Figure	5.2:	The	 jet	engines	of	 this	aircraft	are	designed	 to	make	efficient	use	of	 their	 fuel.	 If	 they
were	less	efficient,	their	thrust	might	only	be	sufficient	to	lift	the	empty	aircraft	and	the	passengers
would	have	to	be	left	behind.

	
	



5.1	Doing	work,	transferring	energy
The	weight-lifter	shown	in	Figure	5.3	has	powerful	muscles.	They	can	provide	the	force	needed	to	lift	a
large	weight	above	her	head	–	about	2	m	above	the	ground.	The	force	exerted	by	the	weight-lifter
transfers	energy	from	her	to	the	weights.	We	know	that	the	weights	have	gained	energy	because,	when
the	athlete	releases	them,	they	come	crashing	down	to	the	ground.
As	the	athlete	lifts	the	weights	and	transfers	energy	to	them,	we	say	that	her	lifting	force	is	doing	work.
‘Doing	work’	is	a	way	of	transferring	energy	from	one	object	to	another.	In	fact,	if	you	want	to	know	the
scientific	meaning	of	the	word	‘energy’,	we	have	to	say	it	is	‘that	which	is	transferred	when	a	force	moves
through	a	distance’.	So,	work	and	energy	are	two	closely	linked	concepts.
In	physics,	we	often	use	an	everyday	word	but	with	a	special	meaning.	Work	is	an	example	of	this.

Figure	5.3:	It	is	hard	work	being	a	weight-lifter.

Doing	work Not	doing	work

Pushing	a	car	to	start	it	moving:	your	force
transfers	energy	to	the	car.	The	car’s	kinetic
energy	(that	is,	‘movement	energy’)	increases.

Pushing	a	car	but	it	does	not	budge:	no	energy	is
transferred,	because	your	force	does	not	move	it.
The	car’s	kinetic	energy	does	not	change.

Lifting	weights:	you	are	doing	work	as	the	weights
move	upwards.	The	gravitational	potential	energy
of	the	weights	increases.

Holding	weights	above	your	head:	you	are	not
doing	work	on	the	weights	(even	though	you	may
find	it	tiring)	because	the	force	you	apply	is	not
moving	them.	The	gravitational	potential	energy	of
the	weights	is	not	changing.

A	falling	stone:	the	force	of	gravity	is	doing	work.
The	stone’s	kinetic	energy	is	increasing.

The	Moon	orbiting	the	Earth:	the	force	of	gravity	is
not	doing	work.	The	Moon’s	kinetic	energy	is	not
changing.

Writing	an	essay:	you	are	doing	work	because	you
need	a	force	to	move	your	pen	across	the	page,	or
to	press	the	keys	on	the	keyboard.

Reading	an	essay:	this	may	seem	like	‘hard	work’,
but	no	force	is	involved,	so	you	are	not	doing	any
work.

Table	5.1:	The	meaning	of	‘doing	work’	in	physics.

Table	5.1	describes	some	situations	that	illustrate	the	meaning	of	doing	work	in	physics.
It	is	important	to	understand	that	our	bodies	sometimes	mislead	us.	If	you	hold	a	heavy	weight	above	your
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head	for	some	time,	your	muscles	will	get	tired.	However,	you	are	not	doing	any	work	on	the	weights,
because	you	are	not	transferring	energy	to	the	weights	once	they	are	above	your	head.	Your	muscles	get
tired	because	they	are	constantly	relaxing	and	contracting,	and	this	uses	energy,	but	none	of	the	energy	is
being	transferred	to	the	weights.

Calculating	work	done
Because	doing	work	defines	what	we	mean	by	energy,	we	start	this	chapter	by	considering	how	to
calculate	work	done.
There	is	no	doubt	that	you	do	work	if	you	push	a	car	along	the	road.	A	force	transfers	energy	from	you	to
the	car.	But	how	much	work	do	you	do?	Figure	5.4	shows	the	two	factors	involved:
the	size	of	the	force	F	–	the	bigger	the	force,	the	greater	the	amount	of	work	you	do
the	distance	s	you	push	the	car	–	the	further	you	push	it,	the	greater	the	amount	of	work	done.

So,	the	bigger	the	force,	and	the	further	it	moves,	the	greater	the	amount	of	work	done.

KEY	IDEA
Work	is	done	on	a	body	when	a	force	moves	(displaces)	the	body	in	the
direction	of	the	force.	Energy	is	then	transferred	from	one	body	to
another

The	work	done	by	a	force	is	defined	as	the	product	of	the	force	and	the	distance	moved	in	the	direction	of
the	force:

W	=	F	×	s

where	s	is	the	distance	moved	in	the	direction	of	the	force.
In	the	example	shown	in	Figure	5.4,	F	=	300	N	and	s	=	5.0	m,	so:

work	done	W	=	F	×	s	=	300	×	5.0	=	1500	J

KEY	EQUATION

Figure	5.4:	You	have	to	do	work	to	start	the	car	moving.

Energy	transferred
Doing	work	is	a	way	of	transferring	energy.	For	both	energy	and	work	the	correct	SI	unit	is	the	joule	(J).
The	amount	of	work	done,	calculated	using	W	=	F	×	s,	shows	the	amount	of	energy	transferred:

work	done	=	energy	transferred

KEY	IDEA

work	done	=	energy	transferred

Newtons,	metres	and	joules
From	the	equation	W	=	Fs	we	can	see	how	the	unit	of	force	(the	newton),	the	unit	of	distance	(the	metre)
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and	the	unit	of	work	or	energy	(the	joule)	are	related.
The	joule	is	defined	as	the	amount	of	work	done	when	a	force	of	1	newton	moves	a	distance	of	1	metre	in
the	direction	of	the	force.	Since	work	done	=	energy	transferred,	it	follows	that	a	joule	is	also	the
amount	of	energy	transferred	when	a	force	of	1	newton	moves	a	distance	of	1	metre	in	the	direction	of
the	force.

Force,	distance	and	direction
It	is	important	to	understand	that,	for	a	force	to	do	work,	there	must	be	movement	in	the	direction	of	the
force.	Both	the	force	F	and	the	distance	s	moved	in	the	direction	of	the	force	are	vector	quantities,	so	you
should	know	that	their	directions	are	likely	to	be	important.	To	illustrate	this,	we	will	consider	three
examples	involving	gravity	(Figure	5.5).	In	the	equation	for	work	done,	W	=	F	×	s,	the	distance	moved	s	is
the	displacement	in	the	direction	of	the	force.

Figure	5.5:	Three	examples	involving	gravity.

Questions
In	each	of	the	following	examples,	explain	whether	or	not	any	work	is	done	by	the	force	mentioned.
You	pull	a	heavy	sack	along	rough	ground.
The	force	of	gravity	pulls	you	downwards	when	you	fall	off	a	wall.
The	tension	in	a	string	pulls	on	a	stone	when	you	whirl	it	around	in	a	circle	at	a	steady	speed.
The	contact	force	of	the	bedroom	floor	stops	you	from	falling	into	the	room	below.

A	man	of	mass	70	kg	climbs	stairs	of	vertical	height	2.5	m.	Calculate	the	work	done	against	the	force
of	gravity.	(Take	g	=	9.81	m	s−2.)
A	stone	of	weight	10	N	falls	from	the	top	of	a	250	m	high	cliff.
Calculate	how	much	work	is	done	by	the	force	of	gravity	in	pulling	the	stone	to	the	foot	of	the
cliff.
How	much	energy	is	transferred	to	the	stone	if	air	resistance	is	ignored?

Suppose	that	the	force	F	moves	through	a	distance	s	that	is	at	an	angle	θ	to	F,	as	shown	in	Figure	5.6.
To	determine	the	work	done	by	the	force,	it	is	simplest	to	determine	the	component	of	F	in	the
direction	of	s.	This	component	is	F	cos	θ,	and	so	we	have:
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Figure	5.6:	The	work	done	by	a	force	depends	on	the	angle	between	the	force	and	the	distance	it
moves.

or	simply:

work	done	=	Fs	cos	θ

Worked	example	1	shows	how	to	use	this.

KEY	EQUATION

work	done	=	Fs	cos	θ

WORKED	EXAMPLE

A	man	pulls	a	box	along	horizontal	ground	using	a	rope	(Figure	5.7).	The	force	provided	by	the	rope
is	200	N,	at	an	angle	of	30°	to	the	horizontal.

Figure	5.7:	For	Worked	example	1.

Calculate	the	work	done	if	the	box	moves	5.0	m	along	the	ground.
Calculate	the	component	of	the	force	in	the	direction	in	which	the	box	moves.	This	is	the
horizontal	component	of	the	force:
horizontal	component	of	force	=	200	cos	30°	≈	173	N
Hint:	F	cos	θ	is	the	component	of	the	force	at	an	angle	θto	the	direction	of	motion.
Now	calculate	the	work	done:

Hint:	Note	that	we	could	have	used	the	equation	work	done	=	Fs	cos	θto	combine	the	two
steps	into	one.

Questions
The	crane	shown	in	Figure	5.8	lifts	its	500	N	load	to	the	top	of	the	building	from	A	to	B.	Distances	are
as	shown	on	the	diagram.	Calculate	how	much	work	is	done	by	the	crane.
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Figure	5.8:	For	Question	4.	The	dotted	line	shows	the	track	of	the	load	as	it	is	lifted	by	the	crane.

Figure	5.9	shows	the	forces	acting	on	a	box	that	is	being	pushed	up	a	slope.	Calculate	the	work	done
by	each	force	if	the	box	moves	0.50	m	up	the	slope.

Figure	5.9:	For	Question	5.
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5.2	Gravitational	potential	energy
If	you	lift	a	heavy	object,	you	do	work.	You	are	providing	an	upwards	force	to	overcome	the	downwards
force	of	gravity	on	the	object.	The	force	moves	the	object	upwards,	so	the	force	is	doing	work.
In	this	way,	energy	is	transferred	from	you	to	the	object.	You	lose	energy,	and	the	object	gains	energy.	We
say	that	the	gravitational	potential	energy,	Ep	of	the	object	has	increased.
Worked	example	2	shows	how	to	calculate	a	change	in	gravitational	potential	energy	(g.p.e.).

WORKED	EXAMPLE

A	weight-lifter	raises	weights	with	a	mass	of	200	kg	from	the	ground	to	a	height	of	1.5	m.	Calculate
how	much	work	he	does.	By	how	much	does	the	g.p.e.	of	the	weights	increase?

As	shown	in	Figure	5.10,	the	downward	force	on	the	weights	is	their	weight,	W	=	mg.	An
equal,	upward	force	F	is	required	to	lift	them.

Figure	5.10:	For	Worked	example	2.

W	=	F	=	mg	=	200	×	9.81	=	1962	N
Hint:	It	helps	to	draw	a	diagram	of	the	situation.
Now	we	can	calculate	the	work	done	by	the	force	F:

Note	that	the	distance	moved	is	in	the	same	direction	as	the	force.	So	the	work	done	on	the	weights
is	about	2940	J.	This	is	also	the	value	of	the	increase	in	their	g.p.e.

An	equation	for	gravitational	potential	energy
The	change	(Δ)	in	the	gravitational	potential	energy	(g.p.e.)	of	an	object,	Ep,	depends	on	the	change	in	its
height,	h.	We	can	calculate	Ep	using	this	equation:

It	should	be	clear	where	this	equation	comes	from.	The	force	needed	to	lift	an	object	is	equal	to	its	weight
mg,	where	m	is	the	mass	of	the	object	and	g	is	the	acceleration	of	free	fall	or	the	gravitational	field
strength	on	the	Earth’s	surface.	The	work	done	by	this	force	is	given	by	force	×	distance	moved,	or
weight	×	change	in	height.	You	might	feel	that	it	takes	a	force	greater	than	the	weight	of	the	object	being
raised	to	lift	it	upwards,	but	this	is	not	so.	Provided	the	force	is	equal	to	the	weight,	the	object	will	move
upwards	at	a	steady	speed.

KEY	EQUATION
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You	must	learn	how	to	derive	this	equation.

Note	that	h	stands	for	the	vertical	height	through	which	the	object	moves.	Note	also	that	we	can	only	use
the	equation	 	for	relatively	small	changes	in	height.	It	would	not	work,	for	example,	in	the
case	of	a	satellite	orbiting	the	Earth.	Satellites	orbit	at	a	height	of	at	least	200	km	and	g	has	a	smaller
value	at	this	height.

Other	forms	of	potential	energy
Potential	energy	is	the	energy	an	object	has	because	of	its	position	or	shape.	So,	for	example,	an	object’s
gravitational	potential	energy	changes	when	it	moves	through	a	gravitational	field.	(There	is	much	more
about	gravitational	fields	in	Chapter	17.)
We	can	identify	other	forms	of	potential	energy.	An	electrically	charged	object	has	electric	potential
energy	when	it	is	placed	in	an	electric	field	(see	Chapter	21).	An	object	may	have	elastic	potential	energy
when	it	is	stretched,	squashed	or	twisted–if	it	is	released	it	goes	back	to	its	original	shape	(see	Chapter
7).

Questions
Calculate	how	much	gravitational	potential	energy	is	gained	if	you	climb	a	flight	of	stairs.	Assume
that	you	have	a	mass	of	52	kg	and	that	the	height	you	lift	yourself	is	2.5	m.
A	climber	of	mass	100	kg	(including	the	equipment	she	is	carrying)	ascends	from	sea	level	to	the	top
of	a	mountain	5500	m	high.	Calculate	the	change	in	her	gravitational	potential	energy.

A	toy	car	works	by	means	of	a	stretched	rubber	band.	What	form	of	potential	energy	does	the	car
store	when	the	band	is	stretched?
A	bar	magnet	is	lying	with	its	north	pole	next	to	the	south	pole	of	another	bar	magnet.	A	student
pulls	them	apart.	Why	do	we	say	that	the	magnets’	potential	energy	has	increased?	Where	has
this	energy	come	from?
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5.3	Kinetic	energy
As	well	as	lifting	an	object,	a	force	can	make	it	accelerate.	Again,	work	is	done	by	the	force	and	energy	is
transferred	to	the	object.	In	this	case,	we	say	that	it	has	gained	kinetic	energy,	Ek.	The	faster	an	object	is
moving,	the	greater	its	kinetic	energy	(k.e.).
For	an	object	of	mass	m	travelling	at	a	speed	v,	we	have:

Deriving	the	formula	for	kinetic	energy
KEY	EQUATION

You	must	learn	how	to	derive	this	equation.

The	equation	for	kinetic	energy,	 ,	is	related	to	one	of	the	equations	of	motion.	We	imagine	a
car	being	accelerated	from	rest	(u	=	0)	to	velocity	v.	To	give	it	acceleration	a,	it	is	pushed	by	a	force	F	for
a	distance	s.	Since	u	=	0,	we	can	write	the	equation	v2	=	u2	+	2as	as:

v2	=	2as

Multiplying	both	sides	by	 	gives:

Now,	ma	is	the	force	F	accelerating	the	car,	and	mas	is	the	force	×	the	distance	it	moves	(that	is,	the	work
done	by	the	force).	So	we	have:

This	is	the	energy	transferred	to	the	car,	and	hence	its	kinetic	energy.

WORKED	EXAMPLE

Calculate	the	increase	in	kinetic	energy	of	a	car	of	mass	800	kg	when	it	accelerates	from	20	m	s−1

to	30	m	s−1.
Calculate	the	initial	k.e.	of	the	car:

Calculate	the	final	k.e.	of	the	car:

Calculate	the	change	in	the	car’s	k.e.:
change	in	k.e.	=	360	−	160	=	200	kJ
Hint:	Take	care!	You	can’t	calculate	the	change	in	k.e.	by	squaring	the	change	in	speed.	In
this	example,	the	change	in	speed	is	10	m	s−1,	and	this	would	give	an	incorrect	value	for
the	change	in	k.e.
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Questions
Which	has	more	k.e.,	a	car	of	mass	500	kg	travelling	at	15	m	s−1	or	a	motorcycle	of	mass	250	kg
travelling	at	30	m	s−1?
Calculate	the	change	in	kinetic	energy	of	a	ball	of	mass	200	g	when	it	bounces.	Assume	that	it	hits	the
ground	with	a	speed	of	15.8	m	s−1	and	leaves	it	at	12.2	m	s−1.

	
	



5.4	Gravitational	potential	to	kinetic	energy
transformations
A	motor	drags	the	roller-coaster	car	to	the	top	of	the	first	hill.	The	car	runs	down	the	other	side,	picking
up	speed	as	it	goes	(see	Figure	5.11).	It	is	moving	just	fast	enough	to	reach	the	top	of	the	second	hill,
slightly	lower	than	the	first.	It	accelerates	downhill	again.	Everybody	screams!

Figure	5.11:	The	roller-coaster	car	accelerates	as	it	comes	downhill.	It’s	even	more	exciting	if	 it	runs
through	water.

The	motor	provides	a	force	to	pull	the	roller-coaster	car	to	the	top	of	the	hill.	It	transfers	energy	to	the
car.	But	where	is	this	energy	when	the	car	is	waiting	at	the	top	of	the	hill?	The	car	now	has	gravitational
potential	energy;	as	soon	as	it	is	given	a	small	push	to	set	it	moving,	it	accelerates.	It	gains	kinetic	energy
and	at	the	same	time	it	loses	g.p.e.

Figure	5.12:	Energy	changes	along	a	roller-coaster.

As	the	car	runs	along	the	roller-coaster	track	(Figure	5.12),	its	energy	changes.
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At	the	top	of	the	first	hill,	it	has	the	most	g.p.e.
As	it	runs	downhill,	its	g.p.e.	decreases	and	its	k.e.	increases.
At	the	bottom	of	the	hill,	all	of	its	g.p.e.	has	been	changed	to	k.e.	and	heat	and	sound	energy.
As	it	runs	back	uphill,	the	force	of	gravity	slows	it	down.	k.e.	is	being	changed	to	g.p.e.

Inevitably,	some	energy	is	lost	by	the	car.	There	is	friction	with	the	track	and	air	resistance.	So,	the	car
cannot	return	to	its	original	height.	That	is	why	the	second	hill	must	be	slightly	lower	than	the	first.	It	is
fun	if	the	car	runs	through	a	trough	of	water,	but	that	takes	even	more	energy,	and	the	car	cannot	rise	so
high.	There	are	many	situations	where	an	object’s	energy	changes	between	gravitational	potential	energy
and	kinetic	energy.	For	example:

a	high	diver	falling	towards	the	water	–	g.p.e.	changes	to	k.e.
a	ball	is	thrown	upwards	–	k.e.	changes	to	g.p.e.
a	child	on	a	swing	–	energy	changes	back	and	forth	between	g.p.e.	and	k.e.
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5.5	Down,	up,	down:	energy	changes
When	an	object	falls,	it	speeds	up.	Its	g.p.e.	decreases	and	its	k.e.	increases.	Energy	is	being	transformed
from	gravitational	potential	energy	to	kinetic	energy.	Some	energy	is	likely	to	be	lost,	usually	as	heat
because	of	air	resistance.	However,	if	no	energy	is	lost	in	the	process,	we	have:

decrease	in	g.p.e.	=	gain	in	k.e.

We	can	use	this	idea	to	solve	a	variety	of	problems,	as	illustrated	by	Worked	example	4.

WORKED	EXAMPLE

A	pendulum	consists	of	a	brass	sphere	of	mass	5.0	kg	hanging	from	a	long	string	(see	Figure	5.13).

Figure	5.13:	For	Worked	example	4.

The	sphere	is	pulled	to	the	side	so	that	it	is	0.15	m	above	its	lowest	position.	It	is	then	released.
How	fast	will	it	be	moving	when	it	passes	through	the	lowest	point	along	its	path?

Calculate	the	loss	in	g.p.e.	as	the	sphere	falls	from	its	highest	position:
Ep	=	mgh	=	5.0	×	9.81	×	0.15	=	7.36	J

The	gain	in	the	sphere’s	k.e.	is	7.36	J.	We	can	use	this	to	calculate	the	sphere’s	speed.	First,
calculate	v2,	then	v:

Note	that	we	would	obtain	the	same	result	in	Worked	example	4	no	matter	what	the	mass	of
the	sphere.	This	is	because	both	k.e.	and	g.p.e.	depend	on	mass	m.	If	we	write:

we	can	cancel	m	from	both	sides.	Hence:

The	final	speed	v	only	depends	on	g	and	h.	The	mass	m	of	the	object	is	irrelevant.	This	is
not	surprising;	we	could	use	the	same	equation	to	calculate	the	speed	of	an	object	falling
from	height	h.	An	object	of	small	mass	gains	the	same	speed	as	an	object	of	large	mass,
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provided	air	resistance	has	no	effect.

Questions
Re-work	Worked	example	4	for	a	brass	sphere	of	mass	10	kg,	and	show	that	you	get	the	same	result.
Repeat	with	any	other	value	of	mass.
Calculate	how	much	gravitational	potential	energy	is	lost	by	an	aircraft	of	mass	80	000	kg	if	it
descends	from	an	altitude	of	10	000	m	to	an	altitude	of	1000	m.	What	happens	to	this	energy	if	the
pilot	keeps	the	aircraft’s	speed	constant?
A	high	diver	(see	Figure	5.14)	reaches	the	highest	point	in	her	jump	with	her	centre	of	gravity	10	m
above	the	water.

Figure	5.14:	A	high	dive	is	an	example	of	converting	(transforming)	gravitational	potential	energy	to
kinetic	energy.

Assuming	that	all	her	gravitational	potential	energy	becomes	kinetic	energy	during	the	dive,	calculate
her	speed	just	before	she	enters	the	water.

	
	



5

5.6	Energy	transfers
Climbing	bars
If	you	are	going	to	climb	a	mountain,	you	will	need	a	supply	of	energy.	This	is	because	your	gravitational
potential	energy	is	greater	at	the	top	of	the	mountain	than	at	the	base.	A	good	supply	of	energy	would	be
some	bars	of	chocolate.	Each	bar	supplies	1200	kJ.	Suppose	your	weight	is	600	N	and	you	climb	a	2000	m
high	mountain.	The	work	done	by	your	muscles	is:

work	done	=	Fs	=	600	×	2000	=	1200	kJ

So,	one	bar	of	chocolate	should	provide	enough	energy.	Of	course,	in	reality,	it	would	not.	Your	body	is
inefficient.	It	cannot	convert	100%	of	the	energy	from	food	into	gravitational	potential	energy.	A	lot	of
energy	is	wasted	as	your	muscles	warm	up,	you	perspire	and	your	body	rises	and	falls	as	you	walk	along
the	path.	Your	body	is	perhaps	only	5%	efficient	as	far	as	climbing	is	concerned,	and	you	will	need	to	eat
20	chocolate	bars	to	get	you	to	the	top	of	the	mountain.	And	you	will	need	to	eat	more	to	get	you	back
down	again.

KEY	EQUATION

Many	energy	transfers	are	inefficient.	That	is,	only	part	of	the	energy	is	transferred	to	where	it	is	wanted.
The	rest	is	wasted,	and	appears	in	some	form	that	is	not	wanted	(such	as	waste	heat)	or	in	the	wrong
place.	You	can	determine	the	efficiency	of	any	device	or	system	using	the	following	equation:

A	car	engine	is	more	efficient	than	a	human	body,	but	not	much	more.	Figure	5.15	shows	how	this	can	be
represented	by	a	Sankey	diagram.	The	width	of	the	arrow	represents	the	fraction	of	the	energy	which	is
transformed	to	each	new	form.	In	the	case	of	a	car	engine,	we	want	it	to	provide	kinetic	energy	to	turn
the	wheels.	In	practice,	80%	of	the	energy	is	transformed	into	heat:	the	engine	gets	hot,	and	heat	escapes
into	the	surroundings.	So	the	car	engine	is	only	20%	efficient.

Figure	5.15:	We	want	a	car	engine	to	supply	kinetic	energy.	This	Sankey	diagram	shows	that	only	20%
of	the	energy	supplied	to	the	engine	ends	up	as	kinetic	energy	–	it	is	20%	efficient.

We	have	previously	considered	situations	where	an	object	is	falling,	and	all	of	its	gravitational	potential
energy	changes	to	kinetic	energy.
In	Worked	example	5,	we	will	look	at	a	similar	situation,	but	in	this	case	the	energy	change	is	not	100%
efficient.

WORKED	EXAMPLE

Figure	5.16	shows	a	dam	that	stores	water.	The	outlet	of	the	dam	is	20	m	below	the	surface	of	the
water	in	the	reservoir.	Water	leaving	the	dam	is	moving	at	16	m	s−1.	Calculate	the	percentage	of
the	gravitational	potential	energy	that	is	lost	when	converted	into	kinetic	energy.
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Step	2

Step	3

Figure	 5.16:	 Water	 stored	 behind	 the	 dam	 has	 gravitational	 potential	 energy;	 the	 fast-flowing
water	leaving	the	foot	of	the	dam	has	kinetic	energy.

We	will	picture	1	kg	of	water,	starting	at	the	surface	of	the	lake	(where	it	has	g.p.e.,	but	no
k.e.)	and	flowing	downwards	and	out	at	the	foot	(where	it	has	k.e.,	but	less	g.p.e.).	Then:
change	in	g.p.e.	of	water	between	surface	and	outflow	=	mgh	=	1	×	9.81	×	20	=	196	J
Calculate	the	k.e.	of	1	kg	of	water	as	it	leaves	the	dam:

For	each	kilogram	of	water	flowing	out	of	the	dam,	the	loss	of	energy	is:
loss	=	196	−	128	=	68	J

If	you	wanted	to	use	this	moving	water	to	generate	electricity,	you	would	have	already	lost
more	than	a	third	of	the	energy	that	it	stores	when	it	is	behind	the	dam.

Conservation	of	energy
Where	does	the	lost	energy	from	the	water	in	the	reservoir	go?	Most	of	it	ends	up	warming	the	water,	or
warming	the	pipes	that	the	water	flows	through.	The	outflow	of	water	is	probably	noisy,	so	some	sound	is
produced.
Here,	we	are	assuming	that	all	of	the	energy	ends	up	somewhere.	None	of	it	disappears.	We	assume	the
same	thing	when	we	draw	a	Sankey	diagram.	The	total	thickness	of	the	arrow	remains	constant.	We	could
not	have	an	arrow	which	got	thinner	(energy	disappearing)	or	thicker	(energy	appearing	out	of	nowhere).
We	are	assuming	that	energy	is	conserved.	This	is	a	principle,	known	as	the	principle	of	conservation
of	energy,	which	we	expect	to	apply	in	all	situations.
Energy	cannot	be	created	or	destroyed.	It	can	only	be	converted	from	one	form	to	another.
We	should	always	be	able	to	add	up	the	total	amount	of	energy	at	the	beginning,	and	be	able	to	account
for	it	all	at	the	end.	We	cannot	be	sure	that	this	is	always	the	case,	but	we	expect	it	to	hold	true.
We	have	to	think	about	energy	changes	within	a	closed	system;	that	is,	we	have	to	draw	an	imaginary
boundary	around	all	of	the	interacting	objects	that	are	involved	in	an	energy	transfer.
Sometimes,	applying	the	principle	of	conservation	of	energy	can	seem	like	a	scientific	fiddle.	When
physicists	were	investigating	radioactive	decay	involving	beta	particles,	they	found	that	the	particles	after
the	decay	had	less	energy	in	total	than	the	particles	before.	They	guessed	that	there	was	another,
invisible	particle	that	was	carrying	away	the	missing	energy.	This	particle,	named	the	neutrino,	was
proposed	by	the	theoretical	physicist	Wolfgang	Pauli	in	1931.	The	neutrino	was	not	detected	by
experimenters	until	25	years	later.
Although	we	cannot	prove	that	energy	is	always	conserved,	this	example	shows	that	the	principle	of
conservation	of	energy	can	be	a	powerful	tool	in	helping	us	to	understand	what	is	going	on	in	nature,	and
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that	it	can	help	us	to	make	fruitful	predictions	about	future	experiments.

Question
A	stone	falls	from	the	top	of	a	cliff,	80	m	high.	When	it	reaches	the	foot	of	the	cliff,	its	speed	is	38	m	s
−1.

Calculate	the	proportion	of	the	stone’s	initial	g.p.e.	that	is	converted	to	k.e.
What	happens	to	the	rest	of	the	stone’s	initial	energy?

	
	



5.7	Power
The	word	power	has	several	different	meanings	–	such	as	political	power,	powers	of	ten	or	electrical
power	from	power	stations.	In	physics,	it	has	a	specific	meaning	related	to	these	other	meanings.	Figure
5.17	illustrates	what	we	mean	by	power	in	physics.

Figure	5.17:	A	lift	needs	a	powerful	motor	to	raise	the	car	when	it	has	a	full	load	of	people.	The	motor
does	many	thousands	of	joules	of	work	each	second.

The	lift	shown	in	Figure	5.17	can	lift	a	heavy	load	of	people.	The	motor	at	the	top	of	the	building	provides
a	force	to	raise	the	lift	car,	and	this	force	does	work	against	the	force	of	gravity.	The	motor	transfers
energy	to	the	lift	car.	The	power	P	of	the	motor	is	the	rate	at	which	it	does	work	over	a	unit	of	time.
Power	is	defined	as	the	rate	of	work	done	per	unit	of	time.	As	a	word	equation,	power	is	given	by:

where	W	is	the	work	done	in	a	time	t.

KEY	EQUATION

Units	of	power:	the	watt
Power	is	measured	in	watts,	named	after	James	Watt,	the	Scottish	engineer	famous	for	his	development	of
the	steam	engine	in	the	second	half	of	the	18th	century.	The	watt	is	defined	as	a	rate	of	working	of	1	joule
per	second.	Hence:

1	watt	=	1	joule	per	second

or

1	W	=	1	J	s−1

In	practice,	we	also	use	kilowatts	(kW)	and	megawatts	(MW).
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1000	watts					=	1	kilowatt	(1	kW)

1	000	000	watts	=	1	megawatt	(1	MW)

The	labels	on	light	bulbs	display	their	power	in	watts;	for	example,	60	W	or	10	W.	The	values	of	power	on
the	labels	tell	you	about	the	energy	transferred	by	an	electrical	current,	rather	than	by	a	force	doing
work.

WORKED	EXAMPLE

The	motor	of	the	lift	shown	in	Figure	5.18	provides	a	force	of	20	kN;	this	force	is	enough	to	raise
the	lift	by	18	m	in	10	s.	Calculate	the	output	power	of	the	motor.

First,	we	must	calculate	the	work	done:

Now	we	can	calculate	the	motor’s	output	power:

Hint:	Take	care	not	to	confuse	the	two	uses	of	the	letter	‘W’:
W	=	watt	(a	unit)
W	=	work	done	(a	quantity)
So	the	lift	motor’s	power	is	36	kW.	Note	that	this	is	its	mechanical	power	output.	The	motor
cannot	be	100%	efficient	since	some	energy	is	bound	to	be	wasted	as	heat	due	to	friction,
so	the	electrical	power	input	must	be	more	than	36	kW.

Questions
Calculate	how	much	work	is	done	by	a	50	kW	car	engine	in	a	time	of	1.0	minute.
A	car	engine	does	4200	kJ	of	work	in	one	minute.	Calculate	its	output	power,	in	kilowatts.
A	particular	car	engine	provides	a	force	of	700	N	when	the	car	is	moving	at	its	top	speed	of	40	m	s−1.

Calculate	how	much	work	is	done	by	the	car’s	engine	in	one	second.
State	the	output	power	of	the	engine.

Moving	power
An	aircraft	is	kept	moving	forwards	by	the	force	of	its	engines	pushing	air	backwards.	The	greater	the
force	and	the	faster	the	aircraft	is	moving,	the	greater	the	power	supplied	by	its	engines.
Suppose	that	an	aircraft	is	moving	with	velocity	v.	Its	engines	provide	the	force	F	needed	to	overcome	the
drag	of	the	air.	In	time	t,	the	aircraft	moves	a	distance	s	equal	to	v	×	t.
So,	the	work	done	by	the	engines	is:

We	know	that:

Substituting	W	for	gives:

Which	can	be	simplified	to:
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KEY	EQUATION

power	=	force	×	velocity	≡	P	=	F	×	v

It	may	help	to	think	of	this	equation	in	terms	of	units.	The	right-hand	side	is	in	N	×	m	s−1,	and	N	m	is	the
same	as	J.	So	the	right-hand	side	has	units	of	J	s−1,	or	W,	the	unit	of	power.	If	you	look	back	to	Question
17,	you	will	see	that,	to	find	the	power	of	the	car	engine,	rather	than	considering	the	work	done	in	1	s,	we
could	simply	have	multiplied	the	engine’s	force	by	the	car’s	speed.

Human	power
Our	energy	supply	comes	from	our	food.	A	typical	diet	supplies	2000–3000	kcal	(kilocalories)	per	day.	This
is	equivalent	(in	SI	units)	to	about	10	MJ	of	energy.	We	need	this	energy	for	our	daily	requirements	–
keeping	warm,	moving	about,	brainwork	and	so	on.	We	can	determine	the	average	power	of	all	the
activities	of	our	body:

So	we	dissipate	energy	at	the	rate	of	about	100	W.	We	supply	roughly	as	much	energy	to	our	surroundings
as	a	100	W	light	bulb.	Twenty	people	will	keep	a	room	as	warm	as	a	2	kW	electric	heater.
Note	that	this	is	our	average	power.	If	you	are	doing	some	demanding	physical	task,	your	power	will	be
greater.	This	is	illustrated	in	Worked	example	7.
Note	also	that	the	human	body	is	not	a	perfectly	efficient	system;	a	lot	of	energy	is	wasted	when,	for
example,	we	lift	a	heavy	load.	We	might	increase	an	object’s	g.p.e.	by	1000	J	when	we	lift	it,	but	this
might	require	five	or	ten	times	this	amount	of	energy	to	be	expended	by	our	bodies.

WORKED	EXAMPLE

A	person	who	weighs	500	N	runs	up	a	flight	of	stairs	in	5.0	s	(Figure	5.18).	Their	gain	in	height	is
3.0	m.	Calculate	the	rate	at	which	work	is	done	against	the	force	of	gravity.

Figure	5.18:	Running	up	stairs	can	require	a	high	rate	of	doing	work.	You	may	have	investigated
your	own	power	in	this	way.

Calculate	the	work	done	against	gravity:

Now	calculate	the	power:
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So,	while	the	person	is	running	up	the	stairs,	they	are	doing	work	against	gravity	at	a	greater	rate
than	their	average	power	–	perhaps	three	times	as	great.	And,	since	our	muscles	are	not	very
efficient,	they	need	to	be	supplied	with	energy	even	faster,	perhaps	at	a	rate	of	1	kW.	This	is	why	we
cannot	run	up	stairs	all	day	long	without	greatly	increasing	the	amount	we	eat.	The	inefficiency	of
our	muscles	also	explains	why	we	get	hot	when	we	exert	ourselves.

Question
In	an	experiment	to	measure	a	student’s	power,	she	times	herself	running	up	a	flight	of	steps.	Use	the
data	to	work	out	her	useful	power.
number	of	steps	=	28
height	of	each	step	=	20	cm
acceleration	of	free	fall	=	9.81	m	s−2
mass	of	student	=	55	kg
time	taken	=	5.4	s

REFLECTION
How	do	you	feel	about	this	topic?	What	parts	of	it	do	you	particularly	like	or	dislike?	And	why?
Think	about	a	number	of	important	machines	that	you	use	in	your	house	or	school.	Is	it	worthwhile
increasing	their	efficiency	and	can	you	suggest	how	this	might	be	done?	Discuss	this	with	others.
Make	notes	about	the	new	things	you	have	learnt	from	this	chapter.

	
	



SUMMARY

The	work	done	W	when	a	force	F	moves	through	a	displacement	s	in	the	direction	of	the	force:

W	=	Fs					or					W	=	Fs	cos	θ

where	θ	is	the	angle	between	the	force	and	the	displacement.

A	joule	is	defined	as	the	work	done	(or	energy	transferred)	when	a	force	of	1	N	moves	a	distance	of	1
m	in	the	direction	of	the	force.

When	an	object	of	mass	m	rises	through	a	height	h,	its	gravitational	potential	energy	Ep	increases	by
an	amount:

Ep	=	mgh

The	kinetic	energy	Ek	of	a	body	of	mass	m	moving	at	speed	v	is:

The	principle	of	conservation	of	energy	states	that,	for	a	closed	system,	energy	can	be	transferred	to
other	forms	but	the	total	amount	of	energy	remains	constant.

The	efficiency	of	a	device	or	system	is	determined	using	the	equation:

Power	is	the	rate	at	which	work	is	done	(or	energy	is	transferred):

A	watt	is	defined	as	a	rate	of	transfer	of	energy	of	one	joule	per	second.
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EXAM-STYLE	QUESTIONS

How	is	the	joule	related	to	the	base	units	of	m,	kg	and	s? [1]

kg	m−1	s2 	

kg	m2	s−2 	

kg	m2	s−1 	

kg	s−2 	

An	object	falls	at	terminal	velocity	in	air.	What	overall	conversion	of	energy	is
occurring? [1]

gravitational	potential	energy	to	kinetic	energy 	

gravitational	potential	energy	to	thermal	energy 	

kinetic	energy	to	gravitational	potential	energy 	

kinetic	energy	to	thermal	energy 	

In	each	case	a–c,	describe	the	energy	changes	taking	place: 	

An	apple	falling	towards	the	ground [1]

A	car	decelerating	when	the	brakes	are	applied [1]

A	space	probe	falling	towards	the	surface	of	a	planet. [1]

	 [Total:	3]

A	120	kg	crate	is	dragged	along	the	horizontal	ground	by	a	200	N	force	acting
at	an	angle	of	30°	to	the	horizontal,	as	shown. 	

Figure	5.19
	

The	crate	moves	along	the	surface	with	a	constant	velocity	of	0.5	m	s−1.	The
200	N	force	is	applied	for	a	time	of	16	s. 	

Calculate	the	work	done	on	the	crate	by: 	

the	200	N	force [3]

the	weight	of	the	crate [2]

the	normal	contact	force	N. [2]

Calculate	the	rate	of	work	done	against	the	frictional	force	F. [1]

	 [Total:	8]

Explain	which	of	the	following	has	greater	kinetic	energy? 	

A	20-tonne	truck	travelling	at	a	speed	of	30	m	s−1 	

A	1.2	g	dust	particle	travelling	at	150	km	s−1	through	space. [3]

A	950	kg	sack	of	cement	is	lifted	to	the	top	of	a	building	50	m	high	by	an
electric	motor. 	

Calculate	the	increase	in	the	gravitational	potential	energy	of	the	sack	of
cement. [2]
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The	output	power	of	the	motor	is	4.0	kW.	Calculate	how	long	it	took	to
raise	the	sack	to	the	top	of	the	building. [2]

The	electrical	power	transferred	by	the	motor	is	6.9	kW.	In	raising	the	sack
to	the	top	of	the	building,	how	much	energy	is	wasted	in	the	motor	as	heat? [3]

	 [Total:	7]

Define	power	and	state	its	unit. [2]

Write	a	word	equation	for	the	kinetic	energy	of	a	moving	object. [1]

A	car	of	mass	1100	kg	starting	from	rest	reaches	a	speed	of	18	m	s−1	in	25
s.	Calculate	the	average	power	developed	by	the	engine	of	the	car. [2]

	 [Total:	5]

A	cyclist	pedals	a	long	slope	which	is	at	5.0°	to	the	horizontal,	as	shown. 	

Figure	5.20
	

The	cyclist	starts	from	rest	at	the	top	of	the	slope	and	reaches	a	speed	of	12	m
s−1	after	a	time	of	67	s,	having	travelled	40	m	down	the	slope.	The	total	mass
of	the	cyclist	and	bicycle	is	90	kg. 	

Calculate: 	

the	loss	in	gravitational	potential	energy	as	he	travels	down	the	slope [3]

the	increase	in	kinetic	energy	as	he	travels	down	the	slope. [2]

Use	your	answers	to	a	to	determine	the	useful	power	output	of	the
cyclist. [3]

Suggest	one	reason	why	the	actual	power	output	of	the	cyclist	is	larger
than	your	value	in	i. [2]

	 [Total:	10]

Explain	what	is	meant	by	work. [2]

Explain	how	the	principle	of	conservation	of	energy	applies	to	a	man
sliding	from	rest	down	a	vertical	pole,	if	there	is	a	constant	force	of
friction	acting	on	him. [2]

The	man	slides	down	the	pole	and	reaches	the	ground	after	falling	a
distance	h	=	15	m.	His	potential	energy	at	the	top	of	the	pole	is	1000	J.
Sketch	a	graph	to	show	how	his	gravitational	potential	energy	Ep
varies	with	h.	Add	to	your	graph	a	line	to	show	the	variation	of	his
kinetic	energy	Ek	with	h. [3]

	 [Total:	7]

Use	the	equations	of	motion	to	show	that	the	kinetic	energy	of	an	object	of
mass	m	moving	with	velocity	v	is	 . [2]

A	car	of	mass	800	kg	accelerates	from	rest	to	a	speed	of	20	m	s−1	in	a	time
of	6.0	s. 	

Calculate	the	average	power	used	to	accelerate	the	car	in	the	first	6.0
s. [2]

The	power	passed	by	the	engine	of	the	car	to	the	wheels	is	constant.
Explain	why	the	acceleration	of	the	car	decreases	as	the	car
accelerates. [2]

	 [Total:	6]

Define	potential	energy. [1]



ii

b

i

ii

iii

Identify	differences	between	gravitational	potential	energy	and	elastic
potential	energy.

[2]

Seawater	is	trapped	behind	a	dam	at	high	tide	and	then	released	through
turbines.	The	level	of	the	water	trapped	by	the	dam	falls	10.0	m	until	it	is
all	at	the	same	height	as	the	sea. 	

Calculate	the	mass	of	seawater	covering	an	area	of	1.4	×	106	m2	and
with	a	depth	of	10.0	m.	(Density	of	seawater	=	1030	kg	m−3.) [1]

Calculate	the	maximum	loss	of	potential	energy	of	the	seawater	in	i
when	passed	through	the	turbines. [2]

The	potential	energy	of	the	seawater,	calculated	in	ii,	is	lost	over	a
period	of	6.0	hours.	Estimate	the	average	power	output	of	the	power
station	over	this	time	period,	given	that	the	efficiency	of	the	power
station	is	50%. [3]

	 [Total:	9]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	concept	of	work,	and
recall	and	use	work	done	=	force	×
displacement	in	the	direction	of	the
force

5.1 	 	 	

recall	and	apply	the	principle	of
conservation	of	energy

5.6 	 	 	

recall	and	understand	that	the
efficiency	of	a	system	is	the	ratio	of
useful	energy	output	from	the	system	to
the	total	energy	input

5.6 	 	 	

use	the	concept	of	efficiency	to	solve
problems

5.6 	 	 	

define	power	as	work	done	per	unit
time	and	solve	problems	using	

5.7 	 	 	

derive	P	=	Fv	and	use	it	to	solve
problems

5.7 	 	 	

derive,	using	W	=	Fs,
the	formula	ΔEp	=	mgΔh

5.2 	 	 	

recall	and	use	the	formula	ΔEp	=	mgΔh 5.5 	 	 	

derive,	using	the	equations	of	motion,
the	formula	 	and	recall	and
use	the	formula.

5.3 	 	 	
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	Chapter	6

Momentum

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	and	use	linear	momentum
state	and	apply	the	principle	of	conservation	of	momentum	to	collisions	in	one	and	two	dimensions
relate	force	to	the	rate	of	change	of	momentum	and	state	Newton’s	second	law	of	motion
recall	 that,	 for	a	perfectly	elastic	collision,	 the	relative	speed	of	approach	 is	equal	 to	 the	relative
speed	of	separation
discuss	energy	changes	in	perfectly	elastic	and	inelastic	collisions.

BEFORE	YOU	START
What	do	you	understand	about	Newton’s	 laws?	Write	down	all	 three	of	 them	 in	your	own	words.
Define	any	of	the	quantities	mentioned	in	the	laws.
If	you	blow	up	a	balloon	and	then	let	it	go	without	tying	the	end,	why	does	the	balloon	fly	around	in
the	air?

UNDERSTANDING	COLLISIONS
To	improve	the	safety	of	cars,	the	motion	of	a	car	during	a	crash	must	be	understood	and	the	forces	on
the	driver	minimised	(Figure	6.1).	In	this	way,	safer	cars	have	been	developed	and	many	lives	have
been	saved.	Find	out	about	as	many	safety	features	of	cars	as	you	can	and	discuss	with	someone	else
why	these	features	improve	safety	in	a	crash.
In	this	chapter,	we	will	explore	how	the	idea	of	momentum	can	allow	us	to	predict	how	objects	move
after	colliding	(interacting)	with	each	other.	We	will	also	see	how	Newton’s	laws	of	motion	can	be
expressed	in	terms	of	momentum.



Figure	 6.1:	 A	 high-speed	 photograph	 of	 a	 crash	 test.	 The	 cars	 collide	 head-on	 at	 15	 m	 s−1	 with
dummies	as	drivers.
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6.1	The	idea	of	momentum
Snooker	players	can	perform	some	amazing	moves	on	the	table,	without	necessarily	knowing	Newton’s
laws	of	motion	–	see	Figure	6.2.

Figure	6.2:	If	you	play	snooker	often	enough,	you	will	be	able	to	predict	how	the	balls	will	move	on	the
table.	Alternatively,	you	can	use	the	laws	of	physics	to	predict	their	motion.

However,	the	laws	of	physics	can	help	us	to	understand	what	happens	when	two	snooker	balls	collide	or
when	one	bounces	off	the	side	cushion	of	the	table.
Here	are	some	examples	of	situations	involving	collisions:

Two	cars	collide	head-on.
A	fast-moving	car	runs	into	the	back	of	a	slower	car	in	front.
A	footballer	runs	into	an	opponent.
A	hockey	stick	strikes	a	ball.
A	comet	or	an	asteroid	collides	with	a	planet	as	it	orbits	the	Sun.
The	atoms	of	the	air	collide	constantly	with	each	other,	and	with	the	walls	of	their	surroundings.
Electrons	that	form	an	electric	current	collide	with	the	vibrating	ions	that	make	up	a	metal	wire.
Two	distant	galaxies	collide	over	millions	of	years.

From	these	examples,	we	can	see	that	collisions	are	happening	all	around	us,	all	the	time.	They	happen
on	the	microscopic	scale	of	atoms	and	electrons,	they	happen	in	our	everyday	world,	and	they	also
happen	on	the	cosmic	scale	of	our	Universe.
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6.2	Modelling	collisions
Springy	collisions
Figure	6.3a	shows	what	happens	when	one	snooker	ball	collides	head-on	with	a	second,	stationary	ball.
The	result	can	seem	surprising.	The	moving	ball	stops	dead.	The	ball	initially	at	rest	moves	off	with	the
same	velocity	as	that	of	the	original	ball.	To	achieve	this,	a	snooker	player	must	observe	two	conditions:

The	collision	must	be	head-on.	(If	one	ball	strikes	a	glancing	blow	on	the	side	of	the	other,	they	will
both	move	off	at	different	angles.)
The	moving	ball	must	not	be	given	any	spin.	(Spin	is	an	added	complication	that	we	will	ignore	in	our
present	study,	although	it	plays	a	vital	part	in	the	games	of	pool	and	snooker.)

You	can	mimic	the	collision	of	two	snooker	balls	in	the	laboratory	using	two	identical	trolleys,	as	shown	in
Figure	6.3b.	The	moving	trolley	has	its	spring-load	released,	so	that	the	collision	is	springy.	As	one	trolley
runs	into	the	other,	the	spring	is	at	first	compressed,	and	then	it	pushes	out	again	to	set	the	second
trolley	moving.	The	first	trolley	comes	to	a	complete	halt.	The	‘motion’	of	one	trolley	has	been	transferred
to	the	other.
You	can	see	another	interesting	result	if	two	moving	identical	trolleys	collide	head-on.	If	the	collision	is
springy,	both	trolleys	bounce	backwards.	If	a	fast-moving	trolley	collides	with	a	slower	one,	the	fast
trolley	bounces	back	at	the	speed	of	the	slow	one,	and	the	slow	one	bounces	back	at	the	speed	of	the	fast
one.	In	this	collision,	it	is	as	if	the	velocities	of	the	trolleys	have	been	swapped.

Figure	6.3:	a	The	red	snooker	ball,	coming	from	the	left,	has	hit	the	yellow	ball	head-on.	b	You	can	do
the	same	thing	with	two	trolleys	in	the	laboratory.

Sticky	collisions
Figure	6.4	shows	another	type	of	collision.	In	this	case,	the	trolleys	have	adhesive	pads	so	that	they	stick
together	when	they	collide.	A	sticky	collision	like	this	is	the	opposite	of	a	springy	collision	like	the	ones
described	previously.
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Figure	6.4:	If	a	moving	trolley	sticks	to	a	stationary	trolley,	they	both	move	off	together.

If	a	single	moving	trolley	collides	with	an	identical	stationary	one,	they	both	move	off	together.	After	the
collision,	the	speed	of	the	combined	trolleys	is	half	that	of	the	original	trolley.	It	is	as	if	the	‘motion’	of	the
original	trolley	has	been	shared	between	the	two.	If	a	single	moving	trolley	collides	with	a	stationary
double	trolley	(twice	the	mass),	they	move	off	with	one-third	of	the	original	velocity.
From	these	examples	of	sticky	collisions,	you	can	see	that,	when	the	mass	of	the	trolley	increases	as	a
result	of	a	collision,	its	velocity	decreases.	Doubling	the	mass	halves	the	velocity,	and	so	on.

Question
Ball	A,	moving	towards	the	right,	collides	with	stationary	ball	B.	Ball	A	bounces	back;	ball	B
moves	off	slowly	to	the	right.	Which	has	the	greater	mass,	ball	A	or	ball	B?
Trolley	A,	moving	towards	the	right,	collides	with	stationary	trolley	B.	They	stick	together,	and
move	off	at	less	than	half	A’s	original	speed.	Which	has	the	greater	mass,	trolley	A	or	trolley	B?

Defining	linear	momentum
From	the	examples	discussed	earlier,	we	can	see	that	two	quantities	are	important	in	understanding
collisions:

the	mass	m	of	the	object
the	velocity	v	of	the	object.

These	are	combined	to	give	a	single	quantity,	called	the	linear	momentum	(or	simply	momentum)	p	of
an	object.

KEY	EQUATION

The	momentum	of	an	object	is	defined	as	the	product	of	the	mass	of	the	object	and	its	velocity.	Hence:

The	SI	unit	of	momentum	is	kg	m	s−1.	There	is	no	special	name	for	this	unit	in	the	SI	system.	The	newton
second	(N	s)	can	also	be	used	as	a	unit	of	momentum	(see	topic	6.7).
Momentum	is	a	vector	quantity	because	it	is	a	product	of	a	vector	quantity	(velocity)	and	a	scalar	quantity
(mass).	Momentum	has	both	magnitude	and	direction.	Its	direction	is	the	same	as	the	direction	of	the
object’s	velocity.
In	the	earlier	examples,	we	described	how	the	‘motion’	of	one	trolley	appeared	to	be	transferred	to	a
second	trolley,	or	shared	with	it.	It	is	more	correct	to	say	that	it	is	the	trolley’s	momentum	that	is
transferred	or	shared.	(More	precisely,	we	should	refer	to	linear	momentum,	because	there	is	another
quantity	called	angular	momentum	that	is	possessed	by	spinning	objects.)
As	with	energy,	we	find	that	momentum	is	also	conserved.	We	have	to	consider	objects	that	form	a	closed
system–that	is,	no	resultant	external	force	acts	on	them.	The	principle	of	conservation	of	momentum
states	that,	within	a	closed	system,	the	total	momentum	in	any	direction	is	constant.
The	principle	of	conservation	of	momentum	can	also	be	expressed	as	follows:
For	a	closed	system	where	no	resultant	external	force	acts,	in	any	direction:
total	momentum	of	objects	before	collision	=	total	momentum	of	objects	after	collision
A	group	of	colliding	objects	always	has	as	much	momentum	after	the	collision	as	it	had	before	the
collision.	This	principle	is	illustrated	in	Worked	example	1.

WORKED	EXAMPLE

In	Figure	6.5,	trolley	A	of	mass	0.80	kg	travelling	at	a	velocity	of	3.0	m	s−1	collides	head-on	with	a
stationary	trolley	B.	Trolley	B	has	twice	the	mass	of	trolley	A.	The	trolleys	stick	together	and	have	a
common	velocity	of	1.0	m	s−1	after	the	collision.	Show	that	momentum	is	conserved	in	this
collision.
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Figure	6.5:	The	state	of	trolleys	A	and	B,	before	and	after	the	collision.

Make	a	sketch	using	the	information	given	in	the	question.	Notice	that	we	need	two
diagrams	to	show	the	situations,	one	before	and	one	after	the	collision.	Similarly,	we	need
two	calculations	–	one	for	the	momentum	of	the	trolleys	before	the	collision	and	one	for
their	momentum	after	the	collision.
Calculate	the	momentum	before	the	collision:
momentum	of	trolleys	before	collision
=	mA	×	uA	+	mB	×	uB

=	(0.80	×	3.0)	+	0

=	2.4	kg	m	s−1

Trolley	B	has	no	momentum	before	the	collision,	because	it	is	not	moving.
Calculate	the	momentum	after	the	collision:
momentum	of	trolleys	after	collision
=	(mA	+	mB)	×	vA+B

=	(0.80	+	1.60)	×	1.0

=	2.4	kg	m	s−1

So,	both	before	and	after	the	collision,	the	trolleys	have	a	combined	momentum	of	2.4	kg	m
s−1.	Momentum	has	been	conserved.

Questions
Calculate	the	momentum	of	each	of	the	following	objects:

a	0.50	kg	stone	travelling	at	a	velocity	of	20	m	s−1

a	25	000	kg	bus	travelling	at	20	m	s−1	on	a	road
an	electron	travelling	at	2.0	×	107	m	s−1.
(The	mass	of	the	electron	is	9.1	×	10−31	kg.)

Two	balls,	each	of	mass	0.50	kg,	collide	as	shown	in	Figure	6.6.	Show	that	their	total	momentum
before	the	collision	is	equal	to	their	total	momentum	after	the	collision.



Figure	6.6:	For	Question	3.

	
	



6.3	Understanding	collisions
The	cars	in	Figure	6.7	have	been	badly	damaged	by	a	collision.	The	front	of	a	car	is	designed	to	absorb	the
impact	of	the	crash.	It	has	a	‘crumple	zone’,	which	collapses	on	impact.	This	absorbs	most	of	the	kinetic
energy	that	the	car	had	before	the	collision.	It	is	better	that	the	car’s	kinetic	energy	should	be	transferred
to	the	crumple	zone	than	to	the	driver	and	passengers.
Motor	manufacturers	make	use	of	test	labs	to	investigate	how	their	cars	respond	to	impacts.	When	a	car	is
designed,	the	manufacturers	combine	soft,	compressible	materials	that	absorb	energy	with	rigid	structures
that	protect	the	people	in	the	car.	Old-fashioned	cars	had	much	more	rigid	structures.	In	a	collision,	they
were	more	likely	to	bounce	back	and	the	violent	forces	involved	were	much	more	likely	to	prove	fatal.

Figure	6.7:	The	front	of	each	car	has	crumpled	in,	as	a	result	of	a	head-on	collision.

Two	types	of	collision
When	two	objects	collide,	they	may	crumple	and	deform.	Their	kinetic	energy	may	also	disappear
completely	as	they	come	to	a	halt.	This	is	an	example	of	an	inelastic	collision.	Alternatively,	they	may
spring	apart,	retaining	all	of	their	kinetic	energy.	This	is	a	perfectly	elastic	collision.	In	practice,	in	most
collisions,	some	kinetic	energy	is	transformed	into	other	forms	(such	as	heat	or	sound)	and	the	collision	is
inelastic.	Previously	we	described	the	collisions	as	being	‘springy’	or	‘sticky’.	We	should	now	use	the
correct	scientific	terms,	perfectly	elastic	and	inelastic.
We	will	look	at	examples	of	these	two	types	of	collision	and	consider	what	happens	to	linear	momentum
and	kinetic	energy	in	each.

A	perfectly	elastic	collision
Two	identical	objects,	A	and	B,	moving	at	the	same	speed	but	in	opposite	directions,	have	a	head-on
collision,	as	shown	in	Figure	6.8.	Each	object	bounces	back	with	its	velocity	reversed.	This	is	a	perfectly
elastic	collision.



Figure	6.8:	Two	objects	may	collide	in	different	ways:	this	is	an	elastic	collision.	An	inelastic	collision	of
the	same	two	objects	is	shown	in	Figure	6.9.

You	should	be	able	to	see	that,	in	this	collision,	both	momentum	and	kinetic	energy	are	conserved.	Before
the	collision,	object	A	of	mass	m	is	moving	to	the	right	at	speed	v	and	object	B	of	mass	m	is	moving	to	the
left	at	speed	v.	Afterwards,	we	still	have	two	masses	m	moving	with	speed	v,	but	now	object	A	is	moving	to
the	left	and	object	B	is	moving	to	the	right.	We	can	express	this	mathematically	as	follows.

Before	the	collision

Object Mass Velocity Momentum

A m v mv

B m −v −mv

Object	B	has	negative	velocity	and	momentum	because	it	is	travelling	in	the	opposite	direction	to	object	A.
Therefore	we	have:
total	momentum	before	collision
=	momentum	of	A	+	momentum	of	B
=	mv	+	(−mv)	=	0
total	kinetic	energy	before	collision
=	k.e.	of	A	+	k.e.	of	B

The	magnitude	of	the	momentum	of	each	object	is	the	same.	Momentum	is	a	vector	quantity	and	we	have
to	consider	the	directions	in	which	the	objects	travel.	The	combined	momentum	is	zero.	On	the	other	hand,
kinetic	energy	is	a	scalar	quantity	and	direction	of	travel	is	irrelevant.	Both	objects	have	the	same	kinetic
energy	and	therefore	the	combined	kinetic	energy	is	twice	the	kinetic	energy	of	a	single	object.
After	the	collision
Both	objects	have	their	velocities	reversed,	and	we	have:

So	the	total	momentum	and	the	total	kinetic	energy	are	unchanged.	They	are	both	conserved	in	a	perfectly
elastic	collision	such	as	this.
In	this	collision,	the	objects	have	a	relative	speed	of	2v	before	the	collision.	After	their	collision,	their
velocities	are	reversed	so	their	relative	speed	is	2v	again.	This	is	a	feature	of	perfectly	elastic	collisions.
The	relative	speed	of	approach	is	the	speed	of	one	object	measured	relative	to	another.	If	two	objects	are
travelling	directly	towards	each	other	with	speed	v,	as	measured	by	someone	stationary	on	the	ground,
then	each	object	‘sees’	the	other	one	approaching	with	a	speed	of	2v.	Thus,	if	objects	are	travelling	in
opposite	directions	we	add	their	speeds	to	find	the	relative	speed.	If	the	objects	are	travelling	in	the	same
direction	then	we	subtract	their	speeds	to	find	the	relative	speed.
To	find	the	relative	speed	of	two	objects	you	subtract	the	velocity	of	one	from	the	velocity	of	the	other.	This
is	the	same	as	adding	on	a	velocity	in	the	opposite	direction;	so,	if	two	objects	approach	each	other	in
exactly	opposite	directions	with	velocities	of	v1	and	−v2,	their	relative	speed	=	v1	−	(−v2)	=	v1	+	v2.

KEY	IDEA
In	a	perfectly	elastic	collision	of	two	bodies,	the	relative	speed	of	the
body’s	approach	is	equal	to	the	relative	speed	of	their	separation.

An	inelastic	collision
KEY	IDEA
During	an	inelastic	collision,	the	total	kinetic	energy	of	the	bodies	becomes
smaller.

In	Figure	6.9,	the	same	two	objects	collide,	but	this	time	they	stick	together	after	the	collision	and	come	to
a	halt.	Clearly,	the	total	momentum	and	the	total	kinetic	energy	are	both	zero	after	the	collision,	since
neither	mass	is	moving.	We	have:
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Figure	 6.9:	 An	 inelastic	 collision	 between	 two	 identical	 objects.	 The	 trolleys	 are	 stationary	 after	 the
collision.

Again	we	see	that	momentum	is	conserved.	However,	kinetic	energy	is	not	conserved.	It	is	lost	because
work	is	done	in	deforming	the	two	objects.
In	fact,	momentum	is	always	conserved	in	all	collisions.	There	is	nothing	else	into	which	momentum
can	be	converted.	Kinetic	energy	is	usually	not	conserved	in	a	collision,	because	it	can	be	transformed	into
other	forms	of	energy	–	sound	energy	if	the	collision	is	noisy,	and	the	energy	involved	in	deforming	the
objects	(which	usually	ends	up	as	internal	energy	–	they	get	warmer).	Of	course,	the	total	amount	of
energy	remains	constant,	as	stated	in	the	principle	of	conservation	of	energy.

Question
Copy	this	table,	choosing	the	correct	words	from	each	pair.

Type	of	collision perfectly	elastic inelastic
Momentum conserved	/	not	conserved conserved	/	not	conserved
Kinetic	energy conserved	/	not	conserved conserved	/	not	conserved
Total	energy conserved	/	not	conserved conserved	/	not	conserved

Solving	collision	problems
We	can	use	the	idea	of	conservation	of	momentum	to	solve	numerical	problems,	as	shown	in	Worked
example	2.

WORKED	EXAMPLE

In	the	game	of	bowls,	a	player	rolls	a	large	ball	towards	a	smaller,	stationary	ball.	A	large	ball	of
mass	5.0	kg	moving	at	10.0	m	s−1	strikes	a	stationary	ball	of	mass	1.0	kg.	The	smaller	ball	flies	off	at
10.0	m	s−1.

Determine	the	final	velocity	of	the	large	ball	after	the	impact.
Calculate	the	kinetic	energy	‘lost’	in	the	impact.

Draw	two	diagrams,	showing	the	situations	before	and	after	the	collision.	Figure	6.10	shows
the	values	of	masses	and	velocities;	since	we	don’t	know	the	velocity	of	the	large	ball	after
the	collision,	this	is	shown	as	v.	The	direction	from	left	to	right	has	been	assigned	the
‘positive’	direction.
Using	the	principle	of	conservation	of	momentum,	set	up	an	equation	and	solve	for	the	value
of	v:
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Figure	6.10:	When	solving	problems	involving	collisions,	it	is	useful	to	draw	diagrams	showing	the
situations	before	and	after	the	collision.	Include	the	values	of	all	the	quantities	that	you	know.

So	the	speed	of	the	large	ball	decreases	to	8.0	m	s−1	after	the	collision.	Its	direction	of
motion	is	unchanged	–	the	velocity	remains	positive.
Knowing	the	large	ball’s	final	velocity,	calculate	the	change	in	kinetic	energy	during	the
collision:

This	‘lost’	kinetic	energy	will	appear	as	internal	energy	(the	two	balls	get	warmer)	and	as
sound	energy	(we	hear	the	collision	between	the	balls).

Questions
Figure	6.11	shows	two	identical	balls	A	and	B	about	to	make	a	head-on	collision.	After	the	collision,
ball	A	rebounds	at	a	speed	of	1.5	m	s−1	and	ball	B	rebounds	at	a	speed	of	2.5	m	s−1.	The	mass	of	each
ball	is	4.0	kg.

Figure	6.11:	For	Question	5.

Calculate	the	momentum	of	each	ball	before	the	collision.
Calculate	the	momentum	of	each	ball	after	the	collision.
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Is	the	momentum	conserved	in	the	collision?
Show	that	the	total	kinetic	energy	of	the	two	balls	is	conserved	in	the	collision.
Show	that	the	relative	speed	of	the	balls	is	the	same	before	and	after	the	collision.

A	trolley	of	mass	1.0	kg	is	moving	at	2.0	m	s−1.	It	collides	with	a	stationary	trolley	of	mass	2.0	kg.	This
second	trolley	moves	off	at	1.2	m	s−1.

Draw	‘before’	and	‘after’	diagrams	to	show	the	situation.
Use	the	principle	of	conservation	of	momentum	to	calculate	the	speed	of	the	first	trolley	after	the
collision.	In	what	direction	does	it	move?

	
	



6.4	Explosions	and	crash-landings
There	are	situations	where	it	may	appear	that	momentum	is	being	created	out	of	nothing,	or	that	it	is
disappearing	without	trace.	Do	these	contradict	the	principle	of	conservation	of	momentum?
The	rockets	shown	in	Figure	6.12	rise	high	into	the	sky.	As	they	start	to	fall,	they	send	out	showers	of
chemical	packages,	each	of	which	explodes	to	produce	a	brilliant	sphere	of	burning	chemicals.	Material
flies	out	in	all	directions	to	create	a	spectacular	effect.
Does	an	explosion	create	momentum	out	of	nothing?	The	important	point	to	note	here	is	that	the	burning
material	spreads	out	equally	in	all	directions.	Each	tiny	spark	has	momentum,	but	for	every	spark,	there
is	another	moving	in	the	opposite	direction,	i.e.,	with	opposite	momentum.	Since	momentum	is	a	vector
quantity,	the	total	amount	of	momentum	created	is	zero.

Figure	6.12:	These	exploding	rockets	produce	a	spectacular	display	of	bright	sparks	in	the	night	sky.

At	the	same	time,	kinetic	energy	is	created	in	an	explosion.	Burning	material	flies	outwards;	its	kinetic
energy	has	come	from	the	chemical	potential	energy	stored	in	the	chemical	materials	before	they	burn.

More	fireworks
Roman	candles	are	a	type	of	firework	that	fire	a	jet	of	burning	material	into	the	sky.	This	is	another	type
of	explosion,	but	it	doesn’t	send	material	in	all	directions.	The	firework	tube	directs	the	material	upwards.
Has	momentum	been	created	out	of	nothing	here?
Again,	the	answer	is	no.	The	chemicals	have	momentum	upwards,	but	at	the	same	time,	the	roman	candle
pushes	downwards	on	the	Earth.	An	equal	amount	of	downwards	momentum	is	given	to	the	Earth.	Of
course,	the	Earth	is	massive,	and	we	don’t	notice	the	tiny	change	in	its	velocity	that	results.

Down	to	Earth
If	you	push	a	large	rock	over	a	cliff,	its	speed	increases	as	it	falls.	Where	does	its	momentum	come	from?
And	when	it	lands,	where	does	its	momentum	disappear	to?
The	rock	falls	because	of	the	pull	of	the	Earth’s	gravity	on	it.	This	force	is	its	weight	and	it	makes	the	rock
accelerate	towards	the	Earth.	Its	weight	does	work	and	the	rock	gains	kinetic	energy.	It	gains	momentum
downwards.	Something	must	be	gaining	an	equal	amount	of	momentum	in	the	opposite	(upward)
direction.	It	is	the	Earth,	which	starts	to	move	upwards	as	the	rock	falls	downwards.	The	mass	of	the
Earth	is	so	great	that	its	change	in	velocity	–	far	too	small	to	be	noticeable.
When	the	rock	hits	the	ground,	its	momentum	becomes	zero.	At	the	same	instant,	the	Earth	also	stops
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moving	upwards.	The	rock’s	momentum	cancels	out	the	Earth’s	momentum.	At	all	times	during	the	rock’s
fall	and	crash-landing,	momentum	has	been	conserved.

If	a	rock	of	mass	60	kg	is	falling	towards	the	Earth	at	a	speed	of	20	m	s−1,	how	fast	is	the	Earth	moving
towards	it?	Figure	6.13	shows	the	situation.	The	mass	of	the	Earth	is	6.0	×	1024	kg.	We	have:

total	momentum	of	Earth	and	rock	=	0

Therefore:

(60	×	20)	+	(6.0	×	1024	×	v)	=	0

v	=	−2.0	×	10−22	m	s−1

The	minus	sign	shows	that	the	Earth’s	velocity	is	in	the	opposite	direction	to	that	of	the	rock.	The	Earth
moves	very	slowly	indeed.	In	the	time	of	the	rock’s	fall,	it	will	move	much	less	than	the	diameter	of	the
nucleus	of	an	atom!

Figure	6.13:	The	rock	and	Earth	gain	momentum	in	opposite	directions.

Questions
Discuss	whether	momentum	is	conserved	in	each	of	the	following	situations.

A	star	explodes	in	all	directions	–	a	supernova.
You	jump	up	from	a	trampoline.	As	you	go	up,	your	speed	decreases;	as	you	come	down	again,
your	speed	increases.

A	ball	of	mass	0.40	kg	is	thrown	at	a	wall.	It	strikes	the	wall	with	a	speed	of	1.5	m	s−1	perpendicular
to	the	wall	and	bounces	off	the	wall	with	a	speed	of	1.2	m	s−1.	Explain	the	changes	in	momentum	and
energy	that	happen	in	the	collision	between	the	ball	and	the	wall.	Give	numerical	values	where
possible.
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6.5	Collisions	in	two	dimensions
It	is	rare	that	collisions	happen	in	a	straight	line–in	one	dimension.	Figure	6.14	shows	a	two-dimensional
collision	between	two	snooker	balls.	From	the	multiple	images,	we	can	see	how	the	velocities	of	the	two
balls	change:

At	first,	the	white	ball	is	moving	straight	forwards.	When	it	hits	the	red	ball,	it	moves	off	to	the	right.
Its	speed	decreases;	we	can	see	this	because	the	images	get	closer	together.
The	red	ball	moves	off	to	the	left.	It	moves	off	at	a	bigger	angle	than	the	white	ball,	but	more	slowly	–
the	images	are	even	closer	together.

How	can	we	understand	what	happens	in	this	collision,	using	the	ideas	of	momentum	and	kinetic	energy?
At	first,	only	the	white	ball	has	momentum,	and	this	is	in	the	forward	direction.	During	the	collision,	this
momentum	is	shared	between	the	two	balls.	We	can	see	this	because	each	has	a	component	of	velocity	in
the	forward	direction.

Figure	6.14:	 The	white	 ball	 strikes	 the	 red	 ball	 a	 glancing	 blow.	 The	 two	balls	move	 off	 in	 different
directions.

At	the	same	time,	each	ball	gains	momentum	in	the	sideways	direction,	because	each	has	a	sideways
component	of	velocity	–	the	white	ball	to	the	right,	and	the	red	ball	to	the	left.	These	must	be	equal	in
magnitude	and	opposite	in	direction,	otherwise	we	would	conclude	that	momentum	had	been	created	out
of	nothing.	The	red	ball	moves	at	a	greater	angle,	but	its	velocity	is	less	than	that	of	the	white	ball,	so	that
the	component	of	its	velocity	at	right	angles	to	the	original	track	is	the	same	as	the	white	ball’s.
Figure	6.15a	shows	the	momentum	of	each	ball	before	and	after	the	collision.	We	can	draw	a	vector
triangle	to	represent	the	changes	of	momentum	in	this	collision	(Figure	6.15b).	The	two	momentum
vectors	after	the	collision	add	up	to	equal	the	momentum	of	the	white	ball	before	the	collision.	The
vectors	form	a	closed	triangle	because	momentum	is	conserved	in	this	two-dimensional	collision.

Figure	6.15:	a	These	vectors	represent	the	momenta	of	the	colliding	balls	shown	in	Figure	6.14.	b	The
closed	vector	triangle	shows	that	momentum	is	conserved	in	the	collision.
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Components	of	momentum
Momentum	is	a	vector	quantity	and	so	we	can	split	it	into	components	in	order	to	solve	problems.
Worked	example	3	shows	how	to	find	an	unknown	velocity.
Worked	example	4	shows	how	to	demonstrate	that	momentum	has	been	conserved	in	a	two-dimensional
collision.

WORKED	EXAMPLES

A	white	ball	of	mass	m	=	1.0	kg	and	moving	with	initial	speed	u	=	0.5	m	s−1	collides	with	a
stationary	red	ball	of	the	same	mass.	They	move	off	so	that	each	has	the	same	speed	and	the	angle
between	their	paths	is	90°.	What	is	their	speed?

Draw	a	diagram	to	show	the	velocity	vectors	of	the	two	balls,	before	and	after	the	collision
(Figure	6.16).	We	will	show	the	white	ball	initially	travelling	along	the	y-direction.

Figure	6.16:	Velocity	vectors	for	the	white	and	red	balls.

Because	we	know	that	the	two	balls	have	the	same	final	speed	v,	their	paths	must	be
symmetrical	about	the	y-direction.	Since	their	paths	are	at	90°	to	one	other,	each	must	be	at
45°	to	the	y-direction.
We	know	that	momentum	is	conserved	in	the	y-direction.	Hence	we	can	say:
initial	momentum	of	white	ball	in	y-direction
=	final	component	of	momentum	of	white	ball	in	y-direction
+	final	component	of	momentum	of	red	ball	in	y-direction
This	is	easier	to	understand	using	symbols:

mu	=	mvy	+	mvy

where	vy	is	the	component	of	v	in	the	y-direction.	The	right-hand	side	of	this	equation	has
two	identical	terms,	one	for	the	white	ball	and	one	for	the	red.	We	can	simplify	the	equation
to	give:

mu	=	2mvy

The	component	of	v	in	the	y-direction	is	v	cos	45°.	Substituting	this,	and	including	values	of
m	and	u,	gives

0.5	=	2v	cos	45°

and	hence

So	each	ball	moves	off	at	0.354	m	s−1	at	an	angle	of	45°	to	the	initial	direction	of	the	white
ball.

Figure	6.17	shows	the	momentum	vectors	for	particles	1	and	2,	before	and	after	a	collision.	Show
that	momentum	is	conserved	in	this	collision.
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Figure	6.17:	Momentum	vectors:	particle	1	has	come	from	the	left	and	collided	with	particle	2.

Consider	momentum	changes	in	the	y-direction.
Before	collision:

momentum	=	0

(because	particle	1	is	moving	in	the	x-direction	and	particle	2	is	stationary).
After	collision:
component	of	momentum	of	particle	1

=	3.0	cos	36.9°	≈	2.40	kg	m	s−1	upwards
component	of	momentum	of	particle	2

=	4.0	cos	53.1°	≈	2.40	kg	m	s−1	downwards
These	components	are	equal	and	opposite,	and	hence	their	sum	is	zero.	Hence,	momentum
is	conserved	in	the	y-direction.
Consider	momentum	changes	in	the	x-direction.
Before	collision:
momentum	=	5.0	kg	m	s−1	to	the	right
After	collision:
component	of	momentum	of	particle	1

=	3.0	cos	53.1°	≈	1.80	kg	m	s−1	to	the	right
component	of	momentum	of	particle	2

=	4.0	cos	36.9°	≈	3.20	kg	m	s−1	to	the	right

total	momentum	to	the	right	=	5.0	kg	m	s−1

Hence,	momentum	is	conserved	in	the	x-direction.
An	alternative	approach	would	be	to	draw	a	vector	triangle	similar	to	Figure	6.15b.	In	this
case,	the	numbers	have	been	chosen	to	make	this	easy;	the	vectors	form	a	3–4–5	right-
angled	triangle.
Because	the	vectors	form	a	closed	triangle,	we	can	conclude	that:
momentum	before	collision	=	momentum	after	collision
(in	other	words,	momentum	is	conserved)

Questions
A	snooker	ball	strikes	a	stationary	ball.	The	second	ball	moves	off	sideways	at	60°	to	the	initial	path	of
the	first	ball.
Use	the	idea	of	conservation	of	momentum	to	explain	why	the	first	ball	cannot	travel	in	its	initial
direction	after	the	collision.	Illustrate	your	answer	with	a	diagram.
Look	back	to	Worked	example	4.	Draw	the	vector	triangle	that	shows	that	momentum	is	conserved	in
the	collision	described	in	the	question.	Show	the	value	of	each	angle	in	the	triangle.
Figure	6.18	shows	the	momentum	vectors	for	two	identical	particles,	1	and	2,	before	and	after	a
collision.	Particle	2	was	at	rest	before	the	collision.	Show	that	momentum	is	conserved	in	this
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collision.

Figure	6.18:	For	Question	11.

A	snooker	ball	collides	with	a	second	identical	ball	as	shown	in	Figure	6.19.
Determine	the	components	of	the	velocity	of	the	first	ball	in	the	x-	and	y-directions.
Hence,	determine	the	components	of	the	velocity	of	the	second	ball	in	the	x-	and	y-directions.
Hence,	determine	the	velocity	(magnitude	and	direction)	of	the	second	ball.

Figure	6.19:	For	Question	12.

	
	



6.6	Momentum	and	Newton’s	laws
The	main	concepts	in	physics	are	often	very	simple;	it	takes	only	a	few	words	to	express	them	and	they
can	be	applied	to	lots	of	situations.	However,	‘simple’	does	not	mean	‘easy’.	Some	concepts	are	quite
abstract	–	such	as	force,	energy	and	voltage.	Scientists	had	to	use	their	imagination	to	conceive	such
concepts.	Other	scientists	then	spent	years	working,	experimenting,	testing	and	refining	the	concepts
until	they	finally	reached	the	established	concepts	that	we	use	today.

Figure	6.20:	 The	 title	 page	 of	Newton’s	Principia,	 in	which	he	 outlined	his	 theories	 of	 the	 laws	 that
govern	the	motion	of	objects.

Isaac	Newton’s	work	on	motion	is	a	good	example.	Newton	published	his	ideas	in	a	book;	the	book’s	title
translates	as	Mathematical	Principles	of	Natural	Philosophy.
Newton	wanted	to	develop	an	understanding	of	the	idea	of	‘force’.	You	may	have	been	told	in	your	early
studies	of	science	that	‘a	force	is	a	push	or	a	pull’.	Newton’s	idea	was	that	forces	are	interactions
between	bodies	and	that	they	change	the	motion	of	the	body	that	they	act	on.	Forces	acting	on	an	object
can	produce	acceleration.	For	an	object	of	constant	mass,	this	acceleration	is	directly	proportional	to	the
resultant	force	acting	on	the	object.	That	is	much	more	like	a	scientific	definition	of	force.
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6.7	Understanding	motion
In	Chapter	3,	we	looked	at	Newton’s	laws	of	motion.	We	can	get	further	insight	into	these	laws	by
thinking	about	them	in	terms	of	momentum.

Newton’s	first	law	of	motion
In	everyday	speech,	we	sometimes	say	that	something	has	momentum	when	we	mean	that	it	keeps	on
moving	on	its	own.	An	oil	tanker	is	difficult	to	stop	at	sea,	because	of	its	momentum.	We	use	the	same
word	even	when	we’re	not	talking	about	an	object:	‘The	election	campaign	is	gaining	momentum’,	for
example.	This	idea	of	keeping	on	moving	is	just	what	we	discussed	in	connection	with	Newton’s	first	law
of	motion:
An	object	will	remain	at	rest	or	keep	travelling	at	constant	velocity	unless	it	is	acted	on	by	a	resultant
force.
An	object	travelling	at	constant	velocity	has	constant	momentum.	Hence,	the	first	law	is	really	saying	that
the	momentum	of	an	object	remains	the	same	unless	the	object	experiences	an	external	force.

Newton’s	second	law	of	motion
Newton’s	second	law	of	motion	links	the	idea	of	the	resultant	force	acting	on	an	object	and	its
momentum.	A	statement	of	Newton’s	second	law	is:
The	resultant	force	acting	on	an	object	is	directly	proportional	to	the	rate	of	change	of	the	linear
momentum	of	that	object.	The	resultant	force	and	the	change	in	momentum	are	in	the	same	direction.
Hence:

resultant	force	∝	rate	of	change	of	momentum

This	can	be	written	as:

where	F	is	the	resultant	force	and	Δp	is	the	change	in	momentum	taking	place	in	a	time	interval	of	Δt.
(Remember	that	the	Greek	letter	delta,	Δ,	is	a	shorthand	for	‘change	in’,	so	Δp	means	‘change	in
momentum’.)	The	changes	in	momentum	and	force	are	both	vector	quantities,	so	these	two	quantities
must	be	in	the	same	direction.
The	unit	of	force	(the	newton,	N)	is	defined	to	make	the	constant	of	proportionality	equal	to	one,	so	we
can	write	the	second	law	of	motion	mathematically	as:

Worked	example	5	shows	how	to	use	this	equation.	This	equation	also	shows	the	newton	second	(N	s)	can
be	used	as	a	unit	of	momentum.
If	the	forces	acting	on	an	object	are	balanced,	there	is	no	resultant	force	and	the	object’s	momentum	will
remain	constant.	If	a	resultant	force	acts	on	an	object,	its	momentum	(velocity	and/or	direction)	will
change.	The	equation	gives	us	another	way	of	stating	Newton’s	second	law	of	motion:
The	resultant	force	acting	on	an	object	is	equal	to	the	rate	of	change	of	its	momentum.	The	resultant
force	and	the	change	in	momentum	are	in	the	same	direction.
This	statement	effectively	defines	what	we	mean	by	a	force;	it	is	an	interaction	that	causes	an	object’s
momentum	to	change.	So,	if	an	object’s	momentum	is	changing,	there	must	be	a	force	acting	on	it.	We
can	find	the	size	and	direction	of	the	force	by	measuring	the	rate	of	change	of	the	object’s	momentum.

KEY	EQUATION
Resultant	force	∝	rate	of	change	of	momentum:

WORKED	EXAMPLE

Calculate	the	average	force	acting	on	a	900	kg	car	when	its	velocity	changes	from	5.0	m	s−1	to	30
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m	s−1	in	a	time	of	12	s.
Write	down	the	quantities	given:
m	=	900	kg

initial	velocity	u	=	5.0	m	s−1

Δt	=	12	s
Calculate	the	initial	momentum	and	the	final	momentum	of	the	car:
momentum	=	mass	×	velocity

Use	Newton’s	second	law	of	motion	to	calculate	the	average	force	on	the	car:

The	average	force	acting	on	the	car	is	about	1.9	kN.

A	special	case	of	Newton’s	second	law	of	motion
Imagine	an	object	of	constant	mass	m	acted	upon	by	a	resultant	force	F.	The	force	will	change	the
momentum	of	the	object.	According	to	Newton’s	second	law	of	motion,	we	have:

where	u	is	the	initial	velocity	of	the	object,	v	is	the	final	velocity	of	the	object	and	t	is	the	time	taken	for
the	change	in	velocity.	The	mass	m	of	the	object	is	a	constant;	hence	the	equation	can	be	rewritten	as:

The	term	in	brackets	on	the	right-hand	side	is	the	acceleration	a	of	the	object.	Therefore,	a	special	case	of
Newton’s	second	law	is:

F	=	ma

We	have	already	met	this	equation	in	Chapter	3.	In	Worked	example	5,	you	could	have	determined	the
average	force	acting	on	the	car	using	this	simplified	equation	for	Newton’s	second	law	of	motion.
Remember	that	the	equation	F	=	ma	is	a	special	case	of	 	that	only	applies	when	the	mass	of	the
object	is	constant.	There	are	situations	where	the	mass	of	an	object	changes	as	it	moves,	for	example,	a
rocket	that	burns	a	phenomenal	amount	of	chemical	fuel	as	it	accelerates	upwards.

Questions
A	car	of	mass	1000	kg	is	travelling	at	a	velocity	of	+10	m	s−1.	It	accelerates	for	15	s,	reaching	a
velocity	of	+24	m	s−1.	Calculate:

the	change	in	the	momentum	of	the	car	in	the	15	s	period
the	average	resultant	force	acting	on	the	car	as	it	accelerates.

A	ball	is	kicked	by	a	footballer.	The	average	force	on	the	ball	is	240	N	and	the	impact	lasts	for	a	time
interval	of	0.25	s.

Calculate	the	change	in	the	ball’s	momentum.
State	the	direction	of	the	change	in	momentum.

Water	pouring	from	a	broken	pipe	lands	on	a	flat	roof.	The	water	is	moving	at	5.0	m	s−1	when	it
strikes	the	roof.	The	water	hits	the	roof	at	a	rate	of	10	kg	s−1.	Calculate	the	force	of	the	water	hitting
the	roof.	(Assume	that	the	water	does	not	bounce	as	it	hits	the	roof.	If	it	did	bounce,	would	your
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answer	be	greater	or	smaller?)
A	golf	ball	has	a	mass	of	0.046	kg.	The	final	velocity	of	the	ball	after	being	struck	by	a	golf	club	is	50
m	s−1.	The	golf	club	is	in	contact	with	the	ball	for	a	time	of	1.3	ms.	Calculate	the	average	force
exerted	by	the	golf	club	on	the	ball.

Newton’s	third	law	of	motion
Newton’s	third	law	of	motion	is	about	interacting	objects.	These	could	be	two	magnets	attracting	or
repelling	each	other,	two	electrons	repelling	each	other,	etc.	Newton’s	third	law	states:
When	two	bodies	interact,	the	forces	they	exert	on	each	other	are	equal	and	opposite.
How	can	we	relate	this	to	the	idea	of	momentum?	Imagine	holding	two	magnets,	one	in	each	hand.	You
gradually	bring	them	towards	each	other	(Figure	6.21)	so	that	they	start	to	attract	each	other.	Each	feels
a	force	pulling	it	towards	the	other.	The	two	forces	are	the	same	size,	even	if	one	magnet	is	stronger	than
the	other.	One	magnet	could	even	be	replaced	by	an	unmagnetised	piece	of	steel	and	they	would	still
attract	each	other	equally.
If	you	release	the	magnets,	they	will	gain	momentum	as	they	are	pulled	towards	each	other.	One	gains
momentum	to	the	left	while	the	other	gains	equal	momentum	to	the	right.
Each	is	acted	on	by	the	same	force,	and	for	the	same	time.	So,	momentum	is	conserved.	In	fact,	the	law	of
conservation	of	momentum	can	be	proved	using	Newton’s	second	and	third	laws	of	motion.	Consider	an
object	of	mass	mx	and	velocity	vx	colliding	with	a	mass	my	and	velocity	vy.	If	the	system	is	closed,	then	the
force	Fx	and	the	force	Fy	on	the	twomasses	are	equal	and	opposite.

So,	 	and	there	has	been	no	change	in	the	total	momentum.

Figure	6.21:	Newton’s	third	law	states	that	the	forces	these	two	magnets	exert	one	each	other	must	be
equal	and	opposite.

REFLECTION
What	did	you	learn	about	yourself	as	you	worked	through	this	chapter?
Which	principle	do	you	think	is	the	most	important,	conservation	of	momentum	or	conservation	of
energy?

	
	



SUMMARY

Linear	momentum	is	the	product	of	mass	and	velocity:	p	=	mv

The	principle	of	conservation	of	momentum:	For	a	closed	system,	the	total	momentum	before	an
interaction	(e.g.,	collision)	is	equal	to	the	total	momentum	after	the	interaction.

In	all	interactions	or	collisions,	momentum	and	total	energy	are	conserved.

Kinetic	energy	is	conserved	in	a	perfectly	elastic	collision;	relative	speed	is	unchanged	in	a	perfectly
elastic	collision.

In	an	inelastic	collision,	kinetic	energy	is	not	conserved.	It	is	transferred	into	other	forms	of	energy
(such	as	heat	or	sound).	Most	collisions	are	inelastic.

Newton’s	first	law	of	motion:	An	object	will	remain	at	rest	or	keep	travelling	at	constant	velocity
unless	it	is	acted	on	by	a	resultant	force.

Newton’s	second	law	of	motion:	The	resultant	force	acting	on	a	body	is	equal	to	the	rate	of	change	of
its	momentum:

resultant	force	=	rate	of	change	of	momentum	or	 	when	mass	m	remains	constant.

Newton’s	third	law	of	motion:	When	two	bodies	interact,	the	forces	they	exert	on	each	other	are	equal
and	opposite.
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EXAM-STYLE	QUESTIONS

Which	quantity	has	the	same	unit	as	the	rate	of	change	of	momentum? [1]

acceleration 	

energy 	

weight 	

work 	

A	railway	truck	of	mass	8000	kg	travels	along	a	level	track	at	a	velocity	of	2.5
m	s–1	and	collides	with	a	stationary	truck	of	mass	12	000	kg.	The	collision
takes	4.0	s	and	the	two	trucks	move	together	at	the	same	velocity	after	the
collision. 	

What	is	the	average	force	that	acts	on	the	8000	kg	truck	during	the	collision? [1]

2000	N 	

3000	N 	

5000	N 	

12	000	N 	

An	object	has	mass	2.0	±	0.2	kg	and	a	velocity	of	10	±	1	m	s−1. 	

What	is	the	percentage	uncertainty	in	the	momentum	of	the	object? [1]

1% 	

6% 	

10% 	

20% 	

An	object	is	dropped	and	its	momentum	increases	as	it	falls	toward	the	ground.
Explain	how	the	law	of	conservation	of	momentum	and	Newton’s	third	law	of
motion	can	be	applied	to	this	situation. [2]

A	ball	of	mass	2.0	kg,	moving	at	3.0	m	s−1,	strikes	a	wall	and	rebounds	with
almost	exactly	the	same	speed.	State	and	explain	whether	there	is	a	change	in: 	

the	momentum	of	the	ball [3]

the	kinetic	energy	of	the	ball. [1]

	 [Total:	4]

Define	linear	momentum. [1]

Determine	the	base	units	of	linear	momentum	in	the	SI	system. [1]

A	car	of	mass	900	kg	starting	from	rest	has	a	constant	acceleration	of	3.5
m	s−2.	Calculate	its	momentum	after	it	has	travelled	a	distance	of	40	m. [2]

This	diagram	shows	two	identical	objects	about	to	make	a	head-on
collision.	The	objects	stick	together	during	the	collision.	Determine	the
final	speed	of	the	objects.	State	the	direction	in	which	they	move. [3]

Figure	6.22

	

	 [Total:	7]

Explain	what	is	meant	by	an: 	
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elastic	collision [1]

inelastic	collision. [1]

A	snooker	ball	of	mass	0.35	kg	hits	the	side	of	a	snooker	table	at	right
angles	and	bounces	off	also	at	right	angles.	Its	speed	before	collision	is	2.8
m	s−1	and	its	speed	after	is	2.5	m	s−1.	Calculate	the	change	in	the
momentum	of	the	ball. [2]

Explain	whether	or	not	momentum	is	conserved	in	the	situation	described
in	part	b. [1]

	 [Total:	5]

A	car	of	mass	1100	kg	is	travelling	at	24	m	s−1.	The	driver	applies	the	brakes
and	the	car	decelerates	uniformly	and	comes	to	rest	in	20	s. 	

Calculate	the	change	in	momentum	of	the	car. [2]

Calculate	the	braking	force	on	the	car. [2]

Determine	the	braking	distance	of	the	car. [2]

	 [Total:	6]

A	marble	of	mass	100	g	is	moving	at	a	speed	of	0.40	m	s−1	in	the	x-direction. 	

Calculate	the	marble’s	momentum. [2]

The	marble	strikes	a	second,	identical	marble.	Each	moves	off	at	an	angle
of	45°	to	the	x-direction. 	

Use	the	principle	of	conservation	of	momentum	to	determine	the	speed	of
each	marble	after	the	collision. [3]

Show	that	kinetic	energy	is	conserved	in	this	collision. [2]

	 [Total:	7]

A	cricket	bat	strikes	a	ball	of	mass	0.16	kg	travelling	towards	it.	The	ball
initially	hits	the	bat	at	a	speed	of	25	m	s−1	and	returns	along	the	same	path
with	the	same	speed.	The	time	of	impact	is	0.0030	s.	You	may	assume	no	force
is	exerted	on	the	bat	by	the	cricketer	during	the	actual	collision. 	

Determine	the	change	in	momentum	of	the	cricket	ball. [2]

Determine	the	force	exerted	by	the	bat	on	the	ball. [2]

Describe	how	the	laws	of	conservation	of	energy	and	momentum	apply	to
this	impact	and	state	whether	the	impact	is	elastic	or	inelastic. [4]

	 [Total:	8]

State	the	principle	of	conservation	of	momentum	and	state	the	condition
under	which	it	is	valid. [2]

An	arrow	of	mass	0.25	kg	is	fired	horizontally	towards	an	apple	of	mass
0.10	kg	that	is	hanging	on	a	string,	as	shown	in	Figure	6.23. 	

Figure	6.23

	

The	horizontal	velocity	of	the	arrow	as	it	enters	the	apple	is	30	m	s−1.	The
apple	was	initially	at	rest	and	the	arrow	sticks	in	the	apple. 	

Calculate	the	horizontal	velocity	of	the	apple	and	arrow	immediately
after	the	impact. [2]

Calculate	the	change	in	momentum	of	the	arrow	during	the	impact. [2]

Calculate	the	change	in	total	kinetic	energy	of	the	arrow	and	apple
[2]
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a

during	the	impact.
A	rubber-tipped	arrow	of	mass	0.25	kg	is	fired	at	the	centre	of	a
stationary	ball	of	mass	0.25	kg.	The	collision	is	perfectly	elastic.
Describe	what	happens	and	state	the	relative	speed	of	separation	of
the	arrow	and	the	ball. [2]

	 [Total:	10]

State	what	is	meant	by: 	

a	perfectly	elastic	collision [1]

a	completely	inelastic	collision. [1]

A	stationary	uranium	nucleus	disintegrates,	emitting	an	alpha-particle	of
mass	6.65	×	10−27	kg	and	another	nucleus	X	of	mass	3.89	×	10−25	kg. 	

Figure	6.24
	

Explain	why	the	alpha-particle	and	nucleus	X	must	be	emitted	in
exactly	opposite	directions. [2]

Using	the	symbols	vα	and	vx	for	velocities,	write	an	equation	for	the
conservation	of	momentum	in	this	disintegration. [1]

Using	your	answer	to	part	b	ii,	calculate	the	ratio	vα	:	vx	after	the
disintegration. [1]

	 [Total:	6]

State	two	quantities	that	are	conserved	in	an	elastic	collision. [1]

A	machine	gun	fires	bullets	of	mass	0.014	kg	at	a	speed	of	640	m	s−1. 	

Calculate	the	momentum	of	each	bullet	as	it	leaves	the	gun. [1]

Explain	why	a	soldier	holding	the	machine	gun	experiences	a	force
when	the	gun	is	firing. [2]

The	maximum	steady	horizontal	force	that	a	soldier	can	exert	on	the
gun	is	140	N.	Calculate	the	maximum	number	of	bullets	that	the	gun
can	fire	in	one	second. [2]

	 [Total:	6]

Two	railway	trucks	are	travelling	in	the	same	direction	and	collide.	The	mass	of
truck	X	is	2.0	×	104	kg	and	the	mass	of	truck	Y	is	3.0	×	104	kg.	This	graph
shows	how	the	velocity	of	each	truck	varies	with	time. 	

Figure	6.25
	

Copy	and	complete	the	table. [6]
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c

	 Change	in
momentum	/	kg
m	s−1

Initial	kinetic
energy	/	J

Final	kinetic
energy	/	J

truck	X 	 	 	

truck	Y 	 	 	

Table	6.1:	For	Question	14. 	

State	and	explain	whether	the	collision	of	the	two	trucks	is	an	example	of
an	elastic	collision. [2]

Determine	the	force	that	acts	on	each	truck	during	the	collision. [2]

	 [Total:	10]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	and	use	linear	momentum 6.2 	 	 	

state	and	apply	the	principle	of
conservation	of	momentum	to	collisions
in	one	and	two	dimensions

6.3,	6.5 	 	 	

relate	force	to	the	rate	of	change	of
momentum

6.2 	 	 	

state	all	three	of	Newton’s	laws	of
motion

6.7 	 	 	

recall	that,	for	a	perfectly	elastic
collision,	the	relative	speed	of	approach
is	equal	to	the	relative	speed	of
separation

6.3 	 	 	

discuss	energy	changes	in	perfectly
elastic	and	inelastic	collisions.

6.3 	 	 	
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	Chapter	7

Matter	and	materials

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	and	use	density
define	and	use	pressure	and	calculate	the	pressure	in	a	fluid
derive	and	use	the	equation	
use	a	difference	in	hydrostatic	pressure	to	explain	and	calculate	upthrust
explain	how	tensile	and	compressive	forces	cause	deformation
describe	the	behaviour	of	springs	and	use	Hooke’s	law
distinguish	between	elastic	and	plastic	deformation,	limit	of	proportionality	and	the	elastic	limit
define	and	use	stress,	strain	and	the	Young	modulus
describe	an	experiment	to	measure	the	Young	modulus
calculate	the	energy	stored	in	a	deformed	material.

BEFORE	YOU	START
Write	down	some	notes	to	answer	these	questions:	What	are	physical	properties	of	materials?	What
properties	make	some	materials	really	useful?
Have	you	ever	stretched	a	spring,	rubber	band	or	a	small	strip	of	plastic?	Try	to	describe	what	you
notice	when	these	materials	are	stretched.

SPRINGY	STUFF
In	everyday	life,	we	make	great	use	of	elastic	materials.	The	term	‘elastic’	means	springy;	that	is,	the
material	deforms	when	a	force	is	applied	and	returns	to	its	original	shape	when	the	force	is	removed.
Rubber	is	an	elastic	material.	This	is	obviously	important	for	a	bungee	jumper	(Figure	7.1).	The	bungee



rope	must	have	the	correct	degree	of	elasticity.	The	jumper	must	be	brought	gently	to	a	halt.	What
happens	if	the	rope	is	too	stiff	or	too	springy?	Discuss	these	problems	with	others	–	particularly	if	you
have	had	experience	of	a	bungee	jump.
In	this	chapter,	we	will	look	at	how	forces	can	change	the	shape	of	an	object.	Before	that,	we	will	look
at	two	important	quantities,	density	and	pressure.

Figure	7.1:	The	stiffness	and	elasticity	of	rubber	are	crucial	factors	in	bungee	jumping.
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7.1	Density
Density	is	a	property	of	matter.	It	tells	us	about	how	concentrated	the	matter	is	in	a	particular	material.
Density	is	a	constant	for	a	given	material	under	specific	conditions.
Density	is	defined	as	the	mass	per	unit	volume	of	a	substance:

The	symbol	used	here	for	density,	ρ,	is	the	Greek	letter	rho.

The	standard	unit	for	density	in	the	SI	system	is	kg	m−3,	but	you	may	also	find	values	quoted	in	g	cm−3.	It
is	useful	to	remember	that	these	units	are	related	by:

1000	kg	m−3	=	1	g	cm−3

and	that	the	density	of	water	is	approximately	1000	kg	m−3.

KEY	EQUATION

Questions
A	cube	of	copper	has	a	mass	of	240	g.	Each	side	of	the	cube	is	3.0	cm	long.	Calculate	the	density	of
copper	in	g	cm−3	and	in	kg	m−3.
The	density	of	steel	is	7850	kg	m−3.	Calculate	the	mass	of	a	steel	sphere	of	radius	0.15	m.	(First,
calculate	the	volume	of	the	sphere	using	the	formula	 	and	then	use	the	density	equation.)
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7.2	Pressure
A	fluid	(liquid	or	gas)	exerts	pressure	on	the	walls	of	its	container,	or	on	any	surface	with	which	it	is	in
contact.	Solids	can	also	exert	pressure	on	a	surface	with	which	it	is	in	contact.
The	pressure	in	a	gas	or	liquid	produces	a	force	perpendicular	to	any	surface.
The	force	the	fluid	pressure	produces	on	the	walls	of	a	container	can	be	in	any	direction,	because	the
walls	of	the	container	may	be	horizontal,	vertical	or	at	any	angle.	A	big	force	on	a	small	area	produces	a
high	pressure.
Pressure	is	defined	as	the	normal	force	acting	per	unit	cross-sectional	area.
We	can	write	this	as	a	word	equation:

The	word	‘normal’	in	this	context	means	at	right	angles	to	the	surface.

KEY	EQUATION

Force	is	measured	in	newtons	and	area	is	measured	in	square	metres.	The	units	of	pressure	are	thus
newtons	per	square	metre	(N	m−2),	which	are	given	the	special	name	of	pascals	(Pa).

1	Pa	=	1	N	m−2

Questions
A	chair	stands	on	four	feet,	each	of	area	10	cm2.	The	chair	weighs	80	N.	Calculate	the	pressure	it
exerts	on	the	floor.
Estimate	the	pressure	you	exert	on	the	floor	when	you	stand	on	both	feet.	(You	could	draw	a	rough
rectangle	around	both	your	feet	placed	together	to	find	the	area	in	contact	with	the	floor.	You	will	also
need	to	calculate	your	weight	from	your	mass.)

Pressure	in	a	fluid
The	pressure	in	a	fluid	(a	liquid	or	gas)	increases	with	depth.	Divers	know	this	–	the	further	they	dive
down,	the	greater	the	water	pressure	acting	on	them.	The	pressure	acts	at	right	angles	to	every	part	of
their	body	and	acts	to	crush	them.	Pilots	know	this	–	the	higher	they	fly,	the	lower	is	the	pressure	of	the
atmosphere.	The	atmospheric	pressure	we	experience	on	the	surface	of	the	Earth	is	due	to	the	weight	of
the	atmosphere	above	us,	pressing	downwards	on	the	surface	of	the	Earth	or	at	right	angles	to	every
surface	of	our	bodies.
The	pressure	in	a	fluid	depends	on	three	factors:

the	depth	h	below	the	surface
the	density	ρ	of	the	fluid
the	acceleration	due	to	gravity,	g.

In	fact,	change	in	pressure	p	is	proportional	to	each	of	these	and	we	have:

KEY	EQUATION

You	must	learn	how	to	derive	this	equation.
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Step	1

Step	2

We	can	derive	this	relationship	using	Figure	7.2.

Figure	7.2:	The	weight	of	water	in	a	tank	exerts	pressure	on	its	base.

The	force	acting	on	the	shaded	area	A	on	the	bottom	of	the	tank	is	caused	by	the	weight	of	water	above	it,
pressing	downwards.	We	can	calculate	this	force	and	hence	the	pressure	as	follows:

The	equation	is	written	as	Δp	=	ρgh	because	this	formula	calculates	the	difference	in	pressure	between
the	top	and	bottom	of	the	water	in	the	tank.	There	is,	of	course,	atmospheric	pressure	acting	on	the	water
at	the	top	of	the	tank.	The	total	pressure	at	the	bottom	of	the	tank	is	atmospheric	pressure	+	Δp.

WORKED	EXAMPLE

Figure	7.3	shows	a	manometer	used	to	measure	the	pressure	of	a	gas	supply.	Calculate	the
pressure	difference	between	the	gas	inside	the	pipe	and	atmospheric	pressure.

Determine	the	difference	in	height	h	of	the	water	on	the	two	sides	of	the	manometer.

h	=	60	−	30	=	30	cm

Because	the	level	of	water	on	the	side	of	the	tube	next	to	the	gas	pipe	is	lower	than	on	the
side	open	to	the	atmosphere,	the	pressure	in	the	gas	pipe	is	above	atmospheric	pressure.
pressure	difference	=	ρ	×	g	×	h
=	1000	×	9.81	×	0.30	=	2940	Pa

Figure	7.3:	For	Worked	example	1.
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Questions
Calculate	the	pressure	due	to	the	water	on	the	bottom	of	a	swimming	pool	if	the	depth	of	water	in	the
pool	varies	between	0.8	m	and	2.4	m.	(Density	of	water	=	1000	kg	m−3.)	If	atmospheric	pressure	is
1.01	×	105	Pa,	calculate	the	maximum	total	pressure	at	the	bottom	of	the	swimming	pool.
Estimate	the	height	of	the	atmosphere	if	atmospheric	density	at	the	Earth’s	surface	is	1.29	kg	m−3.
(Atmospheric	pressure	=	101	kPa.)
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7.3	Archimedes’	principle
The	variation	of	pressure	with	depth	can	be	used	to	explain	Archimedes’	principle.
Archimedes’	principle	states	that	the	upthrust	acting	on	a	body	is	equal	to	the	weight	of	the	liquid	or	gas
that	it	displaces.

KEY	EQUATION

When	the	object	is	placed	in	a	liquid,	it	displaces	some	of	the	liquid.	In	other	words,	it	takes	up	some	of
the	space	of	the	liquid.	The	volume	of	the	liquid	displaced	is	equal	to	the	volume	of	the	liquid	taken	up	by
the	object.	If	the	object	floats,	the	volume	displaced	is	equal	to	the	volume	of	the	part	of	the	object	that	is
under	the	surface	of	the	liquid.
Consider	a	rectangular	shaped	object	immersed	in	a	liquid	(Figure	7.4).	There	is	a	larger	pressure	on	the
bottom	surface	than	there	is	on	the	top	surface	because	the	bottom	surface	is	deeper	in	the	liquid.

Figure	7.4:	To	explain	Archimedes’	principle.

The	pressure	on	the	top	surface	produces	a	force	downwards	on	the	top.	It	may	seem	surprising,	but	the
pressure	on	the	bottom	surface	actually	produces	a	force	upwards	on	the	object.	This	is	because	pressure
can	act	in	any	direction	and	always	acts	at	right	angles	to	a	surface	in	a	liquid.	You	may	also	be	surprised
to	know	that	pressure	is	a	scalar	quantity	even	though	it	is	defined	in	terms	of	force	(which	is	a	vector).
Since	pressure	acts	in	all	directions	at	a	point	it	is	not	possible	to	define	a	single	direction	for	it!
Because	the	pressure	is	larger	on	the	bottom	surface,	the	force	acting	upwards	on	the	bottom	surface	is
larger	than	the	force	acting	downwards	on	the	top	surface.	This	is	the	cause	of	the	upthrust,	which	you
experience	when	you	swim.	Because	your	density	is	less	than	that	of	water,	when	you	are	underwater,	the
weight	of	water	you	displace	is	greater	than	your	own	weight.	The	upthrust	is,	therefore,	greater	than
your	own	weight	and	there	is	a	resultant	force	upwards	to	bring	you	to	the	surface.
To	calculate	this	upthrust:
The	force	due	to	water	on	the	top	surface	F1	=	ρ	×	g	×	h1	×	A

Similarly,	the	force	due	to	the	water	on	the	bottom	surface	is	F2	=	ρ	×	g	×	h2	×	A

where	the	volume	of	the	object	V	=	h	×	A
	= the	weight	of	the	liquid	displaced

WORKED	EXAMPLES

A	cube	of	side	0.20	m	floats	in	water	with	0.15	m	below	the	surface	of	the	water.	The	density	of
water	is	1000	kg	m−3.	Calculate	the	pressure	due	to	the	water	that	acts	upwards	on	the	bottom
surface	of	the	cube	and	the	force	upwards	on	the	cube	caused	by	this	pressure.	(This	force	is	the
upthrust	on	the	cube.)
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Use	the	equation	for	pressure:

Calculate	the	area	of	the	base	of	the	cube,	and	use	this	area	in	the	equation	for	force.

area	of	base	of	cube	=	0.2	×	0.2	=	0.04	m2

A	metal	block	of	mass	0.60	kg	has	dimensions	0.050	m	×	0.040	m	×	0.030	m.
The	block	is	hung	from	a	newton-meter.	What	is	the	reading	on	the	newton-meter	when	the	block	is
fully	submerged	in	liquid	of	density	1200	kg	m−3?

Calculate	the	weight	of	the	block.	This	is	the	reading	on	the	meter	when	the	block	is	in	the
air,	before	it	is	placed	in	the	liquid.
weight	=	mg	=	0.60	×	9.81	=	5.886	=	5.9	N
Calculate	the	upthrust.

The	volume	of	liquid	displaced	=	0.05	×	0.04	×	0.03	=	6.0	×	10−5	m3

mass	of	liquid	displaced	=	density	×	volume	=	1200	×	6.0	×	10−5	=	7.2	×	10−2	kg

upthrust	=	weight	of	liquid	displaced	=	7.2	×	10−2	×	9.81	=	0.71	N
Calculate	the	final	reading
The	upthrust	must	be	subtracted	from	the	weight	of	the	object,	so	the	newton-meter	reads
5.89	−	0.71	=	5.2	N.

Questions
Why	is	it	difficult	to	hold	an	inflated	plastic	ball	underwater?
A	submarine	floats	at	rest	under	the	water.	To	rise	to	the	surface	compressed	air	is	used	to	push
water	out	of	its	‘ballast’	tanks	into	the	sea.	Why	does	this	cause	the	submarine	to	rise?

A	boat	has	a	uniform	cross-sectional	area	at	the	water	line	of	750	m2.	Fifteen	cars	of	average	mass
1200	kg	are	driven	on	board.	Calculate	the	extra	depth	that	the	boat	sinks	in	water	of	density	1000	kg
m−3.
Describe	how	to	use	a	newton-meter,	a	micrometer	screw	gauge,	a	metal	cube	of	side	approximately
1.0	cm	and	a	beaker	of	water	to	show	experimentally	that	Archimedes’	principle	is	correct.	The
density	of	water	is	known	to	be	1000	kg	m−3.
A	balloon	of	volume	3000	m−3	is	filled	with	hydrogen	of	density	0.090	kg	m−3.	The	mass	of	the	fabric
of	the	balloon	is	100	kg.	Calculate	the	greatest	mass	that	the	balloon	can	lift	in	air	of	density	1.2	kg	m
−3.

	
	



7.4	Compressive	and	tensile	forces
A	pair	of	forces	is	needed	to	change	the	shape	of	a	spring.	If	the	spring	is	being	squashed	and	shortened,
we	say	that	the	forces	are	compressive.	More	usually,	we	are	concerned	with	stretching	a	spring,	in
which	case	the	forces	are	described	as	tensile	(Figure	7.5).

Figure	7.5:	The	effects	of	compressive	and	tensile	forces.

When	a	wire	is	bent,	some	parts	become	longer	and	are	in	tension	while	other	parts	become	shorter	and
are	in	compression.	Figure	7.6	shows	that	the	line	AA	becomes	longer	when	the	wire	is	bent	and	the	line
BB	becomes	shorter.	The	thicker	the	wire,	the	greater	the	compression	and	tension	forces	along	its	edges.

Figure	 7.6:	 Bending	 a	 straight	 wire	 or	 beam	 results	 in	 tensile	 forces	 along	 the	 upper	 surface	 (the
outside	of	the	bend)	and	compressive	forces	on	the	inside	of	the	bend.

It	is	simple	to	investigate	how	the	length	of	a	helical	spring	is	affected	by	the	applied	force	or	load.	The
spring	hangs	freely	with	the	top	end	clamped	firmly	(Figure	7.7).	A	load	is	added	and	gradually	increased.
For	each	value	of	the	load,	the	extension	of	the	spring	is	measured.	Note	that	it	is	important	to	determine
the	increase	in	length	of	the	spring,	which	we	call	the	extension.
We	can	plot	a	graph	of	force	against	extension	to	find	the	stiffness	of	the	spring,	as	shown	in	Figure	7.8.

Figure	7.7:	Stretching	a	spring.
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Figure	7.8:	Force–extension	graph	for	a	spring.

Hooke’s	law
The	usual	way	of	plotting	the	results	would	be	to	have	the	force	along	the	horizontal	axis	and	the
extension	along	the	vertical	axis.	This	is	because	we	are	changing	the	force	(the	independent	variable)
and	this	results	in	a	change	in	the	extension	(the	dependent	variable).	The	graph	shown	in	Figure	7.7	has
extension	on	the	horizontal	axis	and	force	on	the	vertical	axis.	This	is	a	departure	from	the	convention
because	the	gradient	of	the	straight	section	of	this	graph	turns	out	to	be	an	important	quantity,	known	as
the	spring	constant.
For	a	typical	spring,	the	first	section	of	this	graph	OA	is	a	straight	line	passing	through	the	origin.	The
extension	x	is	directly	proportional	to	the	applied	force	(load)	F.	The	behaviour	of	the	spring	in	the	linear
region	OA	of	the	graph	can	be	expressed	by	the	following	equation:

where	k	is	the	spring	constant	(sometimes	called	the	stiffness	or	force	constant	of	the	spring).	The	spring
constant	is	the	force	per	unit	extension,	given	by:

KEY	EQUATION

The	SI	unit	for	the	force	constant	is	newtons	per	metre	or	N	m−1.	We	can	find	the	force	constant	k	from
the	gradient	of	section	OA	of	the	graph:

k	=	gradient

A	stiffer	spring	will	have	a	larger	value	for	the	force	constant	k.	Beyond	point	A,	the	graph	is	no	longer	a
straight	line;	its	gradient	changes	and	we	can	no	longer	use	the	equation	F	=	kx.
If	a	spring	or	anything	else	responds	to	a	pair	of	tensile	forces	in	the	way	shown	in	section	OA	of	Figure
7.7,	we	say	that	it	obeys	Hooke’s	law.	A	material	obeys	Hooke’s	law	if	the	extension	produced	in	it	is
proportional	to	the	applied	force	(load).
The	point	A	is	known	as	the	limit	of	proportionality.	This	is	the	point	beyond	which	the	extension	is	no
longer	proportional	to	the	force.
If	you	apply	a	small	force	to	a	spring	and	then	release	it,	it	will	return	to	its	original	length	(this	is	elastic
deformation.).	However,	if	you	apply	a	large	force,	the	spring	may	not	return	to	its	original	length;	the
spring	has	become	permanently	deformed	(this	is	plastic	deformation.).	The	force	beyond	which	the
spring	becomes	permanently	deformed	is	known	as	the	elastic	limit.
The	elastic	limit	is	not	necessarily	the	same	point	as	the	limit	of	proportionality,	although	they	are	likely
to	be	close	to	each	other.
This	use	of	the	word	‘elastic’	in	elastic	limit	is	slightly	different	from	the	idea	of	an	elastic	collision
covered	in	Chapter	6.	But	the	two	ideas	are	related.

Question
Figure	7.9	shows	the	force–extension	graph	for	a	wire	that	is	stretched	and	then	released.



a
b

•
•

12

Figure	7.9:	Force–extension	graph	for	a	wire.

Which	point	shows	the	limit	of	proportionality?
Which	point	shows	the	elastic	limit?

PRACTICAL	ACTIVITY	7.1

Investigating	springs
Springs	can	be	combined	in	different	ways	(Figure	7.10):	end-to-end	(in	series)	and	side-by-side	(in
parallel).	Using	identical	springs,	you	can	measure	the	force	constant	of	a	single	spring,	and	of	springs
in	series	and	in	parallel.	Before	you	do	this,	predict	the	outcome	of	such	an	experiment.	If	the	force
constant	of	a	single	spring	is	k,	what	will	be	the	equivalent	force	constant	of:

two	springs	in	series?
two	springs	in	parallel?

This	approach	can	be	applied	to	combinations	of	three	or	more	springs.

Figure	7.10:	Two	ways	to	combine	a	pair	of	springs:	a	in	series;	b	in	parallel.

Figure	7.11	shows	the	force–extension	graphs	for	four	springs,	A,	B,	C	and	D.
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Figure	7.11:	Force–extension	graphs	for	four	different	springs.

State	which	spring	has	the	greatest	value	of	force	constant.
State	which	is	the	least	stiff.
State	which	of	the	four	springs	does	not	obey	Hooke’s	law.

	
	



7.5	Stretching	materials
When	we	determine	the	force	constant	of	a	spring,	we	are	only	finding	out	about	the	stiffness	of	that
particular	spring.	However,	we	can	compare	the	stiffness	of	different	materials.	For	example,	steel	is
stiffer	than	copper,	but	copper	is	stiffer	than	lead.

Stress	and	strain
Figure	7.12	shows	a	simple	way	of	assessing	the	stiffness	of	a	wire	in	the	laboratory.	As	the	long	wire	is
stretched,	the	position	of	the	sticky	tape	pointer	can	be	read	from	the	scale	on	the	bench.
Why	do	we	use	a	long	wire?	Obviously,	this	is	because	a	short	wire	would	not	stretch	as	much	as	a	long
one.
We	need	to	take	account	of	this	in	our	calculations,	and	we	do	this	by	calculating	the	strain	produced	by
the	load.	The	strain	is	defined	as	the	increase	in	length	of	a	wire	(its	extension)	divided	by	its	the	original
length.
That	is:

where	ε	is	the	strain,	x	is	the	extension	of	the	wire	and	L	is	its	original	length.

Figure	7.12:	Stretching	a	wire	in	the	laboratory.	Wear	eye	protection	and	be	careful	not	to	overload	the
wire.

KEY	EQUATION

For	example,	if	a	wire	of	length	1.500	m	is	stretched	and	the	length	becomes	1.518	m,	the	extension	is
0.018	m	and	the	 .

Note	that	both	extension	and	original	length	must	be	in	the	same	units,	and	so	strain	is	a	ratio,	without
units.	Sometimes,	strain	is	given	as	a	percentage.	For	example,	a	strain	of	0.012	is	equivalent	to	1.2%.
Why	do	we	use	a	thin	wire?	This	is	because	a	thick	wire	would	not	stretch	as	much	for	the	same	force.
Again,	we	need	to	take	account	of	this	in	our	calculations,	and	we	do	this	by	calculating	the	stress
produced	by	the	load.
The	stress	is	defined	as	the	force	applied	per	unit	cross-sectional	area	of	the	wire.	That	is:

where	σ	is	the	stress,	F	is	the	applied	force	that	acts	normally	(at	right	angles)	on	a	wire	of	cross-sectional



area	A.

KEY	EQUATION

The	units	of	stress	are	newtons	per	square	metre	(N	m−2)	or	pascals	(Pa),	the	same	as	the	units	of
pressure:

1	Pa	=	1	N	m−2

The	Young	modulus
We	can	now	find	the	stiffness	of	the	material	we	are	stretching.	Rather	than	calculating	the	ratio	of	force
to	extension	as	we	would	for	a	spring	or	a	wire,	we	calculate	the	ratio	of	stress	to	strain.	This	ratio	is	a
constant	for	a	particular	material	and	does	not	depend	on	its	shape	or	size.	The	ratio	of	stress	to	strain	is
called	the	Young	modulus	of	the	material.	That	is:

where	E	is	the	Young	modulus	of	the	material,	σ	is	the	stress	and	ε	is	the	strain.

The	unit	of	the	Young	modulus	is	the	same	as	that	for	stress,	N	m−2	or	Pa.	In	practice,	values	may	be
quoted	in	MPa	or	GPa.	These	units	are	related	as:

1	MPa	=	106	Pa

1	GPa	=	109	Pa

Usually,	we	plot	a	graph	with	stress	on	the	vertical	axis	and	strain	on	the	horizontal	axis	(Figure	7.13).
It	is	drawn	like	this	so	that	the	gradient	is	the	Young	modulus	of	the	material.	It	is	important	to	consider
only	the	first,	linear	section	of	the	graph.	In	the	linear	section	stress	is	proportional	to	strain	and	the	wire
under	test	obeys	Hooke’s	law.
Table	7.1	gives	some	values	of	the	Young	modulus	for	different	materials.

Figure	7.13:	Stress–strain	graph,	and	how	to	deduce	the	Young	modulus.	Note	that	we	can	only	use	the
first,	straight-line	section	of	the	graph.

Material Young	modulus	/	GPa

aluminium 70

brass 90–110



13
14
15

16

17

18

19

brick 7–20

concrete 40

copper 130

glass 70–80

iron	(wrought) 200

lead 18

Perspex® 3

polystyrene 2.7–4.2

rubber 0.01

steel 210

tin 50

wood 10	approx.

Table	 7.1:	 The	 Young	 modulus	 of	 various	 materials.	 Many	 of	 these	 values	 depend	 on	 the	 precise
composition	of	the	material	concerned.	(Remember,	1	GPa	=	109	Pa.)

Questions
List	the	metals	in	Table	7.1	from	stiffest	to	least	stiff.
Which	of	the	non-metals	in	Table	7.1	is	the	stiffest?
Figure	7.14	shows	stress–strain	graphs	for	two	materials,	A	and	B.	Use	the	graphs	to	determine	the
Young	modulus	of	each	material.

Figure	7.14:	Stress–strain	graphs	for	two	different	materials.

A	piece	of	steel	wire,	200.0	cm	long	and	having	cross-sectional	area	of	0.50	mm2,	is	stretched	by	a
force	of	50	N.	Its	new	length	is	found	to	be	200.1	cm.	Calculate	the	stress	and	strain,	and	the	Young
modulus	of	steel.
Calculate	the	extension	of	a	copper	wire	of	length	1.00	m	and	diameter	1.00	mm	when	a	tensile	force
of	10	N	is	applied	to	the	end	of	the	wire.	(Young	modulus	of	copper	=	130	GPa.)
In	an	experiment	to	measure	the	Young	modulus	of	glass,	a	student	draws	out	a	glass	rod	to	form	a
fibre	0.800	m	in	length.	Using	a	travelling	microscope,	she	estimates	its	diameter	to	be	0.40	mm.
Unfortunately,	it	proves	impossible	to	obtain	a	series	of	readings	for	load	and	extension.	The	fibre
snaps	when	a	load	of	1.00	N	is	hung	on	the	end.	The	student	judges	that	the	fibre	extended	by	no
more	than	1	mm	before	it	snapped.
Use	these	values	to	obtain	an	estimate	for	the	Young	modulus	of	the	glass	used.	Explain	how	the
actual	or	accepted	value	for	the	Young	modulus	might	differ	from	this	estimate.
For	each	of	the	materials	whose	stress–strain	graphs	are	shown	in	Figure	7.15,	deduce	the	values	of



the	Young	modulus.

Figure	7.15:	Stress–strain	graphs	for	three	materials.

PRACTICAL	ACTIVITY	7.2

Determining	the	Young	modulus
You	must	be	able	to	describe	this	experiment	in	detail.	Learn	how	to	draw	the	diagram	in	Figure	7.11
and	how	to	measure	each	of	the	quantities	in:

Metals	are	not	very	elastic.	Normally,	they	can	only	be	stretched	by	about	0.1%	of	their	original	length.
Beyond	this,	they	become	permanently	or	plastically	deformed.	As	a	result,	some	careful	thought	must
be	given	to	getting	results	that	are	good	enough	to	give	an	accurate	value	of	the	Young	modulus.
First,	the	wire	used	must	be	long.	The	increase	in	length	is	proportional	to	the	original	length,	and	so	a
longer	wire	gives	larger	and	more	measurable	extensions.	Typically,	extensions	up	to	1	mm	must	be
measured	for	a	wire	of	length	1	m.	To	get	suitable	measurements	of	extension	there	are	two
possibilities:	use	a	very	long	wire,	or	use	a	method	that	allows	measurement	of	extensions	that	are	a
fraction	of	a	millimetre.
The	apparatus	shown	in	Figure	7.12	can	be	used	with	a	travelling	microscope	placed	above	the	wire
and	focused	on	the	sticky	tape	pointer.	When	the	pointer	moves,	the	microscope	is	adjusted	to	keep	the
pointer	at	the	middle	of	the	cross-hairs	on	the	microscope.	The	distance	that	the	pointer	has	moved	can
then	be	measured	accurately	from	the	scale	on	the	microscope.
Second,	the	cross-sectional	area	of	the	wire	must	be	known	accurately.	The	diameter	of	the	wire	is
measured	using	a	micrometer	screw	gauge.	This	is	reliable	to	within	±0.01	mm.	Once	the	wire	has
been	loaded	in	increasing	steps,	the	load	must	be	gradually	decreased	to	ensure	that	there	has	been	no
permanent	deformation	of	the	wire.
A	graph	of	F	against	x	can	be	drawn	and	the	gradient	used	to	find	an	average	value	of	 ,	where	F	is	the
weight	of	the	load	and	x	is	the	extension	shown	by	the	distance	moved	by	the	pointer.

The	area	A	is	found	from	 ,	where	d	is	the	diameter	of	the	wire.

The	diameter	should	be	measured	at	several	points	along	the	wire	and	the	average	value	found.	The
length	L	is	measured	from	the	sticky	pointer	to	the	point	where	the	wire	is	clamped.
Other	materials,	such	as	glass	and	many	plastics,	are	also	quite	stiff	and	so	it	is	difficult	to	measure
their	Young	modulus.	Rubber	is	not	as	stiff,	and	strains	of	several	hundred	per	cent	can	be	achieved.
However,	the	stress–strain	graph	for	rubber	is	not	a	straight	line.	This	means	the	value	of	the	Young
modulus	found	is	not	very	precise,	because	it	only	has	a	very	small	linear	region	on	a	stress–strain
graph.
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7.6	Elastic	potential	energy
Whenever	you	stretch	a	material,	you	are	doing	work.	This	is	because	you	have	to	apply	a	force	and	the
material	extends	in	the	direction	of	the	force.	You	will	know	this	if	you	have	ever	used	exercise	equipment
with	springs	to	develop	your	muscles	(such	as	in	Figure	7.16).	Similarly,	when	you	push	down	on	the	end
of	a	springboard	before	diving,	you	are	doing	work.	You	transfer	energy	to	the	springboard,	and	you
recover	the	energy	when	it	pushes	you	up	into	the	air.
We	call	the	energy	in	a	deformed	solid	the	elastic	potential	energy	or	strain	energy.	If	the	material
has	been	strained	elastically	(the	elastic	limit	has	not	been	exceeded),	the	energy	can	be	recovered.	If	the
material	has	been	plastically	deformed,	some	of	the	work	done	has	gone	into	moving	atoms	past	one
another	and	the	energy	cannot	be	recovered.
The	material	warms	up	slightly.	We	can	determine	how	much	elastic	potential	energy	is	involved	from	a
force–extension	graph:	see	Figure	7.17.	We	need	to	use	the	equation	that	defines	the	amount	of	work
done	by	a	force.	That	is:

Figure	7.16:	Using	springs	to	help	you	exercise	is	hard	work.

This	equation	only	holds	when	the	force	is	constant.	When	you	stretch	a	spring	the	force	varies;	so	how
can	you	find	the	work	done?
There	are	two	approaches.	You	can:

use	the	average	force	in	the	equation	for	work;	this	works	well	where	the	force–extension	graph	is	a
straight	line
add	together	many	small	extensions,	in	each	of	which	the	force	hardly	changes;	adding	together	lots
of	very	small	extensions	shows	us	that	the	work	done	is	the	area	under	the	force–extension	graph.

Figure	7.17:	Elastic	potential	energy	is	equal	to	the	area	under	the	force–extension	graph.
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First,	consider	the	linear	region	of	the	graph	where	Hooke’s	law	is	obeyed,	OA.	The	graph	in	this	region	is
a	straight	line	through	the	origin.	The	extension	x	is	directly	proportional	to	the	applied	force	F.	There
are	two	ways	to	find	the	work	done.

Method	1
We	can	think	about	the	average	force	needed	to	produce	an	extension	x.	The	average	force	is	half	the
final	force	F,	and	so	we	can	write:

Method	2
The	other	way	to	find	the	elastic	potential	energy	is	to	recognise	that	we	can	get	the	same	answer	by
finding	the	area	under	the	graph.	The	area	shaded	in	Figure	7.17	is	a	triangle	whose	area	is	given	by:

This	again	gives:

The	work	done	in	stretching	or	compressing	a	material	is	always	equal	to	the	area	under	the	graph	of
force	against	extension.
This	is	true	whatever	the	shape	of	the	graph,	provided	we	draw	the	graph	with	extension	on	the
horizontal	axis.	If	the	graph	is	not	a	straight	line,	we	cannot	use	the	Fx	relationship,	so	we	have	to	resort
to	counting	squares	or	some	other	technique	to	find	the	answer.
Note	that	the	elastic	potential	energy	relates	to	the	elastic	part	of	the	graph	(i.e.	up	to	the	elastic	limit),
so	we	can	only	consider	the	force–extension	graph	up	to	the	elastic	limit.
There	is	an	alternative	equation	for	elastic	potential	energy.	We	know	that,	according	to	Hooke’s	law,
applied	force	F	and	extension	x	are	related	by	F	=	kx,	where	k	is	the	force	constant.	Substituting	for	F
gives:

KEY	EQUATION

Questions
A	force	of	12	N	extends	a	length	of	rubber	band	by	18	cm.	Estimate	the	energy	stored	in	this	rubber
band.	Explain	why	your	answer	can	only	be	an	estimate.
A	spring	has	a	force	constant	of	4800	N	m−1.	Calculate	the	elastic	potential	energy	when	it	is
compressed	by	2.0	mm.

WORKED	EXAMPLE

Figure	7.18	shows	a	simplified	version	of	a	force–extension	graph	for	a	piece	of	metal.	Find	the
elastic	potential	energy	when	the	metal	is	stretched	to	its	limit	of	proportionality,	and	the	total	work
that	must	be	done	to	break	the	metal.
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Figure	7.18:	For	Worked	example	4.

The	elastic	potential	energy	when	the	metal	is	stretched	to	its	elastic	limit	is	given	by	the
area	under	the	graph	up	to	the	elastic	limit.	We	will	have	to	take	the	limit	of	proportionality,
the	point	A,	as	the	elastic	limit.	The	graph	is	a	straight	line	up	to	x	=	5.0	mm,	F	=	20	N,	so
the	elastic	potential	energy	is	the	area	of	triangle	0AB:

To	find	the	work	done	to	break	the	metal,	we	need	to	add	on	the	area	of	the	rectangle
ABCD:

Figure	7.19	shows	force–extension	graphs	for	two	materials.	For	each	of	the	following	questions,
make	the	statement	required.	Also	explain	how	you	deduce	your	answer	from	the	graphs.

State	which	polymer	has	the	greater	stiffness.
State	which	polymer	requires	the	greater	force	to	break	it.
State	which	polymer	requires	the	greater	amount	of	work	to	be	done	in	order	to	break	it.

Figure	7.19:	Force–extension	graph	for	two	polymers.

REFLECTION
What	is	the	most	important	thing	that	you	learned	personally	in	this	chapter?
Think	of	examples	where	having	materials	with	high	or	low	Young	modulus	is	useful.
Make	sure	you	know	the	formulae	for	stress,	strain	and	Young	modulus	and	can	write	them	down	in
terms	of	F,	A,	x	and	L.



	
	



SUMMARY

Density	is	defined	as	the	mass	per	unit	volume	of	a	substance:

Pressure	is	defined	as	the	normal	force	acting	per	unit	cross-sectional	area:

Pressure	in	a	fluid	increases	with	depth:	p	=	ρgh

Upthrust	on	an	object	in	a	fluid	is	given	by	F	=	ρgV	(Archimedes’	principle).

Hooke’s	law	states	that	the	extension	of	a	material	is	directly	proportional	to	the	applied	force,
provided	the	limit	of	proportionality	is	not	exceeded.	For	a	spring	or	a	wire,	F	=	kx,	where	k	is	the
force	constant.	The	force	constant	has	units	of	N	m−1.

Stress	is	defined	as:

Strain	is	defined	as:

To	describe	the	behaviour	of	a	material	under	tensile	and	compressive	forces,	we	have	to	draw	a
graph	of	stress	against	strain.	The	gradient	of	the	initial	linear	section	of	the	graph	is	equal	to	the
Young	modulus.	The	Young	modulus	is	an	indication	of	the	stiffness	of	the	material.

The	Young	modulus	E	is	given	by:

The	area	under	a	force–extension	graph	is	equal	to	the	work	done	by	the	force.

For	a	spring	or	a	wire	obeying	Hooke’s	law,	the	elastic	potential	energy	E	is	given	by:
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EXAM-STYLE	QUESTIONS

Which	force	is	caused	by	a	difference	in	pressure? [1]

drag 	

friction 	

upthrust 	

weight 	

Two	wires	P	and	Q	both	obey	Hooke’s	law.	They	are	both	stretched	and	have
the	same	strain.	The	Young	modulus	of	P	is	four	times	larger	than	that	of	Q.
The	diameter	of	P	is	twice	that	of	Q. 	

What	is	the	ratio	of	the	tension	in	P	to	the	tension	in	Q? [1]

	

1 	

2 	

16 	

Define	density. [1]

	State	the	SI	base	units	in	which	density	is	measured. [1]

Define	pressure. [1]

	State	the	SI	base	units	in	which	pressure	is	measured. [1]

	 [Total:	4]

Sketch	a	force–extension	graph	for	a	spring	that	has	a	spring	constant	of	20	N
m−1	and	that	obeys	Hooke’s	law	for	forces	up	to	5.0	N.	Your	graph	should
cover	forces	between	0	and	6	N	and	show	values	on	both	axes. [3]

Two	springs,	each	with	a	spring	constant	20	N	m−1,	are	connected	in	series.
Draw	a	diagram	of	the	two	springs	in	series	and	determine	the	total	extension
if	a	mass,	with	weight	2.0	N,	is	hung	on	the	combined	springs. [5]

A	sample	of	fishing	line	is	1.0	m	long	and	is	of	circular	cross-section	of	radius
0.25	mm.	When	a	weight	is	hung	on	the	line,	the	extension	is	50	mm	and	the
stress	is	2.0	×	108	Pa.	Calculate: 	

the	cross-sectional	area	of	the	line [1]

the	weight	added [2]

the	strain	in	the	line [2]

the	Young	modulus [2]

the	percentage	and	absolute	uncertainties	in	the	Young	modulus	if	the
uncertainty	in	the	extension	is	±1	mm. [2]

	 [Total:	9]

This	is	the	force–extension	graph	for	a	metal	wire	of	length	2.0	m	and	cross-
sectional	area	1.5	×	10−7	m2. 	
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Figure	7.20

	

Calculate	the	Young	modulus. [3]

Determine	the	energy	stored	in	the	wire	when	the	extension	is	0.8	mm. [2]

Calculate	the	work	done	in	stretching	the	wire	between	0.4	mm	and	0.8
mm. [2]

	 [Total:	7]

A	piece	of	wax	is	attached	to	a	newton-meter.	In	air,	the	reading	on	the	newton-
meter	is	0.27	N	and	when	submerged	in	water	of	density	1000	kg	m−3	the
reading	is	0.16	N.	Calculate: 	

the	upthrust	on	the	wax	when	in	water [1]

the	volume	of	the	wax [2]

the	reading	on	the	newton-meter	when	the	wax	is	submerged	in	a	liquid	of
density	800	kg	m−3. [2]

	 [Total:	5]

These	are	stress–strain	curves	for	three	different	materials,	P,	Q	and	R.
State	and	explain	which	material	has	the	greatest	Young	modulus. [2]

Figure	7.21
	

Describe	an	experiment	to	determine	the	Young	modulus	for	a	material	in
the	form	of	a	wire.	Include	a	labelled	diagram	and	explain	how	you	would
make	the	necessary	measurements.	Show	how	you	would	use	your
measurements	to	calculate	the	Young	modulus. [7]

	 [Total:	9]

State	the	meaning	of	tensile	stress	and	tensile	strain. [2]

A	vertical	steel	wire	of	length	1.6	m	and	cross-sectional	area	1.3	×	10−6	m2

carries	a	weight	of	60	N.	The	Young	modulus	for	steel	is	2.1	×	1011	Pa.
Calculate: 	
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the	stress	in	the	wire [2]

the	strain	in	the	wire [2]

the	extension	produced	in	the	wire	by	the	weight. [2]

	 [Total:	6]

To	allow	for	expansion	in	the	summer	when	temperatures	rise,	a	steel	railway
line	laid	in	cold	weather	is	pre-stressed	by	applying	a	force	of	2.6	×	105	N	to
the	rail	of	cross-sectional	area	5.0	×	10−3	m2. 	

If	the	railway	line	is	not	pre-stressed,	a	strain	of	1.4	×	10−5	is	caused	by	each
degree	Celsius	rise	in	temperature.	The	Young	modulus	of	the	steel	is	2.1	×
1011	Pa. 	

State	and	explain	whether	the	force	applied	to	the	rail	when	it	is	laid
should	be	tensile	or	compressive. [2]

Calculate: 	

the	strain	produced	when	the	rail	is	laid [3]

the	temperature	rise	when	the	rail	becomes	unstressed. [2]

	 [Total:	7]

This	is	a	stress–strain	graph	for	a	metal	wire. 	

Figure	7.22
	

The	wire	has	a	diameter	of	0.84	mm	and	a	natural	length	of	3.5	m. 	

Use	the	graph	to	determine: 	

the	Young	modulus	of	the	wire [3]

the	extension	of	the	wire	when	the	stress	is	0.60	GPa [2]

the	force	that	causes	the	wire	to	break,	assuming	that	the	cross-sectional
area	of	the	wire	remains	constant [3]

the	energy	stored	when	the	wire	has	a	stress	of	0.60	GPa. [3]

	 [Total:	11]

This	is	a	force–extension	graph	for	a	spring. 	
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Figure	7.23
	

State	what	is	represented	by: 	

the	gradient	of	the	graph [1]

the	area	under	the	graph. [1]

The	spring	has	force	constant	k	=	80	N	m−1.	The	spring	is	compressed	by
0.060	m,	within	the	limit	of	proportionality,	and	placed	between	two
trolleys	that	run	on	a	friction-free,	horizontal	track.	Each	trolley	has	a	mass
of	0.40	kg.	When	the	spring	is	released	the	trolleys	fly	apart	with	equal
speeds	but	in	opposite	directions. 	

How	much	energy	is	stored	in	the	spring	when	it	is	compressed	by
0.060	m? [2]

Explain	why	the	two	trolleys	must	fly	apart	with	equal	speeds. [2]

Calculate	the	speed	of	each	trolley. [2]

	 [Total:	8]

Liquid	of	density	ρ	fills	a	cylinder	of	base	area	A	and	height	h. 	

Using	the	symbols	provided,	state	the	mass	of	liquid	in	the	container. [1]

Using	your	answer	to	i,	derive	a	formula	for	the	pressure	exerted	on
the	base	of	the	cylinder. [2]

A	boy	stands	on	a	platform	of	area	0.050	m2	and	a	manometer	measures
the	pressure	created	in	a	flexible	plastic	container	by	the	weight	W	of	the
boy,	as	shown. 	

Figure	7.24
	

The	density	of	water	is	1000	kg	m−3.	Determine: 	

the	pressure	difference	between	the	inside	of	the	plastic	container	and
the	atmosphere	outside [2]

the	weight	W	of	the	boy. [2]

	 [Total:	7]

This	diagram	shows	water	in	a	container	filled	to	a	depth	of	0.50	m.	The
density	of	water	is	1000	kg	m−3. 	
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Calculate	the	pressure	at	X	on	the	base	of	the	container. [2]

Explain	why	the	pressure	at	X	must	be	equal	to	the	pressure	at	Y. [1]

Explain	why	the	force	downwards	on	the	base	of	the	container	is	larger
than	the	weight	of	the	liquid	in	the	container. [2]

	 [Total:	5]

A	light	spring	that	obeys	Hooke’s	law	has	an	unstretched	length	of	0.250	m.
When	an	object	of	mass	2.0	kg	is	hung	from	the	spring	the	length	of	the	spring
becomes	0.280	m.	When	the	object	is	fully	submerged	in	a	liquid	of	density
1200	kg	m−3,	the	length	of	the	spring	becomes	0.260	m. 	

Calculate: 	

the	spring	constant	of	the	spring. [2]

the	upthrust	on	the	object. [2]

the	volume	of	the	object. [2]

the	density	of	the	material	from	which	the	object	is	made. [2]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	and	use	density	and	pressure 7.1,	7.2 	 	 	

derive	and	use	the	equation	Δp	=	ρgΔh 7.2 	 	 	

understand	that	upthrust	is	caused	by	a
difference	in	pressure	and	use	the
equation	F	=	ρgV

7.3 	 	 	

understand	tensile	and	compressive
forces,	load,	extension,	limit	of
proportionality,	elastic	deformation,
plastic	deformation	and	elastic	limit

7.4 	 	 	

recall	and	use	Hooke’s	law	and	the
formula	for	the	spring	constant:

7.4 	 	 	

define	and	use	stress,	strain	and	the
Young	modulus

7.5 	 	 	

describe	an	experiment	to	measure	the
Young	modulus

7.5 	 	 	

determine	elastic	potential	or	strain
energy.

7.6 	 	 	
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	Chapter	8

Electric	current,	potential	difference	and
resistance

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
understand	of	the	nature	of	electric	current
understand	the	term	charge	and	recognise	its	unit,	the	coulomb
understand	that	charge	is	quantised
solve	problems	using	the	equation	Q	=	It
solve	problems	using	the	formula	I	=	nAve
solve	problems	involving	the	mean	drift	velocity	of	charge	carriers
understand	the	terms	potential	difference,	e.m.f.	and	the	volt
use	energy	considerations	to	distinguish	between	p.d.	and	e.m.f.
define	resistance	and	recognise	its	unit,	the	ohm
solve	problems	using	the	formula	V	=	IR
solve	problems	concerning	energy	and	power	in	electric	circuits.

BEFORE	YOU	START
Write	 down	 what	 you	 understand	 by	 the	 terms	 current,	 charge,	 potential	 difference,	 e.m.f.	 and
resistance.
Can	you	set	up	a	simple	circuit	to	measure	the	current	in	a	lamp	and	the	potential	difference	across
it?	Sketch	the	circuit	and	swap	it	with	a	classmate	to	check.

DEVELOPING	IDEAS



Electricity	plays	a	vital	part	in	our	lives.	We	use	electricity	as	a	way	of	transferring	energy	from	place	to
place	–	for	heating,	lighting	and	making	things	move.	For	people	in	a	developing	nation,	the	arrival	of	a
reliable	electricity	supply	marks	a	great	leap	forward.	In	Kenya,	a	micro-hydroelectric	scheme	has	been
built	on	Kabiri	Falls,	on	the	slopes	of	Mount	Kenya.	Although	this	produces	just	14	kW	of	power,	it	has
given	work	to	a	number	of	people,	as	shown	in	Figures	8.1,	8.2	and	8.3.

Figure	8.1:	An	operator	controls	the	water	inlet	at	the	Kabiri	Falls	power	plant.	The	generator	is	on
the	right.

Figure	 8.2:	 A	 metal	 workshop	 uses	 electrical	 welding	 equipment.	 This	 allows	 rapid	 repairs	 to
farmers’	machinery.



Figure	8.3:	A	hairdresser	can	now	work	in	the	evenings,	thanks	to	electrical	lighting.

With	an	increasing	need	for	small	generating	facilities	at	a	town	or	even	village	level,	can	you	suggest
what	types	of	generator	would	be	suitable	in	your	neighbourhood?	What	are	the	advantages	and
disadvantages	of	each	type	of	generator?

	
	



8.1	Circuit	symbols	and	diagrams
Before	we	go	on	to	study	electricity	we	need	to	introduce	the	concept	of	circuit	diagrams.	It	is	impossible
to	draw	anything	but	the	simplest	circuits	as	a	detailed	drawing.	To	make	it	possible	to	draw	complex
circuits,	a	shorthand	method	using	standard	circuit	symbols	is	used.	You	will	have	seen	many	circuit
components	and	their	symbols	in	your	previous	studies.	Some	are	shown	in	Table	8.1	and	Figure	8.4.
The	symbols	in	Table	8.1	are	a	small	part	of	a	set	of	internationally	agreed	conventional	symbols	for
electrical	components.	It	is	essential	that	scientists,	engineers,	manufacturers	and	others	around	the
world	use	the	same	symbol	for	a	particular	component.	In	addition,	many	circuits	are	now	designed	by
computers	and	these	need	a	universal	language	in	which	to	work	and	to	present	their	results.
The	International	Electrotechnical	Commission	(IEC)	is	the	body	that	establishes	agreements	on	such
things	as	electrical	symbols,	as	well	as	safety	standards,	working	practices	and	so	on.	The	circuit	symbols
used	here	form	part	of	an	international	standard	known	as	IEC	60617.	Because	this	is	a	shared
‘language’,	there	is	less	chance	that	misunderstandings	will	arise	between	people	working	in	different
organisations	and	different	countries.

Symbol Component	name

connecting	lead

cell

battery	of	cells

fixed	resistor

power	supply

junction	of	conductors

crossing	conductors	(no	connection)

filament	lamp

voltmeter

ammeter

switch

variable	resistor

microphone

loudspeaker

fuse

earth

alternating	signal

capacitor

thermistor

light-dependent	resistor	(LDR)

semiconductor	diode

light-emitting	diode	(LED)

Table	8.1:	Electrical	components	and	their	circuit	symbols.



What’s	in	a	word?
Electricity	is	a	rather	tricky	word.	In	everyday	life,	its	meaning	may	be	rather	vague	–	sometimes	we	use
it	to	mean	electric	current;	at	other	times,	it	may	mean	electrical	energy	or	electrical	power.	In	this
chapter	and	the	ones	that	follow,	we	will	avoid	using	the	word	electricity	and	try	to	develop	the	correct
usage	of	these	more	precise	scientific	terms.

Figure	8.4:	A	selection	of	electrical	components,	including	resistors,	fuses,	capacitors	and	microchips.

	
	



8.2	Electric	current
You	will	have	carried	out	many	practical	activities	involving	electric	current.	For	example,	if	you	connect
a	wire	to	a	cell	(Figure	8.5),	there	will	be	current	in	the	wire.	And	of	course	you	make	use	of	electric
currents	every	day	of	your	life	–	when	you	switch	on	a	lamp	or	a	computer,	for	example.
In	the	circuit	of	Figure	8.5,	the	direction	of	the	current	is	from	the	positive	terminal	of	the	cell,	around
the	circuit	to	the	negative	terminal.	This	is	a	scientific	convention:	the	direction	of	current	is	from	positive
to	negative,	and	hence	the	current	may	be	referred	to	as	conventional	current.	But	what	is	going	on
inside	the	wire?
A	wire	is	made	of	metal.	Inside	a	metal,	there	are	negatively	charged	electrons	that	are	free	to	move
about.	We	call	these	conduction	or	free	electrons,	because	they	are	the	particles	that	allow	a	metal	to
conduct	an	electric	current.	The	atoms	of	a	metal	bind	tightly	together;	they	usually	form	a	regular	array,
as	shown	in	Figure	8.6.	In	a	typical	metal,	such	as	copper	or	silver,	one	or	more	electrons	from	each	atom
breaks	free	to	become	conduction	electrons.	The	atom	remains	as	a	positively	charged	ion.	Since	there
are	equal	numbers	of	free	electrons	(negative)	and	ions	(positive),	the	metal	has	no	overall	charge	–	it	is
neutral.

Figure	8.5:	There	is	current	in	the	wire	when	it	is	connected	to	a	cell.

Figure	 8.6:	 In	 a	metal,	 conduction	 electrons	 are	 free	 to	move	 among	 the	 fixed	 positive	 ions.	 A	 cell
connected	across	the	ends	of	the	metal	causes	the	electrons	to	drift	towards	its	positive	terminal.

When	the	cell	is	connected	to	the	wire,	it	exerts	an	electrical	force	on	the	conduction	electrons	that
makes	them	travel	along	the	length	of	the	wire.	Since	electrons	are	negatively	charged,	they	flow	away
from	the	negative	terminal	of	the	cell	and	towards	the	positive	terminal.	This	is	in	the	opposite	direction
to	conventional	current.	This	may	seem	a	bit	strange;	it	happens	because	the	direction	of	conventional
current	was	chosen	long	before	anyone	had	any	idea	what	was	going	on	inside	a	piece	of	metal	carrying	a
current.	If	the	names	positive	and	negative	had	originally	been	allocated	the	other	way	round,	we	would
now	label	electrons	as	positively	charged,	and	conventional	current	and	electron	flow	would	be	in	the
same	direction.
Note	that	there	is	a	current	at	all	points	in	the	circuit	as	soon	as	the	circuit	is	completed.	We	do	not	have
to	wait	for	charge	to	travel	around	from	the	cell.	This	is	because	the	charged	electrons	are	already
present	throughout	the	metal	before	the	cell	is	connected.
We	can	use	the	idea	of	an	electric	field	to	explain	why	charge	flows	almost	instantly.	Connect	the
terminals	of	a	cell	to	the	two	ends	of	a	wire	and	we	have	a	complete	circuit.	The	cell	produces	an	electric
field	in	the	wire;	the	field	lines	are	along	the	wire,	from	the	positive	terminal	to	the	negative.	This	means
that	there	is	a	force	on	each	electron	in	the	wire,	so	each	electron	starts	to	move	and	the	current	exists
almost	instantly.

Charge	carriers
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Sometimes	a	current	is	a	flow	of	positive	charges–for	example,	a	beam	of	protons	produced	in	a	particle
accelerator.	The	current	is	in	the	same	direction	as	the	particles.	Sometimes	a	current	is	due	to	both
positive	and	negative	charges	–	for	example,	when	charged	particles	flow	through	a	solution.	A	solution
that	conducts	is	called	an	electrolyte	and	it	contains	both	positive	and	negative	ions.	These	move	in
opposite	directions	when	the	solution	is	connected	to	a	cell	(Figure	8.7).	These	charged	particles	are
known	as	charge	carriers.	If	you	consider	the	structure	of	charged	particles	you	will	appreciate	that
charge	comes	in	definite	sized	‘bits’;	the	smallest	bit	being	the	charge	on	an	electron	or	on	a	single
proton.	This	‘bittiness’	is	what	is	meant	when	charge	is	described	as	being	quantised.

Figure	8.7:	Both	positive	and	negative	charges	are	 free	 to	move	 in	a	solution.	Both	contribute	 to	 the
electric	current.

Questions
Look	at	Figure	8.7	and	state	the	direction	of	the	conventional	current	in	the	electrolyte	(towards	the
left,	towards	the	right	or	in	both	directions	at	the	same	time?).
Figure	8.8	shows	a	circuit	with	a	conducting	solution	having	both	positive	and	negative	ions.

Copy	the	diagram	and	draw	in	a	cell	between	points	A	and	B.	Clearly	indicate	the	positive	and
negative	terminals	of	the	cell.
Add	an	arrow	to	show	the	direction	of	the	conventional	current	in	the	solution.
Add	arrows	to	show	the	direction	of	the	conventional	current	in	the	connecting	wires.

Figure	8.8:	For	Question	2.

Current	and	charge
When	charged	particles	flow	past	a	point	in	a	circuit,	we	say	that	there	is	a	current	in	the	circuit.
Electrical	current	is	measured	in	amperes	(A).	So	how	much	charge	is	moving	when	there	is	a	current	of
1	A?	Charge	is	measured	in	coulombs	(C).	For	a	current	of	1	A,	the	rate	at	which	charge	passes	a	point
in	a	circuit	is	1	C	in	a	time	of	1	s.	Similarly,	a	current	of	2	A	gives	a	charge	of	2	C	in	a	time	of	1	s.	A
current	of	3	A	gives	a	charge	of	6	C	in	a	time	of	2	s,	and	so	on.	The	relationship	between	charge,	current
and	time	may	be	written	as	the	following	word	equation:
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This	equation	explains	what	we	mean	by	electric	current.
The	equation	for	current	can	be	rearranged	to	give	an	equation	for	charge:

charge	=	current	×	time

KEY	EQUATION

The	unit	of	charge	is	the	coulomb.
In	symbols,	the	charge	flowing	past	a	point	is	given	by	the	relationship:

ΔQ	=	IΔt

where	ΔQ	is	the	charge	that	flows	during	a	time	Δt,	and	I	is	the	current.
Note	that	the	ampere	and	the	coulomb	are	both	SI	units;	the	ampere	is	a	base	unit	while	the	coulomb	is	a
derived	unit	(see	Chapter	3).

Questions
The	current	in	a	circuit	is	0.40	A.	Calculate	the	charge	that	passes	a	point	in	the	circuit	in	a	period	of
15	s.
Calculate	the	current	that	gives	a	charge	flow	of	150	C	in	a	time	of	30	s.
In	a	circuit,	a	charge	of	50	C	passes	a	point	in	20	s.	Calculate	the	current	in	the	circuit.
A	car	battery	is	labelled	‘50	A	h’.	This	means	that	it	can	supply	a	current	of	50	A	for	one	hour.

For	how	long	could	the	battery	supply	a	continuous	current	of	200	A	needed	to	start	the	car?
Calculate	the	charge	that	flows	past	a	point	in	the	circuit	in	this	time.

Charged	particles
As	we	have	seen,	current	is	the	flow	of	charged	particles	called	charge	carriers.	But	how	much	charge
does	each	particle	carry?

Electrons	each	carry	a	tiny	negative	charge	of	approximately	−1.6	×	10−19	C.	This	charge	is	represented
by	−e.	The	magnitude	of	the	charge	is	known	as	the	elementary	charge.	This	charge	is	so	tiny	that	you
would	need	about	six	million	million	million	electrons	–	that’s	6	000	000	000	000	000	000	of	them	–	to
have	a	charge	equivalent	to	one	coulomb.
Protons	are	positively	charged,	with	a	charge	+e.	This	is	equal	and	opposite	to	that	of	an	electron.	Ions
carry	charges	that	are	multiples	of	+e	and	−e.

WORKED	EXAMPLES

There	is	a	current	of	10	A	through	a	lamp	for	1.0	hour.	Calculate	how	much	charge	flows	through
the	lamp	in	this	time.

We	need	to	find	the	time	t	in	seconds:
Δt	=	60	×	60	=	3600	s
We	know	the	current	I	=	10	A,	so	the	charge	that	flows	is:

ΔQ	=	IΔt	=	10	×	3600	=	36	000	C	=	3.6	×	104	C
Calculate	the	current	in	a	circuit	when	a	charge	of	180	C	passes	a	point	in	a	circuit	in	2.0	minutes.

Rearranging	ΔQ	=	IΔt	gives:

With	time	in	seconds,	we	then	have:



7

8

Because	electric	charge	is	carried	by	particles,	it	must	come	in	amounts	that	are	multiples	of	e.	So,	for
example,	3.2	×	10−19	C	is	possible,	because	this	is	+2e,	but	2.5	×	10−19	C	is	impossible,	because	this	is
not	an	integer	multiple	of	e.
This	reinforces	the	idea	that	charge	is	quantised;	it	means	that	it	can	only	come	in	amounts	that	are
integer	multiples	of	the	elementary	charge.	If	you	are	studying	chemistry,	you	will	know	that	ions	have
charges	of	±e,	±2e,	etc.	The	only	exception	is	in	the	case	of	the	fundamental	particles	called	quarks,
which	are	the	building	blocks	from	which	particles	such	as	protons	and	neutrons	are	made.	These	have
charges	of	 .	However,	quarks	always	appear	in	twos	or	threes	in	such	a	way	that	their
combined	charge	is	zero	or	a	multiple	of	e.

Questions
Calculate	the	number	of	protons	that	would	have	a	charge	of	one	coulomb.	(Proton	charge	=	+1.6	×
10−19	C.)
Which	of	the	following	quantities	of	electric	charge	is	possible?	Explain	how	you	know.
6.0	×	10−19	C,	8.0	×	10−19	C,	10.0	×	10−19	C

	
	



8.3	An	equation	for	current
Copper,	silver	and	gold	are	good	conductors	of	electric	current.	There	are	large	numbers	of	conduction
electrons	in	a	copper	wire	–	as	many	conduction	electrons	as	there	are	atoms.	The	number	of	conduction
electrons	per	unit	volume	(for	example,	in	1	m3	of	the	metal)	is	called	the	number	density	and	has	the
symbol	n.	For	copper,	the	value	of	n	is	about	1029	m–3.
Figure	8.9	shows	a	length	of	wire,	with	cross-sectional	area	A,	along	which	there	is	a	current	I.

Figure	8.9:	A	current	I	 in	a	wire	of	cross-sectional	area	A.	The	charge	carriers	are	mobile	conduction
electrons	with	mean	drift	velocity	v.

How	fast	do	the	electrons	in	Figure	8.9	have	to	travel?	The	following	equation	allows	us	to	answer	this
question:

I	=	nAvq

where	n	=	the	number	density,	A	=	cross	sectional	area	of	the	conductor,	v	=	mean	drift	velocity	of	the
charge	carriers,	q	=	the	charge	on	each	charge	carrier.

KEY	EQUATION
Electric	current:

I	=	nAvq

The	length	of	the	wire	in	Figure	8.9	is	l.	We	imagine	that	all	of	the	electrons	shown	travel	at	the	same
speed	v	along	the	wire.
Now	imagine	that	you	are	timing	the	electrons	to	determine	their	speed.	You	start	timing	when	the	first
electron	emerges	from	the	right-hand	end	of	the	wire.	You	stop	timing	when	the	last	of	the	electrons
shown	in	the	diagram	emerges.	(This	is	the	electron	shown	at	the	left-hand	end	of	the	wire	in	the
diagram.)	Your	timer	shows	that	this	electron	has	taken	time	t	to	travel	the	distance	l.
In	the	time	t,	all	of	the	electrons	in	the	length	l	of	wire	have	emerged	from	the	wire.	We	can	calculate	how
many	electrons	this	is,	and	hence	the	charge	that	has	flowed	in	time	t:

We	can	find	the	current	I	because	we	know	that	this	is	the	charge	that	flows	in	time	t,	and	
:

Substituting	v	for	 	gives:
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I	=	nAve

The	moving	charge	carriers	that	make	up	a	current	are	not	always	electrons.	They	might,	for	example,	be
ions	(positive	or	negative)	whose	charge	q	is	a	multiple	of	e.	Hence	we	can	write	a	more	general	version
of	the	equation	as:

I	=	nAvq

Worked	example	3	shows	how	to	use	this	equation	to	calculate	a	typical	value	of	v.

WORKED	EXAMPLE

Calculate	the	mean	drift	velocity	of	the	electrons	in	a	copper	wire	of	cross-sectional	area	5.0	×
10−6	m2	carrying	a	current	of	1.0	A.	The	electron	number	density	for	copper	is	8.5	×	1028	m−3.

Rearrange	the	equation	I	=	nAve	to	make	v	the	subject:

Substitute	values	and	calculate	v:

You	do	not	need	to	know	how	to	derive	I	=	nAvq	but	it	is	interesting	to	recognise	that	the	units	are
homogeneous.
The	unit	of	current	(I)	is	the	ampere	(A).

The	unit	of	the	number	of	charge	carriers	per	unit	volume	(n)	is	m−3.

The	unit	of	area	(A)	is	m2.

The	unit	of	the	drift	velocity	v	is	m	s−1.
The	unit	of	charge	(q)	is	the	coulomb	(C).
All	these	are	in	base	units	except	the	coulomb	and	1	coulomb	is	1	ampere	second	(A	s).
Putting	the	units	into	the	right-hand	side	of	the	equation:

m−3	×	m2	×	m	s−1	×	A	s	=	A

This	is	the	same	as	the	left-hand	side	of	the	equation.	Although	this	does	not	prove	the	equation	to	be
correct,	it	does	give	strong	evidence	for	it.
This	technique	is	often	used	for	checking	the	validity	of	an	expression	and	also	to	predict	a	possible
formula.

WORKED	EXAMPLE

A	student	knows	that	the	power	transfer	in	a	resistor	depends	on	two	variables:	the	current	and	the
resistance	of	the	resistor,	but	is	unsure	of	the	precise	nature	of	the	relationships.
Suggest	the	form	of	the	equation.

Identify	the	units	of	the	terms:
power–watt	(W)
current–ampere	(A)
resistance–ohms	(Ω)
Break	these	down	into	base	units:

1	W	=	1	J	s–1,	1	J	=	1	N	m,	1	N	=	1	kg	m	s–2

hence	1	W	=	1	kg	m	s–2	m	s–1	=	1	kg	m2	s–3

1	Ω	=	1	V	A–1,	1	V	=	1	J	C–1,	1	J	=	1	kg	m2	s–2,	1	C	=	1	A	s

thus	1	Ω	=	1	kg	m2	s–2	[A	s]–1	A–1	=	1	kg	m2	s–2	A–2	s–1	=	1	kg	m2	s–3	A–2

The	unit	for	current,	the	ampere	is	already	a	base	unit.
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Write	a	possible	equation	linking	power,	current	and	resistance

P	=	K	IpRq	where	p	and	q	are	pure	numbers	and	K	is	a	dimensionless	constant.

The	units	on	the	right-hand	side	of	this	equation	are	Ap	×	[1	kg	m2	s–3	A–2]q

The	units	on	the	left-hand	side	of	the	equation	are	1	kg	m2	s–3

By	inspection,	we	can	see	that	the	amperes	do	not	figure	in	the	left-hand	side	of	the
equation,	thus	p	must	equal	2	to	cancel	the	amperes	on	the	right-hand	side	and	q	must
equal	1.	This	would	leave	both	sides	of	the	equation	as	1	kg	m2	s–3.
Therefore	we	know	that	the	equation	is	of	the	form:

P	=	K	I2R
Note	that	this	method	does	not	give	any	information	of	the	value	of	the	constant	K,	although
in	this	case,	from	our	choice	of	units,	K	=	1	and	the	equation	becomes	the	familiar	P	=	I2R.

Slow	flow
It	may	surprise	you	to	find	that,	as	suggested	by	the	result	of	Worked	example	3,	electrons	in	a	copper
wire	drift	at	a	fraction	of	a	millimetre	per	second.	To	understand	this	result	fully,	we	need	to	closely
examine	how	electrons	behave	in	a	metal.	The	conduction	electrons	are	free	to	move	around	inside	the
metal.	When	the	wire	is	connected	to	a	battery	or	an	external	power	supply,	each	electron	within	the
metal	experiences	an	electrical	force	that	causes	it	to	move	towards	the	positive	end	of	the	battery.	The
electrons	randomly	collide	with	the	fixed	but	vibrating	metal	ions.	Their	journey	along	the	metal	is	very
haphazard.	The	actual	velocity	of	an	electron	between	collisions	is	of	the	order	of	magnitude	105	m	s−1,
but	its	haphazard	journey	causes	it	to	have	a	drift	velocity	towards	the	positive	end	of	the	battery.	Since
there	are	billions	of	electrons,	we	use	the	term	mean	drift	velocity	v	of	the	electrons.
Figure	8.10	shows	how	the	mean	drift	velocity	of	electrons	varies	in	different	situations.
We	can	understand	this	using	the	equation:

If	the	current	increases,	the	drift	velocity	v	must	increase.	That	is:

v	∝	I

If	the	wire	is	thinner,	the	electrons	move	more	quickly	for	a	given	current.	That	is:

There	 are	 fewer	 electrons	 in	 a	 thinner	 piece	 of	 wire,	 so	 an	 individual	 electron	 must	 travel	 more
quickly.
In	a	material	with	a	lower	density	of	electrons	(smaller	n),	the	mean	drift	velocity	must	be	greater	for
a	given	current.	That	is:
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Figure	8.10:	The	mean	drift	velocity	of	electrons	depends	on	the	current,	the	cross-sectional	area	and
the	electron	density	of	the	material.

Questions
Calculate	the	current	in	a	gold	wire	of	cross-sectional	area	2.0	mm2	when	the	mean	drift	velocity	of
the	electrons	in	the	wire	is	0.10	mm	s−1.	The	electron	number	density	for	gold	is	5.9	×	1028	m−3.
Calculate	the	mean	drift	velocity	of	electrons	in	a	copper	wire	of	diameter	1.0	mm	with	a	current	of
5.0	A.	The	electron	number	density	for	copper	is	8.5	×	1028	m−3.
A	length	of	copper	wire	is	joined	in	series	to	a	length	of	silver	wire	of	the	same	diameter.	Both	wires
have	a	current	in	them	when	connected	to	a	battery.	Explain	how	the	mean	drift	velocity	of	the
electrons	will	change	as	they	travel	from	the	copper	into	the	silver.	Electron	number	densities:
copper	n	=	8.5	×	1028	m−3

silver	n	=	5.9	×	1028	m−3.
It	may	help	you	to	picture	how	the	drift	velocity	of	electrons	changes	by	thinking	about	the	flow	of	water
in	a	river.	For	a	high	rate	of	flow,	the	water	moves	fast	–	this	corresponds	to	a	greater	current	I.	If	the
course	of	the	river	narrows,	it	speeds	up	–	this	corresponds	to	a	smaller	cross-sectional	area	A.

Metals	have	a	high	electron	number	density–typically	of	the	order	of	1028	or	1029	m−3.	Semiconductors,
such	as	silicon	and	germanium,	have	much	lower	values	of	n–perhaps	1023	m−3.	In	a	semiconductor,
electron	mean	drift	velocities	are	typically	a	million	times	greater	than	those	in	metals	for	the	same
current.	Electrical	insulators,	such	as	rubber	and	plastic,	have	very	few	conduction	electrons	per	unit
volume	to	act	as	charge	carriers.
	
	



8.4	The	meaning	of	voltage
The	term	voltage	is	often	used	in	a	rather	casual	way.	In	everyday	life,	the	word	is	used	in	a	less
scientific	and	often	incorrect	sense	–	for	example,	‘A	big	voltage	can	go	through	you	and	kill	you.’	In	this
topic,	we	will	consider	a	bit	more	carefully	just	what	we	mean	by	voltage	and	potential	difference	in
relation	to	electric	circuits.
Look	at	the	simple	circuit	in	Figure	8.11.	Assume	the	power	supply	has	negligible	internal	resistance.	(We
look	at	internal	resistance	later	in	Chapter	10).	The	three	voltmeters	are	measuring	three	voltages	or
potential	differences.	With	the	switch	open,	the	voltmeter	placed	across	the	supply	measures	12	V.	With
the	switch	closed,	the	voltmeter	across	the	power	supply	still	measures	12	V	and	the	voltmeters	placed
across	the	resistors	measure	8	V	and	4	V.	You	will	not	be	surprised	to	see	that	the	voltage	across	the
power	supply	is	equal	to	the	sum	of	the	voltages	across	the	resistors.
Earlier	in	this	chapter	we	saw	that	electric	current	is	the	rate	of	flow	of	electric	charge.	Figure	8.12
shows	the	same	circuit	as	in	Figure	8.11,	but	here	we	are	looking	at	the	movement	of	one	coulomb	(1	C)
of	charge	round	the	circuit.	Electrical	energy	is	transferred	to	the	charge	by	the	power	supply.	The
charge	flows	round	the	circuit,	transferring	some	of	its	electrical	energy	to	internal	energy	in	the	first
resistor,	and	the	rest	to	internal	energy	in	the	second	resistor.

Figure	 8.11:	 Measuring	 voltages	 in	 a	 circuit.	 Note	 that	 each	 voltmeter	 is	 connected	 across	 the
component.

Figure	8.12:	Energy	transfers	as	1	C	of	charge	flows	round	a	circuit.	This	circuit	 is	 the	same	as	that
shown	in	Figure	8.11.

The	voltmeter	readings	indicate	the	energy	transferred	to	the	component	by	each	unit	of	charge.	The
voltmeter	placed	across	the	power	supply	measures	the	e.m.f.	of	the	supply,	whereas	the	voltmeters
placed	across	the	resistors	measure	the	potential	difference	(p.d.)	across	these	components.	The	terms
e.m.f.	and	potential	difference	have	different	meanings,	so	you	have	to	be	very	vigilant.
The	term	potential	difference	is	used	when	charges	lose	energy	by	transferring	electrical	energy	to
other	forms	of	energy	in	a	component,	such	as	thermal	energy	or	kinetic	energy.	Potential	difference,	V,	is
defined	as	the	energy	transferred	per	unit	charge.
The	potential	difference	between	two	points,	A	and	B,	is	the	energy	transferred	per	unit	charge	as	it
moves	from	point	A	to	point	B.



This	equation	can	be	rearranged	to	calculate	the	energy	transferred	in	a	component:

ΔW	=	V	ΔQ

KEY	EQUATION

A	power	supply	or	a	battery	transfers	energy	to	electrical	charges	in	a	circuit.	The	electromotive	force
(e.m.f.),	E,	of	the	supply	is	also	defined	as	the	energy	transferred	per	unit	charge.	However,	this	refers	to
the	energy	given	to	the	charge	by	the	supply.	The	e.m.f.	of	a	source	is	the	energy	transferred	per	unit
charge	in	driving	charge	around	a	complete	circuit.
Note	that	e.m.f.	stands	for	electromotive	force.	This	is	a	misleading	term.	It	has	nothing	at	all	to	do	with
force.	This	term	is	a	legacy	from	the	past	and	we	are	stuck	with	it!	It	is	best	to	forget	where	it	comes	from
and	simply	use	the	term	e.m.f.
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8.5	Electrical	resistance
If	you	connect	a	lamp	to	a	battery,	a	current	in	the	lamp	causes	it	to	glow.	But	what	determines	the	size	of
the	current?	This	depends	on	two	factors:

the	 potential	 difference	 or	 voltage	 V	 across	 the	 lamp	 –	 the	 greater	 the	 potential	 difference,	 the
greater	the	current	for	a	given	lamp
the	resistance	R	of	the	lamp	–	the	greater	the	resistance,	the	smaller	the	current	for	a	given	potential
difference.

Now	we	need	to	think	about	the	meaning	of	electrical	resistance.	The	resistance	of	any	component	is
defined	as	the	ratio	of	the	potential	difference	to	the	current.
This	is	written	as:

where	R	is	the	resistance	of	the	component,	V	is	the	potential	difference	across	the	component	and	I	is
the	current	in	the	component.

KEY	EQUATION

You	can	rearrange	the	equation	to	give:

Table	8.2	summarises	these	quantities	and	their	units.

Defining	the	ohm
The	unit	of	resistance,	the	ohm	(Ω),	can	be	determined	from	the	equation	that	defines	resistance:

The	ohm	is	equivalent	to	1	volt	per	ampere:

1	Ω	=	1	V	A−1

Quantity Symbol	for	quantity Unit Symbol	for	unit

current I ampere	(amp) A

voltage	(p.d.,	e.m.f.) V volt V

resistance R ohm Ω

Table	8.2:	Basic	electrical	quantities,	their	symbols	and	SI	units.	Take	care	to	understand	the	difference
between	V	(in	italics)	meaning	the	quantity	voltage	and	V	meaning	the	unit	volt.

Questions
A	car	headlamp	bulb	has	a	resistance	of	36	Ω.	Calculate	the	current	in	the	lamp	when	connected	to	a
‘12	V’	battery.
You	can	buy	lamps	of	different	brightness	to	fit	in	light	fittings	at	home	(Figure	8.13).	A	‘100	watt’
lamp	glows	more	brightly	than	a	‘60	watt’	lamp.	Explain	which	of	the	lamps	has	the	higher	resistance.

Calculate	the	potential	difference	across	a	motor	carrying	a	current	of	1.0	A	and	having	a
resistance	of	50	Ω.
Calculate	the	potential	difference	across	the	same	motor	when	the	current	is	doubled.	Assume	its
resistance	remains	constant.

Calculate	the	resistance	of	a	lamp	carrying	a	current	of	0.40	A	when	connected	to	a	230	V	supply.
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Figure	8.13:	Both	of	these	lamps	work	from	the	230	V	mains	supply,	but	one	has	a	higher	resistance
than	the	other.	For	Question	13.

WORKED	EXAMPLE

Calculate	the	current	in	a	lamp	given	that	its	resistance	is	15	Ω	and	the	potential	difference	across
its	ends	is	3.0	V.

Here	we	have	V	=	3.0	V	and	R	=	15	Ω.

Substituting	in	 	gives:

So	the	current	in	the	lamp	is	0.20	A.

PRACTICAL	ACTIVITY	8.1

Determining	resistance
As	we	have	seen,	the	equation	for	resistance	is:

To	determine	the	resistance	of	a	component,	we	therefore	need	to	measure	both	the	potential
difference	V	across	it	and	the	current	I	through	it.	To	measure	the	current,	we	need	an	ammeter.	To
measure	the	potential	difference,	we	need	a	voltmeter.	Figure	8.14	shows	how	these	meters	should	be
connected	to	determine	the	resistance	of	a	metallic	conductor,	such	as	a	length	of	wire.

The	ammeter	is	connected	in	series	with	the	conductor,	so	that	there	is	the	same	current	in	both.
The	 voltmeter	 is	 connected	 across	 (in	 parallel	 with)	 the	 conductor,	 to	 measure	 the	 potential
difference	across	it.

Figure	 8.14:	 Connecting	 an	 ammeter	 and	 a	 voltmeter	 to	 determine	 the	 resistance	 of	 a	 metallic
conductor	in	a	circuit.
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Question

In	Figure	8.14	the	reading	on	the	ammeter	is	2.4	A	and	the	reading	on	the	voltmeter	is	6.0	V.
Calculate	the	resistance	of	the	metallic	conductor.
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8.6	Electrical	power
The	rate	at	which	energy	is	transferred	is	known	as	power.	Power	P	is	measured	in	watts	(W).	(If	you	are
not	sure	about	this,	refer	back	to	Chapter	5,	where	we	looked	at	the	concept	of	power	in	relation	to	forces
and	work	done.)

where	P	is	the	power	and	ΔW	is	the	energy	transferred	in	a	time	Δt.
Take	care	not	to	confuse	W	for	energy	transferred	or	work	done	with	W	for	watts.
Refer	back	to	the	equation	derived	from	the	definition	of	potential	difference:

This	can	be	rearranged	as:

Thus:

The	ratio	of	charge	to	time,	 ,	is	the	current	I	in	the	component.	Therefore:

P	=	VI

By	substituting	from	the	resistance	equation	V	=	IR,	we	get	the	alternative	equations	for	power:

KEY	EQUATIONS
Equations	for	power:

WORKED	EXAMPLE

Calculate	the	rate	at	which	energy	is	transferred	by	a	230	V	mains	supply	that	provides	a	current	of
8.0	A	to	an	electric	heater.

Use	the	equation	for	power:
P	=	VI
with	V	=	230	V	and	I	=	8.0	A.
Substitute	values:
P	=	8	×	230	=	1840	W	(1.84	kW)

A	power	station	produces	20	MW	of	power	at	a	voltage	of	200	kV.	Calculate	the	current
supplied	to	the	grid	cables.

Here	we	have	P	and	V	and	we	have	to	find	I,	so	we	can	use	P	=	VI.
Rearranging	the	equation	and	substituting	the	values	we	know	gives:

Hint:	Remember	to	convert	megawatts	into	watts	and	kilovolts	into	volts.
So,	the	power	station	supplies	a	current	of	100	A.
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The	grid	cables	are	15	km	long,	with	a	resistance	per	unit	length	of	0.20	Ω	km−1.	How	much
power	is	wasted	as	heat	in	these	cables?

First,	we	must	calculate	the	resistance	of	the	cables:

resistance	R	=	15	km	×	0.20	Ω	km−1	=	3.0	Ω

Now	we	know	I	and	R	and	we	want	to	find	P.	We	can	use	P	=	I2R:
power	wasted	as	heat,

Hence,	of	the	20	MW	of	power	produced	by	the	power	station,	30	kW	is	wasted	–	just
0.15%.

A	bathroom	heater,	when	connected	to	a	230	V	supply	has	an	output	power	of	1.0	kW.
Calculate	the	resistance	of	the	heater.

We	have	P	and	V	and	have	to	find	R,	so	we	can	use	

Rearrange	the	equation	and	substitute	in	the	known	values:

Note:	The	kilowatts	were	converted	to	watts	in	a	similar	way	to	the	previous	example.

Questions
Calculate	the	current	in	a	60	W	light	bulb	when	it	is	connected	to	a	230	V	power	supply.
A	power	station	supplies	electrical	energy	to	the	grid	at	a	voltage	of	25	kV.	Calculate	the	output
power	of	the	station	when	the	current	it	supplies	is	40	kA.

Power	and	resistance
A	current	I	in	a	resistor	of	resistance	R	transfers	energy	to	it.	The	resistor	dissipates	energy	heating	the
resistor	and	the	surroundings..	The	p.d.	V	across	the	resistor	is	given	by	V	=	IR.	Combining	this	with	the
equation	for	power,	P	=	VI,	gives	us	two	further	forms	of	the	equation	for	power	dissipated	in	the	resistor:

Which	form	of	the	equation	we	use	in	any	particular	situation	depends	on	the	information	we	have
available	to	us.	This	is	illustrated	in	Worked	examples	7a	and	7b,	which	relate	to	a	power	station	and	to
the	grid	cables	that	lead	from	it	(Figure	8.15).
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Figure	8.15:	A	power	 station	and	electrical	 transmission	 lines.	How	much	electrical	 power	 is	 lost	 as
heat	in	these	cables?	(See	Worked	examples	7a	and	7b.)

Questions
A	calculator	is	powered	by	a	3.0	V	battery.	The	calculator’s	resistance	is	20	kΩ.	Calculate	the	power
transferred	to	the	calculator.
An	energy-efficient	light	bulb	is	labelled	‘230	V,	15	W’.	This	means	that	when	connected	to	the	230	V
mains	supply	it	is	fully	lit	and	changes	electrical	energy	to	heat	and	light	at	the	rate	of	15	W.
Calculate:

the	current	in	the	bulb	when	fully	lit
its	resistance	when	fully	lit.

Calculate	the	resistance	of	a	100	W	light	bulb	that	draws	a	current	of	0.43	A	from	a	power	supply.

Calculating	energy
We	can	use	the	relationship	for	power	as	energy	transferred	per	unit	time	and	the	equation	for	electrical
power	to	find	the	energy	transferred	in	a	circuit.
Since:

power	=	current	×	voltage

and:

energy	=	power	×	time

we	have:

Working	in	SI	units,	this	gives	energy	transferred	in	joules.

Questions
A	12	V	car	battery	can	supply	a	current	of	10	A	for	5.0	hours.	Calculate	how	many	joules	of	energy
the	battery	transfers	in	this	time.
A	lamp	is	operated	for	20	s.	The	current	in	the	lamp	is	10	A.	In	this	time,	it	transfers	400	J	of	energy
to	the	lamp.	Calculate:

how	much	charge	flows	through	the	lamp
how	much	energy	each	coulomb	of	charge	transfers	to	the	lamp
the	p.d.	across	the	lamp.

REFLECTION
Without	referring	back	to	your	textbook,	explain	to	a	classmate	the	difference	between	potential
difference	and	electromotive	force.
A	common	error	is	to	think	that	the	higher	the	resistance	between	two	points,	the	greater	the	power
output.	Explain	to	someone,	without	using	mathematics,	why	this	is	incorrect.
As	you	look	at	this	activity,	what	is	one	thing	you	would	like	to	change?

	
	



SUMMARY

Electric	current	is	the	rate	of	flow	of	charge.	In	a	metal,	the	charge	is	electrons;	in	an	electrolyte,	it	is
both	positive	and	negative	ions.

The	direction	of	conventional	current	is	from	positive	to	negative;	because	electrons	are	negative,
they	move	in	the	opposite	direction.

The	SI	unit	of	charge	is	the	coulomb	(C).	One	coulomb	is	the	charge	passing	a	point	when	there	is	a
current	of	one	ampere	at	that	point	for	one	second:

The	current	I	in	a	conductor	of	cross-sectional	area	A	depends	on	the	mean	drift	velocity	(v)	of	the
charge	carriers	and	the	number	density	(n):

The	term	potential	difference	is	used	when	charge	transfers	energy	to	the	component	or	the
surroundings.	It	is	defined	as	energy	transferred	per	unit	charge:

The	term	electromotive	force	is	used	when	describing	the	maximum	energy	per	unit	charge	that	a
source	can	provide:

A	volt	is	a	joule	per	coulomb	(1	J	C–1).

Power	is	the	energy	transferred	per	unit	time.	There	are	three	formulae	to	calculate	power	used
according	to	the	quantities	that	are	given:

Resistance	is	the	ratio	of	voltage	to	current:

The	resistance	of	a	component	is	1	ohm	when	the	voltage	of	1	V	produces	a	current	of	1	ampere.

Energy	transferred	in	the	circuit	in	a	time	Δt	is	given	by	the	equation:
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EXAM-STYLE	QUESTIONS

A	small	immersion	heater	is	connected	to	a	power	supply	of	e.m.f.	of	12	V	for	a
time	of	150	s.	The	output	power	of	the	heater	is	100	W. 	

What	charge	passes	through	the	heater? [1]

1.4	C 	

8.0	C 	

1250	C 	

1800	C 	

Which	statement	defines	e.m.f.? [1]

The	e.m.f.	of	a	source	is	the	energy	transferred	when	charge	is	driven
through	a	resistor. 	

The	e.m.f.	of	a	source	is	the	energy	transferred	when	charge	is	driven
round	a	complete	circuit. 	

The	e.m.f.	of	a	source	is	the	energy	transferred	when	unit	charge	is	driven
round	a	complete	circuit. 	

The	e.m.f.	of	a	source	is	the	energy	transferred	when	unit	charge	is	driven
through	a	resistor. 	

Calculate	the	charge	that	passes	through	a	lamp	when	there	is	a	current	of	150
mA	for	40	minutes. [3]

A	generator	produces	a	current	of	40	A.	Calculate	how	long	will	it	take	for	a
total	of	2000	C	to	flow	through	the	output. [2]

In	a	lightning	strike	there	is	an	average	current	of	30	kA,	which	lasts	for	2000
μs.	Calculate	the	charge	that	is	transferred	in	this	process. [3]

A	lamp	of	resistance	15	Ω	is	connected	to	a	battery	of	e.m.f.	4.5	V.
Calculate	the	current	in	the	lamp. [2]

Calculate	the	resistance	of	the	filament	of	an	electric	heater	that	takes	a
current	of	6.5	A	when	it	is	connected	across	a	mains	supply	of	230	V. [2]

Calculate	the	voltage	that	is	required	to	drive	a	current	of	2.4	A	through	a
wire	of	resistance	3.5	Ω. [2]

	 [Total:	6]

A	battery	of	e.m.f.	6	V	produces	a	steady	current	of	2.4	A	for	10	minutes.
Calculate: 	

the	charge	that	it	supplied [2]

the	energy	that	it	transferred. [2]

	 [Total:	4]

Calculate	the	energy	gained	by	an	electron	when	it	is	accelerated	through	a
potential	difference	of	50	kV.	(Charge	on	the	electron	=	−1.6	×	10−19	C.) [2]

A	woman	has	available	1	A,	3	A,	5	A,	10	A	and	13	A	fuses.	Explain	which	fuse
she	should	use	for	a	120	V,	450	W	hairdryer. [3]

This	diagram	shows	the	electrolysis	of	copper	chloride. 	
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Figure	8.16

	

On	a	copy	of	the	diagram,	mark	the	direction	of	the	conventional
current	in	the	electrolyte.	Label	it	conventional	current. [1]

Mark	the	direction	of	the	electron	flow	in	the	connecting	wires.	Label
this	electron	flow. [1]

In	a	time	period	of	8	minutes,	3.6	×	1016	chloride	(Cl−)	ions	are	neutralised
and	liberated	at	the	anode	and	1.8	×	1016	copper	(Cu2+)	ions	are
neutralised	and	deposited	on	the	cathode. 	

Calculate	the	total	charge	passing	through	the	electrolyte	in	this	time. [2]

Calculate	the	current	in	the	circuit. [2]

	 [Total:	6]

This	diagram	shows	an	electron	tube.	Electrons	moving	from	the	cathode	to
the	anode	constitute	a	current.	The	current	in	the	ammeter	is	4.5	mA. 	

Figure	8.17
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Calculate	the	charge	passing	through	the	ammeter	in	3	minutes. [3]

Calculate	the	number	of	electrons	that	hit	the	anode	in	3	minutes. [3]

The	potential	difference	between	the	cathode	and	the	anode	is	75	V.
Calculate	the	energy	gained	by	an	electron	as	it	travels	from	the	cathode	to
the	anode. [2]

	 [Total:	8]

A	length	of	copper	track	on	a	printed	circuit	board	has	a	cross-sectional	area	of
5.0	×	10−8	m2.	The	current	in	the	track	is	3.5	mA.	You	are	provided	with	some
useful	information	about	copper: 	

1	m3	of	copper	has	a	mass	of	8.9	×	103	kg 	

54	kg	of	copper	contains	6.0	×	1026	atoms 	

In	copper,	there	is	roughly	one	electron	liberated	from	each	copper	atom. 	

Show	that	the	electron	number	density	n	for	copper	is	about	1029	m−3. [2]

Calculate	the	mean	drift	velocity	of	the	electrons. [3]

	 [Total:	5]

Explain	the	difference	between	potential	difference	and	e.m.f. [2]

A	battery	has	negligible	internal	resistance,	an	e.m.f.	of	12.0	V	and	a
capacity	of	100	A	h	(ampere-hours).	Calculate: 	

the	total	charge	that	it	can	supply [2]

the	total	energy	that	it	can	transfer. [2]

The	battery	is	connected	to	a	27	W	lamp.	Calculate	the	resistance	of	the
lamp. [2]

	 [Total:	8]

Some	electricity-generating	companies	use	a	unit	called	the	kilowatt-hour	(kW
h)	to	calculate	energy	bills.	1	kWh	is	the	energy	a	kilowatt	appliance	transfers
in	1	hour. 	

Show	that	1	kWh	is	equal	to	3.6	MJ. [2]

An	electric	shower	heater	is	rated	at	230	V,	9.5	kW. 	

Calculate	the	current	it	will	take	from	the	mains	supply. [2]

Suggest	why	the	shower	requires	a	separate	circuit	from	other
appliances. [1]

Suggest	a	suitable	current	rating	for	the	fuse	in	this	circuit. [1]

Calculate	the	energy	transferred	when	a	boy	uses	the	shower	for	5
minutes. [2]

	 [Total:	8]

A	student	is	measuring	the	resistance	per	unit	length	of	a	resistance	wire.	He
takes	the	following	measurements. 	

Quantity Value Uncertainty

length	of	wire 80	mm ±2%

current	in	the	wire 2.4	A ±0.1	A

potential	difference
across	the	wire

8.9	V ±5%

	

Calculate	the	percentage	uncertainty	in	the	measurement	of	the	current. [1]

Calculate	the	value	of	the	resistance	per	unit	length	of	the	wire. [1]

Calculate	the	absolute	uncertainty	of	the	resistance	per	unit	length	of	the
wire. [2]

	 [Total:	4]

	



	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	of	the	nature	of	electric
current

8.2 	 	 	

understand	the	term	charge	and
recognise	its	unit,	the	coulomb

8.2 	 	 	

understand	that	charge	is	quantised 8.2 	 	 	

solve	problems	using	the	equation	ΔQ	=
IΔt

8.2 	 	 	

solve	problems	using	the	formula	I	=
nAve

8.3 	 	 	

solve	problems	involving	the	mean	drift
velocity	of	charge	carriers

8.3 	 	 	

understand	the	terms	potential
difference,	e.m.f.	and	the	volt

8.4 	 	 	

use	energy	considerations	to	distinguish
between	p.d.	and	e.m.f.

8.4 	 	 	

define	resistance	and	recognise	its	unit,
the	ohm

8.5 	 	 	

solve	problems	using	the	formula	V	=	IR 8.5 	 	 	

solve	problems	concerning	energy	and
power	in	electric	circuits.

8.6 	 	 	
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	Chapter	9

Kirchhoff’s	laws

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
recall	and	apply	Kirchhoff’s	laws
use	Kirchhoff’s	laws	to	derive	the	formulae	for	the	combined	resistance	of	two	or	more	resistors	in
series	and	in	parallel
recognise	 that	 ammeters	 are	 connected	 in	 series	within	 a	 circuit	 and	 therefore	 should	 have	 low
resistance
recognise	 that	 voltmeters	 are	 connected	 in	 parallel	 across	 a	 component,	 or	 components,	 and
therefore	should	have	high	resistance.

BEFORE	YOU	START
Write	down	 the	name(s)	of	 the	meters	you	use	 to	measure	current	 in	a	component	and	potential
difference	across	it.
Draw	a	circuit	diagram	showing	a	circuit	 in	which	a	battery	 is	used	to	drive	a	current	 through	a
variable	 resistor	 in	 series	with	 a	 lamp.	Show	on	 your	 circuit	 how	 you	would	 connect	 the	meters
named	in	your	list.
Try	to	draw	a	circuit	diagram	to	measure	the	potential	difference	of	a	component	and	the	current	in
it.	Swap	with	a	classmate	to	check.

CIRCUIT	DESIGN
Over	the	years,	electrical	circuits	have	become	increasingly	complex,	with	more	and	more	components
combining	to	achieve	very	precise	results	(Figure	9.1).	Such	circuits	typically	include	power	supplies,
sensing	devices,	potential	dividers	and	output	devices.	At	one	time,	circuit	designers	would	start	with	a
simple	circuit	and	gradually	modify	it	until	the	desired	result	was	achieved.	This	is	impossible	today
when	circuits	include	many	hundreds	or	thousands	of	components.



Instead,	electronics	engineers	(Figure	9.2)	rely	on	computer-based	design	software	that	can	work	out
the	effect	of	any	combination	of	components.	This	is	only	possible	because	computers	can	be
programmed	with	the	equations	that	describe	how	current	and	voltage	behave	in	a	circuit.	These
equations,	which	include	Ohm’s	law	and	Kirchhoff’s	two	laws,	were	established	in	the	18th	century,	but
they	have	come	into	their	own	in	the	21st	century	through	their	use	in	computer-aided	design	(CAD)
systems.

Figure	9.1:	A	complex	electronic	circuit	 –	 this	 is	 the	circuit	board	 that	 controls	a	 computer’s	hard
drive.

Think	about	other	areas	of	industry.	How	have	computers	changed	those	industrial	practices	in	the	last
30	years?

Figure	 9.2:	 A	 computer	 engineer	 uses	 a	 computer-aided	 design	 (CAD)	 software	 tool	 to	 design	 a
circuit	that	will	form	part	of	a	microprocessor,	the	device	at	the	heart	of	every	computer.
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9.1	Kirchhoff’s	first	law
You	will	have	learnt	that	current	may	divide	up	where	a	circuit	splits	into	two	separate	branches.	For
example,	a	current	of	5.0	A	may	split	at	a	junction	or	a	point	in	a	circuit	into	two	separate	currents	of	2.0
A	and	3.0	A.	The	total	amount	of	current	remains	the	same	after	it	splits.	We	would	not	expect	some	of	the
current	to	disappear,	or	extra	current	to	appear	from	nowhere.	This	is	the	basis	of	Kirchhoff’s	first	law,
which	states	that	the	sum	of	the	currents	entering	any	point	in	a	circuit	is	equal	to	the	sum	of	the
currents	leaving	that	same	point.
This	is	illustrated	in	Figure	9.3.	In	the	first	part,	the	current	into	point	P	must	equal	the	current	out,	so:

I1	=	I2

In	the	second	part	of	the	figure,	we	have	one	current	coming	into	point	Q,	and	two	currents	leaving.	The
current	divides	at	Q.	Kirchhoff’s	first	law	gives:

I1	=	I2	+	I3

Figure	9.3:	Kirchhoff’s	first	law:	current	is	conserved	because	charge	is	conserved.

Kirchhoff’s	first	law	is	an	expression	of	the	conservation	of	charge.	The	idea	is	that	the	total	amount	of
charge	entering	a	point	must	exit	the	point.	To	put	it	another	way,	if	a	billion	electrons	enter	a	point	in	a
circuit	in	a	time	interval	of	1.0	s,	then	one	billion	electrons	must	exit	this	point	in	1.0	s.	The	law	can	be
tested	by	connecting	ammeters	at	different	points	in	a	circuit	where	the	current	divides.	You	should	recall
that	an	ammeter	must	be	connected	in	series	so	the	current	to	be	measured	passes	through	it.

Questions
Use	Kirchhoff’s	first	law	to	deduce	the	value	of	the	current	I	in	Figure	9.4.

Figure	9.4:	For	Question	1.

In	Figure	9.5,	calculate	the	current	in	the	wire	X.	State	the	direction	of	this	current	(towards	P	or
away	from	P).

Figure	9.5:	For	Question	2.

Formal	statement	of	Kirchhoff’s	first	law
We	can	write	Kirchhoff’s	first	law	as	an	equation:
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Here,	the	symbol	Σ	(Greek	letter	sigma)	means	‘the	sum	of	all’,	so	ΣIin	means	‘the	sum	of	all	currents
entering	into	a	point’	and	ΣIout	means	‘the	sum	of	all	currents	leaving	that	point’.	This	is	the	sort	of
equation	that	a	computer	program	can	use	to	predict	the	behaviour	of	a	complex	circuit.

KEY	EQUATIONS
Kirchhoff’s	first	law:

Questions
Calculate	ΣIin	and	ΣIout	in	Figure	9.6.	Is	Kirchhoff’s	first	law	satisfied?

Figure	9.6:	For	Question	3.

Use	Kirchhoff’s	first	law	to	deduce	the	value	and	direction	of	the	current	I	in	Figure	9.7.

Figure	9.7:	For	Question	4.
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9.2	Kirchhoff’s	second	law
This	law	deals	with	e.m.f.s	and	voltages	in	a	circuit.	We	will	start	by	considering	a	simple	circuit	that
contains	a	cell	and	two	resistors	of	resistances	R1	and	R2	(Figure	9.8).	Since	this	is	a	simple	series	circuit,
the	current	I	must	be	the	same	all	the	way	around,	and	we	need	not	concern	ourselves	further	with
Kirchhoff’s	first	law.	For	this	circuit,	we	can	write	the	following	equation:

E	=	IR1	+	IR2

e.m.f.	of	battery	=	sum	of	p.d.s	across	the	resistors

Figure	9.8:	A	simple	series	circuit.

You	should	not	find	these	equations	surprising.	However,	you	may	not	realise	that	they	are	a	consequence
of	applying	Kirchhoff’s	second	law	to	the	circuit.	This	law	states	that	the	sum	of	the	e.m.f.s	around	any
loop	in	a	circuit	is	equal	to	the	sum	of	the	p.d.s	around	the	loop.

WORKED	EXAMPLE

Use	Kirchhoff’s	laws	to	find	the	current	in	the	circuit	in	Figure	9.9.
This	is	a	series	circuit	so	the	current	is	the	same	all	the	way	round	the	circuit.

Figure	9.9:	A	circuit	with	two	opposing	batteries.

We	calculate	the	sum	of	the	e.m.f.s:
sum	of	e.m.f.s	=	6.0	V	−	2.0	V	=	4.0	V
The	batteries	are	connected	in	opposite	directions	so	we	must	consider	one	of	the	e.m.f.s	as
negative.
We	calculate	the	sum	of	the	p.d.s.
sum	of	p.d.s	=	(I	×	10)	+	(I	×	30)	=	40	I
We	equate	these:
4.0	=	40	I
and	so	I	=	0.1	A
No	doubt,	you	could	have	solved	this	problem	without	formally	applying	Kirchhoff’s	second
law,	but	you	will	find	that	in	more	complex	problems	the	use	of	these	laws	will	help	you	to
avoid	errors.
You	will	see	later	that	Kirchhoff’s	second	law	is	an	expression	of	the	conservation	of	energy.
We	shall	look	at	another	example	of	how	this	law	can	be	applied,	and	then	look	at	how	it
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can	be	applied	in	general.

Question
Use	Kirchhoff’s	second	law	to	deduce	the	p.d.	across	the	resistor	of	resistance	R	in	the	circuit	shown
in	Figure	9.10,	and	hence	find	the	value	of	R.	(Assume	the	battery	of	e.m.f.	10	V	has	negligible
internal	resistance.)

Figure	9.10:	Circuit	for	Question	5.

An	equation	for	Kirchhoff’s	second	law
In	a	similar	manner	to	the	formal	statement	of	the	first	law,	the	second	law	can	be	written	as	an	equation:

where	ΣE	is	the	sum	of	the	e.m.f.s	and	ΣV	is	the	sum	of	the	potential	differences.

KEY	EQUATION
Kirchhoff’s	second	law:
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9.3	Applying	Kirchhoff’s	laws
Figure	9.11	shows	a	more	complex	circuit,	with	more	than	one	‘loop’.	Again,	there	are	two	batteries	and	two
resistors.	The	problem	is	to	find	the	current	in	each	resistor.	There	are	several	steps	in	this;	Worked	example	2
shows	how	such	a	problem	is	solved.

Figure	9.11:	Kirchhoff’s	laws	are	needed	to	determine	the	currents	in	this	circuit.

Signs	and	directions
Caution	is	necessary	when	applying	Kirchhoff’s	second	law.	You	need	to	take	account	of	the	ways	in	which	the
sources	of	e.m.f.	are	connected	and	the	directions	of	the	currents.	Figure	9.12	shows	one	loop	from	a	larger
complicated	circuit	to	illustrate	this	point.	Only	the	components	and	currents	in	this	particular	loop	are	shown.

Figure	9.12:	A	loop	extracted	from	a	complicated	circuit.

e.m.f.s
Starting	with	the	cell	of	e.m.f.	E1	and	working	anticlockwise	around	the	loop	(because	E1	is	‘pushing	current’
anticlockwise):

sum	of	e.m.f.s	=	E1	+	E2	−	E3

Note	that	E3	is	opposing	the	other	two	e.m.f.s.

p.d.s
Starting	from	the	same	point,	and	working	anticlockwise	again:

sum	of	p.d.s	=	I1R1	−	I2R2	−	I2R3	+	I1R4

Note	that	the	direction	of	current	I2	is	clockwise,	so	the	p.d.s	that	involve	I2	are	negative.

WORKED	EXAMPLE

Calculate	the	current	in	each	of	the	resistors	in	the	circuit	shown	in	Figure	9.11.
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Mark	the	currents.	The	diagram	shows	I1,	I2	and	I3.

Hint:	It	does	not	matter	if	we	mark	these	in	the	wrong	directions,	as	they	will	simply	appear	as
negative	quantities	in	the	solutions.
Apply	Kirchhoff’s	first	law.	At	point	P,	this	gives:

I1	+	I2	=	I3

Choose	a	loop	and	apply	Kirchhoff’s	second	law.	Around	the	upper	loop,	this	gives:

6.0	=	(I3	×	30)	+	(I1	×	10)

Repeat	step	3	around	other	loops	until	there	are	the	same	number	of	equations	as	unknown	currents.
Around	the	lower	loop,	this	gives:

2.0	=	I3	×	30

We	now	have	three	equations	with	three	unknowns	(the	three	currents).
Solve	these	equations	as	simultaneous	equations.	In	this	case,	the	situation	has	been	chosen	to	give
simple	solutions.	Equation	3	gives	I3	=	0.067	A,	and	substituting	this	value	in	Equation	2	gives	I1	=
0.400	A.	We	can	now	find	I2	by	substituting	in	equation	1:

I2	=	I3	−	I1	=	0.067	−	0.400	=	−0.333	A	≈	−0.33	A

Thus	I2	is	negative–it	is	in	the	opposite	direction	to	the	arrow	shown	in	Figure	9.11.

Note	that	there	is	a	third	‘loop’	in	this	circuit;	we	could	have	applied	Kirchhoff’s	second	law	to	the
outermost	loop	of	the	circuit.	This	would	give	a	fourth	equation:
6	−	2	=	I1	×	10

However,	this	is	not	an	independent	equation;	we	could	have	arrived	at	it	by	subtracting	equation	3
from	equation	2.

Questions
You	can	use	Kirchhoff’s	second	law	to	find	the	current	I	in	the	circuit	shown	in	Figure	9.13.	Choosing	the	best
loop	can	simplify	the	problem.

Which	loop	in	the	circuit	should	you	choose?
Calculate	the	current	I.

Figure	9.13:	Careful	choice	of	a	suitable	loop	can	make	it	easier	to	solve	problems	like	this.	For	Question	6.

Use	Kirchhoff’s	second	law	to	deduce	the	resistance	R	of	the	resistor	shown	in	the	circuit	loop	of	Figure	9.14.
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Figure	9.14:	For	Question	7.

Conservation	of	energy
Kirchhoff’s	second	law	is	a	consequence	of	the	principle	of	conservation	of	energy.	If	a	charge,	say	1	C,	moves
around	the	circuit,	it	gains	energy	as	it	moves	through	each	source	of	e.m.f.	and	loses	energy	as	it	passes	through
each	p.d.	If	the	charge	moves	all	the	way	round	the	circuit	so	that	it	ends	up	where	it	started,	it	must	have	the
same	energy	at	the	end	as	at	the	beginning.	(Otherwise	we	would	be	able	to	create	energy	from	nothing	simply	by
moving	charges	around	circuits.)
So:

energy	gained	passing	through	sources	of	e.m.f.	=	energy	lost	passing	through	components	with	p.d.s

You	should	recall	that	an	e.m.f.	in	volts	is	simply	the	energy	gained	per	1	C	of	charge	as	it	passes	through	a	source.
Similarly,	a	p.d.	is	the	energy	lost	per	1	C	as	it	passes	through	a	component.

1	volt	=	1	joule	per	coulomb

Hence,	we	can	think	of	Kirchhoff’s	second	law	as:

energy	gained	per	coulomb	around	loop	=	energy	lost	per	coulomb	around	loop

Here	is	another	way	to	think	of	the	meaning	of	e.m.f.	A	1.5	V	cell	gives	1.5	J	of	energy	to	each	coulomb	of	charge
that	passes	through	it.	The	charge	then	moves	round	the	circuit,	transferring	the	energy	to	components	in	the
circuit.	The	consequence	is	that,	by	driving	1	C	of	charge	around	the	circuit,	the	cell	transfers	1.5	J	of	energy.
Hence,	the	e.m.f.	of	a	source	simply	tells	us	the	amount	of	energy	(in	joules)	transferred	by	the	source	in	driving
unit	charge	(1	C)	around	a	circuit.

Questions
Use	the	idea	of	the	energy	gained	and	lost	by	a	1	C	charge	to	explain	why	two	6	V	batteries	connected	together
in	series	can	give	an	e.m.f.	of	12	V	or	0	V,	but	connected	in	parallel	they	give	an	e.m.f.	of	6	V.
Apply	Kirchhoff’s	laws	to	the	circuit	shown	in	Figure	9.15	to	determine	the	current	that	will	be	shown	by	the
ammeters	A1,	A2	and	A3.

Figure	9.15:	Kirchhoff’s	laws	make	it	possible	to	deduce	the	ammeter	readings.
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9.4	Resistor	combinations
You	are	already	familiar	with	the	formulae	used	to	calculate	the	combined	resistance	R	of	two	or	more
resistors	connected	in	series	or	in	parallel.	To	derive	these	formulae	we	have	to	use	Kirchhoff’s	laws.

Resistors	in	series
Take	two	resistors	of	resistances	R1	and	R2	connected	in	series	(Figure	9.16).	According	to	Kirchhoff’s
first	law,	the	current	in	each	resistor	is	the	same.	The	p.d.	V	across	the	combination	is	equal	to	the	sum	of
the	p.d.s	across	the	two	resistors:

V	=	V1	+	V2

Since	V	=	IR,	V1	=	IR1	and	V2	=	IR2,	we	can	write:

IR	=	IR1	+	IR2

Cancelling	the	common	factor	of	current	I	gives:

R	=	R1	+	R2

KEY	EQUATION
Total	resistance	R	of	three	or	more	resistors	in	series	=	R1	+	R2	+	R3	+	…

For	three	or	more	resistors,	the	equation	for	total	resistance	R	becomes:

R	=	R1	+	R2	+	R3	+	…

You	must	learn	how	to	derive	this	equation	using	Kirchhoff’s	laws.

Figure	9.16:	Resistors	in	series.

Questions
Calculate	the	combined	resistance	of	two	5	Ω	resistors	and	a	10	Ω	resistor	connected	in	series.
The	cell	shown	in	Figure	9.17	provides	an	e.m.f.	of	2.0	V.	The	p.d.	across	one	lamp	is	1.2	V.	Determine
the	p.d.	across	the	other	lamp.

Figure	9.17:	A	series	circuit	for	Question	11.

You	have	five	1.5	V	cells.	How	would	you	connect	all	five	of	them	to	give	an	e.m.f.	of:
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7.5	V
1.5	V
4.5	V?

Resistors	in	parallel
For	two	resistors	of	resistances	R1	and	R2	connected	in	parallel	(Figure	9.18),	we	have	a	situation	where
the	current	divides	between	them.	Hence,	using	Kirchhoff’s	first	law,	we	can	write:

I	=	I1	+	I2

If	we	apply	Kirchhoff’s	second	law	to	the	loop	that	contains	the	two	resistors,	we	have:

I1R1	−	I2R2	=	0	V

(because	there	is	no	source	of	e.m.f.	in	the	loop).

Figure	9.18:	Resistors	connected	in	parallel.

This	equation	states	that	the	two	resistors	have	the	same	p.d.	V	across	them.	Hence	we	can	write:

Substituting	in	I	=	I1	+	I2	and	cancelling	the	common	factor	V	gives:

For	three	or	more	resistors,	the	equation	for	total	resistance	R	becomes:

KEY	EQUATION
Total	resistance	R	of	three	or	more	resistors	in	parallel	is	given	by	the
equation	

You	must	learn	how	to	derive	this	equation	using	Kirchhoff’s	laws.

To	summarise,	when	components	are	connected	in	parallel:
all	have	the	same	p.d.	across	their	ends
the	current	is	shared	between	them
we	use	the	reciprocal	formula	to	calculate	their	combined	resistance.

WORKED	EXAMPLE

Two	10	Ω	resistors	are	connected	in	parallel.	Calculate	the	total	resistance.
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We	have	R1	=	R2	=	10	Ω,	so:

Inverting	both	sides	of	the	equation	gives:
R	=	5	Ω

Hint:	Take	care	not	to	forget	this	step!	Nor	should	you	write	 ,	as	then	you	are
saying	 ).

You	can	also	determine	the	resistance	as	follows:

Questions
Calculate	the	total	resistance	of	four	10	Ω	resistors	connected	in	parallel.
Calculate	the	resistances	of	the	following	combinations:

100	Ω	and	200	Ω	in	series
100	Ω	and	200	Ω	in	parallel
100	Ω	and	200	Ω	in	series	and	this	in	parallel	with	200	Ω.

Calculate	the	current	drawn	from	a	12	V	battery	of	negligible	internal	resistance	connected	to	the
ends	of	the	following:

500	Ω	resistor
500	Ω	and	1000	Ω	resistors	in	series
500	Ω	and	1000	Ω	resistors	in	parallel.

You	are	given	one	200	Ω	resistor	and	two	100	Ω	resistors.	What	total	resistances	can	you	obtain	by
connecting	some,	none,	or	all	of	these	resistors	in	various	combinations?

Solving	problems	with	parallel	circuits
Here	are	some	useful	ideas	that	may	help	when	you	are	solving	problems	with	parallel	circuits	(or
checking	your	answers	to	see	whether	they	seem	reasonable).

When	two	or	more	resistors	are	connected	in	parallel,	their	combined	resistance	is	smaller	than	any
of	their	individual	resistances.	For	example,	three	resistors	of	2	Ω,	3	Ω	and	6	Ω	connected	together	in
parallel	have	a	combined	resistance	of	1	Ω.	This	is	less	than	the	smallest	of	the	individual	resistances.
This	comes	about	because,	by	connecting	the	resistors	in	parallel,	you	are	providing	extra	pathways
for	the	current.	Since	the	combined	resistance	is	lower	than	the	individual	resistances,	it	follows	that
connecting	 two	or	more	 resistors	 in	 parallel	will	 increase	 the	 current	 drawn	 from	a	 supply.	Figure
9.19	shows	a	hazard	that	can	arise	when	electrical	appliances	are	connected	in	parallel.
When	components	are	connected	in	parallel,	they	all	have	the	same	p.d.	across	them.	This	means	that
you	can	often	ignore	parts	of	the	circuit	that	are	not	relevant	to	your	calculation.
Similarly,	for	resistors	in	parallel,	you	may	be	able	to	calculate	the	current	in	each	one	individually,
then	 add	 them	 up	 to	 find	 the	 total	 current.	 This	 may	 be	 easier	 than	 working	 out	 their	 combined
resistance	using	the	reciprocal	formula.	(This	is	illustrated	in	Question	19.)
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Figure	 9.19:	 a	 Correct	 use	 of	 an	 electrical	 socket.	 b	 Here,	 too	 many	 appliances	 (resistances)	 are
connected	 in	parallel.	This	 reduces	 the	 total	 resistance	and	 increases	 the	current	drawn,	 to	 the	point
where	it	becomes	dangerous.

Questions
Three	resistors	of	resistances	20	Ω,	30	Ω	and	60	Ω	are	connected	together	in	parallel.	Select	which	of
the	following	gives	their	combined	resistance:
110	Ω,			50	Ω,			20	Ω,			10	Ω
(No	need	to	do	the	calculation!)
In	the	circuit	in	Figure	9.20	the	battery	of	e.m.f.	10	V	has	negligible	internal	resistance.	Calculate	the
current	in	the	20	Ω	resistor	shown	in	the	circuit.
Determine	the	current	drawn	from	the	battery	in	Figure	9.20.

Figure	9.20:	Circuit	diagram	for	Questions	18	and	19.

What	value	of	resistor	must	be	connected	in	parallel	with	a	20	Ω	resistor	so	that	their	combined
resistance	is	10	Ω?
You	are	supplied	with	a	number	of	100	Ω	resistors.	Describe	how	you	could	combine	the	minimum
number	of	these	to	make	a	250	Ω	resistor.
Calculate	the	current	at	each	point	(A–E)	in	the	circuit	shown	in	Figure	9.21.



Figure	9.21:	For	Question	22.

PRACTICAL	ACTIVITY	10.1

Ammeters	and	voltmeters
Ammeters	and	voltmeters	are	connected	differently	in	circuits	(Figure	9.22).	Ammeters	are	always
connected	in	series,	since	they	measure	the	current	in	a	circuit.	For	this	reason,	an	ammeter	should
have	as	low	a	resistance	as	possible	so	that	as	little	energy	as	possible	is	dissipated	in	the	ammeter
itself.	Inserting	an	ammeter	with	a	higher	resistance	could	significantly	reduce	the	current	flowing	in
the	circuit.	The	ideal	resistance	of	an	ammeter	is	zero.	Digital	ammeters	have	very	low	resistances.

Figure	9.22:	How	to	connect	up	an	ammeter	and	a	voltmeter.

Voltmeters	measure	the	potential	difference	between	two	points	in	the	circuit.	For	this	reason,	they	are
connected	in	parallel	(i.e.,	between	the	two	points),	and	they	should	have	a	very	high	resistance	to	take
as	little	current	as	possible.	The	ideal	resistance	of	a	voltmeter	would	be	infinite.	In	practice,
voltmeters	have	typical	resistance	of	about	1	MΩ.	A	voltmeter	with	a	resistance	of	10	MΩ	measuring	a
p.d.	of	2.5	V	will	take	a	current	of	2.5	×	10−7	A	and	dissipate	just	0.625	µJ	of	heat	energy	from	the
circuit	every	second.
Figure	9.23	shows	some	measuring	instruments.
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Figure	 9.23:	 Electrical	 measuring	 instruments:	 an	 ammeter,	 a	 voltmeter	 and	 an	 oscilloscope.	 The
oscilloscope	can	display	rapidly	changing	voltages.

Question
A	10	V	power	supply	of	negligible	internal	resistance	is	connected	to	a	100	Ω	resistor.	Calculate
the	current	in	the	resistor.
An	ammeter	is	now	connected	in	the	circuit,	to	measure	the	current.	The	resistance	of	the
ammeter	is	5.0	Ω.	Calculate	the	ammeter	reading.

REFLECTION
Kirchhoff’s	Laws	formalise	facts	that	you	might	already	have	been	familiar	with.
Make	a	list	of	the	main	points	that	these	laws	have	helped	clarify	in	your	mind.
Compare	your	list	with	two	or	three	other	people’s	lists.
Are	they	identical?
Thinking	back	on	this	chapter,	what	things	might	you	want	more	help	with?

	
	



SUMMARY

Kirchhoff’s	first	law	states	that	the	sum	of	the	current	currents	entering	any	point	in	a	circuit	is	equal
to	the	sum	of	the	currents	leaving	that	point.

Kirchhoff’s	second	law	states	that	the	sum	of	the	e.m.f.s	around	any	loop	in	a	circuit	is	equal	to	the
sum	of	the	p.d.s	around	the	loop.

The	combined	resistance	of	resistors	in	series	is	given	by	the	formula:

R	=	R1	+	R2	+	…

The	combined	resistance	of	resistors	in	parallel	is	given	by	the	formula:

Ammeters	have	a	low	resistance	and	are	connected	in	series	in	a	circuit.

Voltmeters	have	a	high	resistance	and	are	connected	in	parallel	in	a	circuit.
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EXAM-STYLE	QUESTIONS

Which	row	in	this	table	is	correct? [1]

A Kirchhoff’s	first	law	is	an
expression	of	the	conservation	of
charge.

Kirchhoff’s	second	law	is	an
expression	of	the	conservation	of
charge.

B Kirchhoff’s	first	law	is	an
expression	of	the	conservation	of
charge.

Kirchhoff’s	second	law	is	an
expression	of	the	conservation	of
energy.

C Kirchhoff’s	first	law	is	an
expression	of	the	conservation	of
energy.

Kirchhoff’s	second	law	is	an
expression	of	the	conservation	of
charge.

D Kirchhoff’s	first	law	is	an
expression	of	the	conservation	of
energy.

Kirchhoff’s	second	law	is	an
expression	of	the	conservation	of
energy.

Table	9.1
	

What	is	the	current	I1	in	this	circuit	diagram? [1]

Figure	9.24
	

−0.45	A 	

+0.45	A 	

+1.2	A 	

+1.8	A 	

Use	Kirchhoff’s	first	law	to	calculate	the	unknown	currents	in	these	examples. 	
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Figure	9.25

	

For	each	example,	state	the	direction	of	the	current. [4]

This	diagram	shows	a	part	of	a	circuit. 	

Figure	9.26
	

Copy	the	circuit	and	write	in	the	currents	at	X	and	at	Y,	and	show	their
directions. [2]

Look	at	these	four	circuits. 	
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Figure	9.27

	

Determine	the	unknown	potential	difference	(or	differences)	in	each	case. [5]

A	filament	lamp	and	a	220	Ω	resistor	are	connected	in	series	to	a	battery	of
e.m.f.	6.0	V.	The	battery	has	negligible	internal	resistance.	A	high-resistance
voltmeter	placed	across	the	resistor	measures	1.8	V. 	

Calculate: 	

the	current	drawn	from	the	battery [1]

the	p.d.	across	the	lamp [1]

the	total	resistance	of	the	circuit [1]

the	number	of	electrons	passing	through	the	battery	in	a	time	of	1.0
minute. [4]

(The	elementary	charge	is	1.6	×	10−19	C.) 	

	 [Total:	7]

The	circuit	diagram	shows	a	12	V	power	supply	connected	to	some	resistors. 	

Figure	9.28
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The	current	in	the	resistor	X	is	2.0	A	and	the	current	in	the	6.0	Ω	resistor	is	0.5
A.	Calculate:

	

the	current	in	resistor	Y [1]

the	resistance	of	resistor	Y [2]

the	resistance	of	resistor	X. [2]

	 [Total:	5]

Explain	the	difference	between	the	terms	e.m.f.	and	potential	difference. [2]

This	circuit	contains	batteries	and	resistors.	You	may	assume	that	the
batteries	have	negligible	internal	resistance. 	

Figure	9.29
	

Use	Kirchhoff’s	first	law	to	find	the	current	in	the	4.00	Ω	and	8.00	Ω
resistors. [1]

Calculate	the	e.m.f.	of	E1. [2]

Calculate	the	value	of	E2. [2]

Calculate	the	current	in	the	12.00	Ω	resistor. [2]

	 [Total:	9]

Explain	why	an	ammeter	is	designed	to	have	a	low	resistance. [1]

A	student	builds	the	circuit,	as	shown,	using	a	battery	of	negligible	internal
resistance.	The	reading	on	the	voltmeter	is	9.0	V. 	

Figure	9.30

	

The	voltmeter	has	a	resistance	of	1200	Ω.	Calculate	the	e.m.f.	of	the
battery. [4]

	The	student	now	repeats	the	experiment	using	a	voltmeter	of
resistance	12	kΩ.	Show	that	the	reading	on	this	voltmeter	would	be	9.5
V. [3]

	Refer	to	your	answers	to	i	and	ii	and	explain	why	a	voltmeter	should
have	as	high	a	resistance	as	possible. [2]

	 [Total:	10]
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Explain	what	is	meant	by	the	resistance	of	a	resistor. [1]

This	diagram	shows	a	network	of	resistors	connected	to	a	cell	of	e.m.f.	6.0
V. 	

Figure	9.31
	

Show	that	the	resistance	of	the	network	of	resistors	is	40	Ω. [3]

Calculate	the	current	in	the	60	Ω	resistor. [3]

	 [Total:	7]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

state	and	use	Kirchhoff’s	first	law 9.1,	9.3 	 	 	

state	and	use	Kirchhoff’s	second	law
that	states	that	the	sum	of	the	e.m.f.s
around	any	loop	in	a	circuit	is	equal	to
the	sum	of	the	p.d.s	around	the	loop

9.2,	9.3 	 	 	

calculate	the	total	resistance	of	two	or
more	resistors	in	series

9.4 	 	 	

calculate	the	resistance	of	two	or	more
resistors	in	parallel

9.4 	 	 	

understand	that	ammeters	have	a	low
resistance	and	are	connected	in	series
in	a	circuit

9.4 	 	 	

understand	that	voltmeters	have	a	high
resistance	and	are	connected	in	parallel
in	a	circuit.

9.4 	 	 	
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	Chapter	10

Resistance	and	resistivity

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
state	Ohm’s	law
sketch	and	explain	the	I–V	characteristics	for	various	components
sketch	the	temperature	characteristic	for	an	NTC	thermistor
solve	problems	involving	the	resistivity	of	a	material.

BEFORE	YOU	START
Do	you	understand	the	terms	introduced	in	Chapters	8	and	9:	current,	charge,	potential	difference,
e.m.f.,	resistance	and	their	relationships	to	one	another?
What	are	their	units?
Take	turns	in	challenging	a	partner	to	define	a	term	or	to	write	down	an	equation	linking	different
terms.	Do	not	use	the	textbook	or	your	notes	to	look	up	the	terms.

SUPERCONDUCTIVITY
As	metals	are	cooled,	their	resistance	decreases.	It	was	discovered	as	long	ago	as	1911	that	when
mercury	was	cooled	using	liquid	helium	to	4.1	K	(4.1	degrees	above	absolute	zero),	its	resistance
suddenly	fell	to	zero.	This	phenomenon	was	named	superconductivity.	Other	metals,	such	as	lead	at
7.2	K,	also	become	superconductors.
When	charge	flows	in	a	superconductor,	it	can	continue	in	that	superconductor	without	the	need	for
any	potential	difference	and	without	dissipating	any	energy.	This	means	that	large	currents	can	occur
without	the	unwanted	heating	effect	that	would	occur	in	a	normal	metallic	or	semiconducting
conductor.
Initially,	superconductivity	was	only	of	scientific	interest	and	had	little	practical	use,	as	the	liquid



helium	that	was	required	to	cool	the	superconductors	is	very	expensive	to	produce.	In	1986,	it	was
discovered	that	particular	ceramics	became	superconducting	at	much	higher	temperatures	–	above	77
K,	the	boiling	point	of	liquid	nitrogen.	This	meant	that	liquid	nitrogen,	which	is	readily	available,	could
be	used	to	cool	the	superconductors	and	expensive	liquid	helium	was	no	longer	needed.	Consequently,
superconductor	technology	became	a	feasible	proposition.

Uses	of	superconductors
The	JR-Maglev	train	in	Japan’s	Yamanashi	province	floats	above	the	track	using	superconducting
magnets	(Figure	10.1).	This	means	that	not	only	is	the	heating	effect	of	the	current	in	the	magnet	coils
reduced	to	zero	–	it	also	means	that	the	friction	between	the	train	and	the	track	is	eliminated	and	that
the	train	can	reach	incredibly	high	speeds	of	up	to	580	km	h−1.
Particle	accelerators,	such	as	the	Large	Hadron	Collider	(LHC)	at	the	CERN	research	facility	in
Switzerland,	accelerate	beams	of	charged	particles	to	very	high	energies	by	making	them	orbit	around
a	circular	track	many	times.	The	particles	are	kept	moving	in	the	circular	path	by	very	strong	magnetic
fields	produced	by	electromagnets	whose	coils	are	made	from	superconductors.	Much	of	our
understanding	of	the	fundamental	nature	of	matter	is	from	doing	experiments	in	which	beams	of	these
very	high	speed	particles	are	made	to	collide	with	each	other.

Figure	10.1:	The	Japanese	JR-Maglev	train,	capable	of	speeds	approaching	600	km	h−1.

Magnetic	resonance	imaging	(MRI)	was	developed	in	the	1940s.	It	is	used	by	doctors	to	examine
internal	organs	without	invasive	surgery.
Superconducting	magnets	can	be	made	much	smaller	than	conventional	magnets,	and	this	has	enabled
the	magnetic	fields	produced	to	be	much	more	precise,	resulting	in	better	imaging.
Imagine	you	are	a	scientific	consultant	for	a	new	science	fiction	film.	You	have	been	instructed	to	find	a
use	of	a	superconductor	to	enable	the	hero	to	escape	from	a	villain	who	is	about	to	destroy	the	world.
What	use	would	you	come	up	with?

	
	



10.1	The	I–V	characteristic	for	a	metallic
conductor
In	Chapter	8,	we	saw	how	we	could	measure	the	resistance	of	a	resistor	using	a	voltmeter	and	ammeter.	In
this	topic	we	are	going	to	investigate	the	variation	of	the	current	–	and,	therefore,	resistance	–	as	the
potential	difference	across	a	conductor	changes.
The	potential	difference	across	a	metal	conductor	can	be	altered	using	a	variable	power	supply	or	by
placing	a	variable	resistor	in	series	with	the	conductor.	This	allows	us	to	measure	the	current	at	different
potential	differences	across	the	conductor.	The	results	of	such	a	series	of	measurements	are	shown
graphically	in	Figure	10.2.

Figure	 10.2:	 To	 determine	 the	 resistance	 of	 a	 component,	 you	 need	 to	 measure	 both	 current	 and
potential	difference.

Look	at	the	graph	of	Figure	10.2.	Such	a	graph	is	known	as	an	I–V	characteristic.	The	points	are	slightly
scattered,	but	they	clearly	lie	on	a	straight	line.	A	line	of	best	fit	has	been	drawn.	You	will	see	that	it
passes	through	the	origin	of	the	graph.	In	other	words,	the	current	I	is	directly	proportional	to	the	voltage
V.
The	straight-line	graph	passing	through	the	origin	shows	that	the	resistance	of	the	conductor	remains
constant.	If	you	double	the	current,	the	voltage	will	also	double.	However,	its	resistance,	which	is	the	ratio
of	the	voltage	to	the	current,	remains	the	same.	Instead	of	using:

to	determine	the	resistance,	for	a	graph	of	I	against	V	that	is	a	straight	line	passing	through	the	origin,
you	can	also	use:

(This	will	give	a	more	accurate	value	for	R	than	if	you	were	to	take	a	single	experimental	data	point.	Take
care!	You	can	only	find	resistance	from	the	gradient	if	the	I–V	graph	is	a	straight	line	through	the	origin.)
By	reversing	the	connections	to	the	resistor,	the	p.d.	across	it	will	be	reversed	(in	other	words,	it	becomes
negative).	The	current	will	be	in	the	opposite	direction	–	it	is	also	negative.	The	graph	is	symmetrical,
showing	that	if	a	p.d.	of,	say,	2.0	V	produces	a	current	of	0.5	A,	then	a	p.d.	of	−2.0	V	will	produce	a	current
of	−0.5	A.	This	is	true	for	most	simple	metallic	conductors	but	is	not	true	for	some	electronic	components,
such	as	diodes.
You	get	results	similar	to	those	shown	in	Figure	10.2	for	a	commercial	resistor.	Resistors	have	different
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resistances,	so	the	gradient	of	the	I–V	graph	will	be	different	for	different	resistors.

Question
Table	10.1	shows	the	results	of	an	experiment	to	measure	the	resistance	of	a	carbon	resistor	whose
resistance	is	given	by	the	manufacturer	as	47	Ω	±	10%.

Plot	a	graph	to	show	the	I–V	characteristic	of	this	resistor.
Do	the	points	appear	to	fall	on	a	straight	line	that	passes	through	the	origin	of	the	graph?
Use	the	graph	to	determine	the	resistance	of	the	resistor.
Does	the	value	of	the	resistance	fall	within	the	range	given	by	the	manufacturer?

Potential	difference	/	V Current	/	A
2.1 0.040
4.0 0.079
6.3 0.128
7.9 0.192
10.0 0.202
12.1 0.250

Table	10.1:	Potential	difference	V	and	current	I
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10.2	Ohm’s	law
For	the	metallic	conductor	whose	I–V	characteristic	is	shown	in	Figure	10.2,	the	current	in	it	is	directly
proportional	to	the	p.d.	across	it.	This	means	that	its	resistance	is	independent	of	both	the	current	and
the	p.d.

This	is	because	the	ratio	 	is	a	constant.	Any	component	that	behaves	like	this	is	described	as	an	ohmic
component,	and	we	say	that	it	obeys	Ohm’s	law.	The	statement	of	Ohm’s	law	is	very	precise	and	you
must	not	confuse	this	with	the	equation	 .

A	conductor	obeys	Ohm’s	law	if	the	current	in	it	is	directly	proportional	to	the	potential	difference	across
its	ends.

Question
An	electrical	component	allows	a	current	of	10	mA	through	it	when	a	voltage	of	2.0	V	is	applied.
When	the	voltage	is	increased	to	8.0	V,	the	current	becomes	60	mA.	Does	the	component	obey	Ohm’s
law?	Give	numerical	values	for	the	resistance	to	justify	your	answer.
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10.3	Resistance	and	temperature
A	conductor	that	does	not	obey	Ohm’s	law	is	described	as	non-ohmic.	An	example	is	a	filament	lamp.
Figure	10.3	shows	such	a	lamp;	you	can	clearly	see	the	wire	filament	glowing	as	the	current	passes
through	it.	Figure	10.4	shows	the	I–V	characteristic	for	a	similar	lamp.

Figure	10.3:	The	metal	 filament	 in	a	 lamp	glows	as	the	current	passes	through	it.	 It	also	feels	warm.
This	shows	that	the	lamp	produces	both	heat	and	light.

Figure	10.4:	The	I–V	characteristic	for	a	filament	lamp.

There	are	some	points	you	should	notice	about	the	graph	in	Figure	10.4:
The	line	passes	through	the	origin	(as	for	an	ohmic	component).
For	very	small	currents	and	voltages,	the	graph	is	roughly	a	straight	line.
At	higher	 voltages,	 the	 line	 starts	 to	 curve.	The	 current	 is	 a	bit	 less	 than	we	would	have	expected
from	a	straight	line.	This	suggests	that	the	lamp’s	resistance	has	increased.	You	can	also	tell	that	the
resistance	has	increased	because	the	ratio	 	is	larger	for	higher	voltages	than	for	low	voltages.

The	graph	of	Figure	10.4	is	not	a	straight	line–this	shows	that	the	resistance	of	the	lamp	depends	on	the
temperature	of	its	filament.	Its	resistance	may	increase	by	a	factor	as	large	as	ten	between	when	it	is	cold
and	when	it	is	brightest	(when	its	temperature	may	be	as	high	as	1750	°C).
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Thermistors
Thermistors	are	components	that	are	designed	to	have	a	resistance	that	changes	rapidly	with
temperature.	Thermistors	(‘thermal	resistors’)	are	made	from	metal	oxides	such	as	those	of	manganese
and	nickel.
There	are	two	different	types	of	thermistor:

Negative	 temperature	 coefficient	 (NTC)	 thermistors	 –	 the	 resistance	 of	 this	 type	 of	 thermistor
decreases	 with	 increasing	 temperature.	 Those	 commonly	 used	 for	 physics	 teaching	 may	 have	 a
resistance	of	many	thousands	of	ohms	at	room	temperature,	falling	to	a	few	tens	of	ohms	at	100	°C.
You	should	become	familiar	with	the	properties	of	NTC	thermistors.
Positive	 temperature	 coefficient	 (PTC)	 thermistors–the	 resistance	 of	 this	 type	 of	 thermistor	 rises
abruptly	at	a	definite	temperature,	usually	around	100–150	°C.

In	this	course,	you	only	need	to	know	about	NTC	thermistors.	So,	whenever	thermistors	are	mentioned,
assume	that	it	refers	to	an	NTC	thermistor.
The	change	in	their	resistance	with	temperature	gives	thermistors	many	uses.	Examples	include:

water	temperature	sensors	in	cars	and	ice	sensors	on	aircraft	wings	–	if	 ice	builds	up	on	the	wings,
the	thermistor	‘senses’	this	temperature	drop	and	a	small	heater	is	activated	to	melt	the	ice
baby	breathing	monitors–the	baby	rests	on	an	air-filled	pad,	and	as	he	or	she	breathes,	air	from	the
pad	passes	over	a	thermistor,	keeping	it	cool;	if	the	baby	stops	breathing,	the	air	movement	stops,	the
thermistor	warms	up	and	an	alarm	sounds
fire	sensors	–	a	rise	in	temperature	activates	an	alarm
overload	 protection	 in	 electric	 razor	 sockets	 –	 if	 the	 razor	 overheats,	 the	 thermistor’s	 resistance
decreases,	the	current	increases	rapidly	and	cuts	off	the	circuit.

Questions
The	two	graphs	in	Figure	10.5	show	the	I–V	characteristics	of	a	metal	wire	at	two	different
temperatures,	θ1	and	θ2.

Calculate	the	resistance	of	the	wire	at	each	temperature.
State	which	is	the	higher	temperature,	θ1	or	θ2.

Figure	10.5:	I–V	graphs	for	a	wire	at	two	different	temperatures.	For	Question	3.

The	graph	in	Figure	10.6	shows	the	I–V	characteristics	of	two	electrical	components,	a	filament	lamp
and	a	length	of	steel	wire.

Identify	which	curve	relates	to	each	component.
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State	the	voltage	at	which	both	have	the	same	resistance.
Determine	the	resistance	at	the	voltage	stated	in	part	b.

Figure	10.6:	For	Question	4.

Diodes
The	semiconductor	diode	is	another	example	of	a	non-ohmic	conductor.	A	diode	is	any	component	that
allows	electric	current	in	only	one	direction.	Most	diodes	are	made	of	semiconductor	materials.	One	type,
the	light-emitting	diode	or	LED,	gives	out	light	when	it	conducts.
Figure	10.7	shows	the	I–V	characteristic	for	a	diode.	There	are	some	points	you	should	notice	about	this
graph.

We	 have	 included	 positive	 and	 negative	 values	 of	 current	 and	 voltage.	 This	 is	 because,	 when
connected	 one	 way	 round,	 forward-biased,	 the	 diode	 conducts	 and	 has	 a	 fairly	 low	 resistance.
Connected	the	other	way	round,	reverse-biased,	it	allows	only	a	tiny	current	and	has	almost	infinite
resistance.
For	positive	voltages	less	than	about	0.6	V,	the	current	is	almost	zero	and	hence	the	diode	has	almost
infinite	resistance.	It	starts	to	conduct	suddenly	at	its	threshold	voltage.	The	resistance	of	the	diode
decreases	dramatically	for	voltages	greater	than	0.6	V.

KEY	IDEA
Most	modern	diodes	are	made	from	silicon	and	will	start	conducting	when
there	is	a	potential	difference	of	about	0.6	V	across	them.	You	need	to
remember	this	key	0.6	V	value.

Figure	10.7:	The	current	against	potential	difference	(I–V)	characteristic	for	a	diode.	The	graph	is	not	a
straight	line.	A	diode	does	not	obey	Ohm’s	law.

The	resistance	of	a	diode	depends	on	the	potential	difference	across	it.	From	this	we	can	conclude	that	it
does	not	obey	Ohm’s	law;	it	is	a	non-ohmic	component.
Diodes	are	used	as	rectifiers.	They	allow	current	to	pass	in	one	direction	only	and	so	can	be	used	to
convert	alternating	current	into	direct	current.	(There	is	more	about	this	in	Chapter	27.)	Most	modern
diodes	are	made	from	silicon	and	will	start	conducting	when	there	is	a	potential	difference	of	about	0.6	V
across	them.	You	need	to	remember	this	key	0.6	V	value.
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LEDs	have	traditionally	been	used	as	indicator	lamps	to	show	when	an	appliance	is	switched	on.	Newer
versions,	some	of	which	produce	white	light,	are	replacing	filament	lamps,	for	example,	in	traffic	lights
and	torches	(flashlights)	–	see	Figure	10.8.	Although	they	are	more	expensive	to	manufacture,	they	are
more	energy-efficient	and	hence	cheaper	to	run,	so	that	the	overall	cost	is	less.
The	threshold	voltage	at	which	an	LED	starts	to	conduct	and	emit	light	is	higher	than	0.6	V	and	depends
on	the	colour	of	light	it	emits,	but	may	be	taken	to	be	about	2	V.

Figure	10.8:	This	torch	has	seven	white	LEDs,	giving	a	brighter,	whiter	light	than	a	traditional	filament
lamp.

Questions
The	graph	in	Figure	10.9	was	obtained	by	measuring	the	resistance	R	of	a	particular	thermistor	as	its
temperature	θ	changed.

Determine	its	resistance	at:
20	°C
45	°C.

Determine	the	temperature	when	its	resistance	is:
5000	Ω
2000	Ω.

Figure	 10.9:	 The	 resistance	 of	 an	 NTC	 thermistor	 decreases	 as	 the	 temperature	 increases.	 For
Question	5.

A	student	connects	a	circuit	with	an	NTC	thermistor,	a	filament	lamp	and	a	battery	in	series.	The
lamp	glows	dimly.	The	student	warms	the	thermistor	with	a	hair	dryer.	What	change	will	the	student



notice	in	the	brightness	of	the	lamp?	Explain	your	answer.

The	light-dependent	resistor	(LDR)
A	light-dependent	resistor	(LDR)	is	made	of	a	high-resistance	semiconductor.	If	light	falling	on	the
LDR	is	of	a	high	enough	frequency,	photons	are	absorbed	by	the	semiconductor.	As	some	photons	are
absorbed,	electrons	are	released	from	atoms	in	the	semiconductor.	The	resulting	free	electrons	conduct
electricity	and	the	resistance	of	the	semiconductor	is	reduced.
The	graph	in	Figure	10.10	shows	the	variation	of	the	resistance	of	a	typical	LDR	with	light	intensity.	Only
a	narrow	range	of	light	intensity,	measured	in	lux,	is	shown.	A	typical	LDR	will	have	a	resistance	of	a	few
hundred	ohms	in	sunlight,	but	in	the	dark	its	resistance	will	be	millions	of	ohms.

Figure	10.10:	Resistance	plotted	against	light	intensity	for	an	LDR.

Understanding	the	origin	of	resistance
To	understand	a	little	more	about	the	origins	of	resistance,	it	is	helpful	to	look	at	how	the	resistance	of	a
pure	metal	wire	changes	as	its	temperature	is	increased.	This	is	shown	in	the	graph	in	Figure	10.11.	You
will	see	that	the	resistance	of	the	pure	metal	increases	linearly	as	the	temperature	increases	from	0	°C	to
100	°C.	Compare	this	with	the	graph	in	Figure	10.9	for	an	NTC	thermistor;	the	thermistor’s	resistance
decreases	very	dramatically	over	a	narrow	temperature	range.

Figure	 10.11:	 The	 resistance	 of	 a	 metal	 increases	 gradually	 as	 its	 temperature	 is	 increased.	 The
resistance	of	an	impure	metal	wire	is	greater	than	that	of	a	pure	metal	wire	of	the	same	dimensions.

Figure	10.11	also	shows	how	the	resistance	of	the	metal	changes	if	it	is	slightly	impure.	The	resistance	of
an	impure	metal	is	greater	than	that	of	the	pure	metal	and	follows	the	same	gradual	upward	slope.	The
resistance	of	a	metal	changes	in	this	gradual	way	over	a	wide	range	of	temperatures–from	close	to
absolute	zero	up	to	its	melting	point,	which	may	be	over	2000	°C.
This	suggests	there	are	two	factors	that	affect	the	resistance	of	a	metal:
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the	temperature
the	presence	of	impurities.

Figure	10.12	shows	a	simple	model	that	explains	what	happens	in	a	metal	when	electrons	flow	through	it.
In	a	metal,	a	current	is	due	to	the	movement	of	free	electrons.	At	low	temperatures,	they	can	move	easily
past	the	positive	ions	(Figure	10.12a).	However,	as	the	temperature	is	raised,	the	ions	vibrate	with	larger
amplitudes.	The	electrons	collide	more	frequently	with	the	vibrating	ions,	and	this	decreases	their	mean
drift	velocity.	They	lose	energy	to	the	vibrating	ions	(Figure	10.12b).
If	the	metal	contains	impurities,	some	of	the	atoms	will	be	of	different	sizes	(Figure	10.12c).	Again,	this
disrupts	the	free	flow	of	electrons.	In	colliding	with	impurity	atoms,	the	electrons	lose	energy	to	the
vibrating	atoms.
You	can	see	that	electrons	tend	to	lose	energy	when	they	collide	with	vibrating	ions	or	impurity	atoms.
They	give	up	energy	to	the	metal,	so	it	gets	hotter.	The	resistance	of	the	metal	increases	with	the
temperature	of	the	wire	because	of	the	decrease	in	the	mean	drift	velocity	of	the	electrons.

Figure	10.12:	A	model	of	 the	origins	of	resistance	 in	a	metal.	a:	At	 low	temperatures,	electrons	 flow
relatively	freely.	b:	At	higher	temperatures,	the	electrons	are	obstructed	by	the	vibrating	ions	and	they
make	 very	 frequent	 collisions	 with	 the	 ions.	 c:	 Impurity	 atoms	 can	 also	 obstruct	 the	 free	 flow	 of
electrons.

Conduction	in	semiconductors	is	different.	At	low	temperatures,	there	are	few	delocalised,	or	free,
electrons.	For	conduction	to	occur,	electrons	must	have	sufficient	energy	to	free	themselves	from	the
atom	they	are	bound	to.	As	the	temperature	increases,	a	few	electrons	gain	enough	energy	to	break	free
of	their	atoms	to	become	conduction	electrons.	The	number	of	conduction	electrons	thus	increases	and	so
the	material	becomes	a	better	conductor.	At	the	same	time,	there	are	more	electron–ion	collisions,	but
this	effect	is	small	compared	with	the	increase	in	the	number	of	conduction	electrons.

Question
The	resistance	of	a	metal	wire	changes	with	temperature.	This	means	that	a	wire	could	be	used	to
sense	changes	in	temperature,	in	the	same	way	that	a	thermistor	is	used.

Suggest	one	advantage	a	thermistor	has	over	a	metal	wire	for	this	purpose.
Suggest	one	advantage	a	metal	wire	has	over	a	thermistor.
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10.4	Resistivity
The	resistance	of	a	particular	wire	depends	on	its	size	and	shape.	A	long	wire	has	a	greater	resistance
than	a	short	one,	provided	it	is	of	the	same	thickness	and	material.	A	thick	wire	has	less	resistance	than	a
thin	one.	For	a	metal	in	the	shape	of	a	wire,	R	depends	on	the	following	factors:
length	L
cross-sectional	area	A
the	material	the	wire	is	made	from
the	temperature	of	the	wire.

At	a	constant	temperature,	the	resistance	is	directly	proportional	to	the	length	of	the	wire	and	inversely
proportional	to	its	cross-sectional	area:

and

We	can	see	how	these	relate	to	the	formulae	for	adding	resistors	in	series	and	in	parallel:
If	 we	 double	 the	 length	 of	 a	 wire	 it	 is	 like	 connecting	 two	 identical	 resistors	 in	 series;	 their
resistances	add	to	give	double	the	resistance.	The	resistance	is	proportional	to	the	length.
Doubling	the	cross-sectional	area	of	a	wire	is	like	connecting	two	identical	resistors	in	parallel;	their
combined	resistance	is	halved	(since	 ).

Hence	the	resistance	is	inversely	proportional	to	the	cross-sectional	area.
Combining	the	two	proportionalities	for	length	and	cross-sectional	area,	we	get:

or

But	the	resistance	of	a	wire	also	depends	on	the	material	it	is	made	of.	Copper	is	a	better	conductor	than
steel,	steel	is	a	better	conductor	than	silicon,	and	so	on.	So	if	we	are	to	determine	the	resistance	R	of	a
particular	wire,	we	need	to	take	into	account	its	length,	its	cross-sectional	area	and	the	material.	The
relevant	property	of	the	material	is	its	resistivity,	for	which	the	symbol	is	ρ	(Greek	letter	rho).
The	word	equation	for	resistance	is:

KEY	EQUATION

We	can	rearrange	this	equation	to	give	an	equation	for	resistivity.	The	resistivity	of	a	material	is	defined
by	the	following	word	equation:

KEY	EQUATION
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Values	of	the	resistivities	of	some	typical	materials	are	shown	in	Table	10.2.	Notice	that	the	units	of
resistivity	are	ohm	metres	(Ω	m);	this	is	not	the	same	as	ohms	per	metre.

Material Resistivity	/	Ω	m

silver 1.60	×	10−8

copper 1.69	×	10−8

nichrome(a) 1.30	×	10−8

aluminium 3.21	×	10−8

lead 20.8	×	10−8

manganin(b) 44.0	×	10−8

eureka(c) 49.0	×	10−8

mercury 69.0	×	10−8

graphite 800	×	10−8

germanium 0.65

silicon 2.3	×	103

Pyrex	glass 1012

PTFE(d) 1013–1016

quartz 5	×	1016

(a)	Nichrome	–	an	alloy	of	nickel,	copper	and	aluminium	used	in	electric	heaters	because	it	does	not
oxidise	at	1000	°C.
(b)	Manganin	–	an	alloy	of	84%	copper,	12%	manganese	and	4%	nickel.
(c)	Eureka	(constantan)	–	an	alloy	of	60%	copper	and	40%	nickel.
(d)	PTFE	–	Poly(tetrafluoroethene)	or	Teflon.
Table	10.2:	Resistivities	of	various	materials	at	20	°C.

WORKED	EXAMPLE

Find	the	resistance	of	a	2.6	m	length	of	eureka	wire	with	cross-sectional	area	2.5	×	10−7	m2.
Use	the	equation	for	resistance:

Substitute	values	from	the	question	and	use	the	value	for	ρ	from	Table	10.2:

So	the	wire	has	a	resistance	of	5.1	Ω.

Resistivity	and	temperature
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Resistivity,	like	resistance,	depends	on	temperature.	For	a	metal,	resistivity	increases	with	temperature.
As	we	saw	earlier,	this	is	because	there	are	more	frequent	collisions	between	the	conduction	electrons
and	the	vibrating	ions	of	the	metal.

Questions
Use	the	resistivity	value	quoted	in	Table	10.2	to	calculate	the	lengths	of	0.50	mm	diameter	manganin
wire	needed	to	make	resistance	coils	with	resistances	of:
1.0	Ω
5.0	Ω
10	Ω.

1.0	cm3	of	copper	is	drawn	out	into	the	form	of	a	long	wire	of	cross-sectional	area	4.0	×	10−7	m2.
Calculate	its	resistance.	(Use	the	resistivity	value	for	copper	from	Table	10.2.)
A	1.0	m	length	of	copper	wire	has	a	resistance	of	0.50	Ω.
Calculate	the	resistance	of	a	5.0	m	length	of	the	same	wire.
What	will	be	the	resistance	of	a	1.0	m	length	of	copper	wire	having	half	the	diameter	of	the
original	wire?

A	piece	of	steel	wire	has	a	resistance	of	10	Ω.	It	is	stretched	to	twice	its	original	length.	Compare	its
new	resistance	with	its	original	resistance.

REFLECTION
Imagine	you	are	helping	a	younger	cousin	who	is	studying	for	her	IGCSE	(or	similar	course).	She	finds
it	difficult	to	understand	why	the	resistivity	does	not	change	when	the	dimensions	of	a	sample	are
changed,	but	resistance	does.
Think	about	how	you	might	help	her	understand.
Now	that	it	is	completed,	what	are	your	first	thoughts	about	this	activity?	Are	they	mostly	positive	or
negative?

	
	



SUMMARY

A	conductor	obeys	Ohm’s	law	if	the	current	in	it	is	directly	proportional	to	the	potential	difference
across	its	ends.

Ohmic	components	include	a	wire	at	constant	temperature	and	a	resistor.

Non-ohmic	components	include	a	filament	lamp	and	a	light-emitting	diode.

A	semiconductor	diode	allows	current	in	one	direction	only.

As	the	temperature	of	a	metal	increases,	so	does	its	resistance.

A	thermistor	is	a	component	that	shows	a	rapid	change	in	resistance	over	a	narrow	temperature
range.	The	resistance	of	an	NTC	thermistor	decreases	as	its	temperature	is	increased.

The	resistivity	ρ	of	a	material	is	defined	as:

where	R	is	the	resistance	of	a	wire	of	that	material,	A	is	its	cross-sectional	area	and	L	is	its	length.	The
unit	of	resistivity	is	the	ohm	metre	(Ω	m).
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EXAM-STYLE	QUESTIONS

An	element	of	an	electric	fire	is	made	up	from	a	length	of	nichrome	wire	of
diameter	0.40	mm	and	length	5.0	m. 	

The	resistance	of	this	element	is	R1. 	

Another	element,	also	made	from	nichrome,	for	a	different	electric	fire,	has	a
length	of	2.0	m	and	a	diameter	of	0.20	mm.	This	element	has	a	resistance	of
R2. 	

What	is	the	relationship	between	R1	and	R2? [1]

R2	=	0.80	R1 	

R2	=	1.6	R1 	

R2	=	5.0	R1 	

R2	=	10	R1 	

This	is	a	circuit. 	

Figure	10.13
	

Which	line	in	the	table	shows	the	changes	to	the	lamp	and	the	voltmeter
reading	when	the	temperature	rises? [1]

	 Lamp Voltmeter	reading

A gets	brighter decreases

B gets	brighter increases

C gets	dimmer decreases

D gets	dimmer increases

Table	10.3
	

This	shows	the	I–V	characteristic	of	an	electrical	component. 	

Figure	10.14
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Calculate	the	resistance	of	the	component	when	the	potential	difference
across	it	is: 	

2.0	V [2]

5.0	V. [1]

Suggest	what	the	component	is. [1]

	 [Total:	4]

A	student	connects	a	thermistor	to	a	battery	and	an	ammeter.	He	places	the
thermistor	in	a	beaker	of	water	and	gradually	heats	the	water	from	10	°C	to	its
boiling	point,	recording	the	value	of	the	current	as	he	does	so.	He	then	plots	a
graph	of	the	current	in	the	thermistor	against	the	temperature	of	the	water. 	

Sketch	the	graph	you	would	expect	the	student	to	obtain	from	the
experiment. [1]

Explain	how	the	student	could	now	use	the	thermistor	as	a	thermometer. [2]

	 [Total:	3]

Describe	the	difference	between	the	conduction	processes	in	copper	and	in
silicon,	a	semiconductor. [3]

Explain	why	the	resistance	of	a	metallic	conductor	increases	with
temperature	while	that	of	a	semiconductor	decreases. [3]

	 [Total:	6]

A	nichrome	wire	has	a	length	of	1.5	m	and	a	cross-sectional	area	of	0.0080
mm2.	The	resistivity	of	nichrome	is	1.30	×	10−8	Ω	m. 	

Calculate	the	resistance	of	the	wire. [2]

Calculate	the	length	of	this	wire	that	would	be	needed	to	make	an	element
of	an	electric	heater	of	resistance	30	Ω. [2]

	 [Total:	4]

This	is	a	circuit. 	

Figure	10.15
	

When	switch	S	is	open	the	current	in	ammeter	A	is	0.48	A.	Calculate	the
e.m.f.	of	the	battery.	You	may	assume	the	battery	has	negligible	internal
resistance. [2]
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When	switch	S	is	closed	the	current	in	the	ammeter	increases	to	0.72	A. 	

Determine	the	current	in	the	6.4	Ω	resistor. [1]

State	the	current	in	the	thermistor. [1]

State	and	explain	how	the	reading	on	the	ammeter	changes	when	the
temperature	of	the	thermistor	is	increased. [3]

	 [Total:	7]

Explain	why	the	resistance	of	a	metal	increases	when	its	temperature
increases. [2]

State	two	other	factors	that	determine	the	resistance	of	a	stated	length	of
wire. [2]

When	a	potential	difference	of	1.5	V	is	applied	across	a	5.0	m	length	of
insulated	copper	wire,	a	current	of	0.24	A	is	measured	in	it. 	

Calculate	the	resistance	of	the	length	of	wire. [2]

The	resistivity	of	copper	is	1.69	×	10−8	Ω	m.	Calculate	the	diameter	of
the	wire. [3]

The	wire	is	now	made	into	a	tight	bundle.	State	and	explain	how	you	would
expect	the	current	in	it	to	change. [3]

	 [Total:	12]

This	diagram	shows	a	piece	of	silicon	of	width	32	mm	and	length	36	mm.	The
resistance	of	the	silicon	between	the	points	P	and	Q	is	1.1	MΩ.	Silicon	has	a
resistivity	of	2.3	×	103	Ω	m. 	

Figure	10.16
	

Calculate	the	thickness	of	the	piece	of	silicon. [3]

Calculate	the	current	that	would	pass	through	the	silicon	if	a	potential
difference	of	12	V	were	applied	across	P	and	Q. [2]

Describe	how	the	current	would	change	if	it	were	large	enough	to	cause
the	silicon	to	become	significantly	warmer. [3]

	 [Total:	8]

A	student	is	investigating	the	properties	of	a	semiconducting	diode.	This
diagram	shows	the	circuit	she	builds. 	

Figure	10.16
	

Sketch	a	graph	to	show	how	the	current	in	the	diode	would	vary	as	the
voltage	across	it	is	increased	from	0	V	to	1.0	V. [1]

The	supply	is	now	connected	in	the	reverse	direction	and	once	more
the	potential	difference	across	the	diode	is	increased	from	0	V	to	1.0	V.
Complete	the	I–V	graph. [1]

Suggest	why	the	safety	resistor	is	required. [2]
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When	the	potential	difference	across	the	safety	resistor	is	1.4	V,	the
current	in	it	is	20	mA.	Calculate	the	resistance	of	the	safety	resistor. [2]

	 [Total:	6]

Explain	what	is	meant	by	an	ohmic	conductor. [2]

Sketch	a	graph	of	resistance	R	against	voltage	V	for	a	wire	of	pure	iron
kept	at	constant	temperature.	Label	this	line	X. [1]

Sketch	a	graph	of	resistance	R	against	voltage	V	for	a	second	wire	of
impure	iron,	of	the	same	diameter	and	the	same	length,	which	is	kept
at	the	same	temperature.	Label	this	line	Y. [1]

Explain	how	the	graphs	would	change	if	the	wires	were	kept	at	a
higher,	but	still	constant,	temperature. [1]

Deduce	how	the	resistance	of	a	wire	made	of	pure	iron	would	change	if
both	the	diameter	and	the	length	were	doubled. [3]

	 [Total:	8]

The	readings	in	this	table	are	recorded	from	an	experiment	to	measure	the
resistivity	of	silver. 	

Diameter	of	the	wire 0.40	±	0.02	mm

Length	of	the	wire 2.25	±	0.05	m

Resistance	of	the	wire 0.28	±	0.01	Ω

Table	10.4
	

Calculate	the	resistivity	of	silver. [2]

Calculate	the	percentage	uncertainty	in	each	of	the	variables. [2]

Use	your	answers	to	i	to	calculate	the	absolute	uncertainty	in	the	value
of	the	resistivity	obtained	in	the	experiment. [2]

	 [Total:	6]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

state	and	understand	Ohm’s	law 10.2 	 	 	

recognise	ohmic	and	non-ohmic
components

10.2,	10.3 	 	 	

recognise	and	understand	the	changes
in	the	resistance	of	metals	and
thermistors	when	there	is	a	change	in
their	temperature

10.3,	10.4 	 	 	

understand	that	a	light-dependent
resistor	is	a	component	whose
resistance	decreases	as	the	light	level
increases

10.3 	 	 	

understand	that	resistivity	ρ	of	a
material	is	defined	as:

where	R	is	the	resistance	of	a	wire	of
that	material,	A	is	its	cross-sectional
area	and	L	is	its	length.	The	unit	of
resistivity	is	the	ohm	metre	(Ω	m).

10.4 	 	 	
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	Chapter	11

Practical	circuits

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
explain	the	effects	of	internal	resistance	on	terminal	p.d.	and	power	output	of	a	source	of	e.m.f.
explain	the	use	of	potential	divider	circuits
solve	problems	involving	the	potentiometer	as	a	means	of	comparing	voltages.

BEFORE	YOU	START
How	confident	are	you	on	the	concepts	of	terminal	potential	difference	and	e.m.f.?	Without	looking	at	a
textbook,	either	write	down	the	meaning	of	each	or	discuss	it	with	a	partner.	This	will	help	you	in	the
first	part	of	this	chapter,	which	further	develops	the	idea	of	e.m.f.	and	illustrates	why	the	terminal	p.d.
and	the	e.m.f.	are	different.

THE	FIRST	ELECTRICAL	CELL:	AN	HISTORICAL	MYSTERY
The	Italian	Alessandro	Volta	(Figure	11.1a)	is	generally	credited	with	inventing	the	first	battery.	He
devised	it	after	his	friend	and	rival	Luigi	Galvani	had	shown	that	a	(dead)	frog’s	leg	could	be	made	to
twitch	if	an	electrically	charged	plate	was	connected	to	it.	Volta’s	battery	consisted	of	alternate	discs	of
copper	and	zinc,	separated	by	felt	soaked	in	brine–see	Figure	11.1b.



Figure	 11.1:	 a	 Alessandro	 Volta	 demonstrating	 his	 newly	 invented	 pile	 (battery)	 to	 the	 French
Emperor	Napoleon.	b	Volta’s	pile,	showing	(top	to	bottom)	discs	of	copper,	wet	felt	and	zinc.

However,	there	is	evidence	that	earlier	technologists	may	have	beaten	him	by	over	1000	years.	In	1936,
a	small	pot	was	discovered	during	an	archaeological	dig	near	Baghdad.	The	pot	was	sealed	with	pitch,
and	inside	the	pot	there	was	a	copper	cylinder	surrounding	an	iron	rod.	When	filled	with	an	acid,
perhaps	vinegar,	a	potential	difference	of	around	1.5	volts	could	be	produced	between	the	copper	and
the	iron.
It	has	been	suggested	that	this	battery	might	have	been	used	to	electroplate	metal	objects	with	gold.
So,	did	Volta	really	invent	the	battery,	or	did	he	just	rekindle	an	art	that	had	been	lost	for	more	than	a
millennium?

	
	



11.1	Internal	resistance
You	will	have	learnt	that,	when	you	use	a	power	supply	or	other	source	of	e.m.f.,	you	cannot	assume	that	it
is	providing	you	with	the	exact	voltage	across	its	terminals	as	suggested	by	the	value	of	its	e.m.f.	There
are	several	reasons	for	this.	For	example,	the	supply	may	not	be	made	to	a	high	degree	of	precision,	or	the
batteries	may	have	become	flat,	and	so	on.	However,	there	is	a	more	important	factor,	which	is	that	all
sources	of	e.m.f.	have	an	internal	resistance.	For	a	power	supply,	this	may	be	due	to	the	wires	and
components	inside,	whereas	for	a	cell	the	internal	resistance	is	due	to	the	chemicals	within	it.
Experiments	show	that	the	voltage	across	the	terminals	of	the	power	supply	depends	on	the	circuit	of
which	it	is	part.	In	particular,	the	voltage	across	the	power	supply	terminals	decreases	if	it	is	required	to
supply	more	current.
Figure	11.2	shows	a	circuit	you	can	use	to	investigate	this	effect,	and	a	sketch	graph	showing	how	the
voltage	across	the	terminals	of	a	power	supply	might	decrease	as	the	supplied	current	increases.

Figure	11.2:	a	A	circuit	for	determining	the	e.m.f.	and	internal	resistance	of	a	supply;	b	typical	form	of
results.

The	charges	moving	round	a	circuit	have	to	pass	through	the	external	components	and	through	the
internal	resistance	of	the	power	supply.	These	charges	gain	electrical	energy	from	the	power	supply.	This
energy	is	lost	as	thermal	energy	as	the	charges	pass	through	the	external	components	and	through	the
internal	resistance	of	the	power	supply.	Power	supplies	and	batteries	get	warm	when	they	are	being	used.
(Try	using	a	cell	to	light	a	small	torch	bulb;	feel	the	cell	before	connecting	to	the	bulb,	and	then	feel	it
again	after	the	bulb	has	been	lit	for	about	15	seconds.)
The	reason	for	this	heating	effect	is	that	some	of	the	electrical	potential	energy	of	the	charges	is
transformed	to	internal	energy	as	they	do	work	against	the	internal	resistance	of	the	cell.
It	can	often	help	to	solve	problems	if	we	show	the	internal	resistance	r	of	a	source	of	e.m.f.	explicitly	in
circuit	diagrams	(Figure	11.3).	Here,	we	are	representing	a	cell	as	if	it	were	a	‘perfect’	cell	of	e.m.f.	E,
together	with	a	separate	resistor	of	resistance	r.	The	dashed	line	enclosing	E	and	r	represents	the	fact
that	these	two	are,	in	fact,	a	single	component.

Figure	 11.3:	 It	 can	 be	 helpful	 to	 show	 the	 internal	 resistance	 r	 of	 a	 cell	 (or	 a	 supply)	 in	 a	 circuit
diagram.

Now	we	can	determine	the	current	when	this	cell	is	connected	to	an	external	resistor	of	resistance	R.	You
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can	see	that	R	and	r	are	in	series	with	each	other.	The	current	I	is	the	same	for	both	of	these	resistors.	The
combined	resistance	of	the	circuit	is	thus	R	+	r,	and	we	can	write:

E	=	I(R	+	r)					or					E	=	IR	+	Ir

We	cannot	measure	the	e.m.f.	E	of	the	cell	directly,	because	we	can	only	connect	a	voltmeter	across	its
terminals.	This	terminal	p.d.	V	across	the	cell	is	always	the	same	as	the	p.d.	across	the	external	resistor.
Therefore,	we	have:

V	=	IR

This	will	be	less	than	the	e.m.f.	E	by	an	amount	Ir.	The	quantity	Ir	is	the	potential	difference	across	the
internal	resistor.	If	we	combine	these	two	equations,	we	get:

V	=	E	−	Ir

where	E	is	the	emf	of	the	source,	I	is	the	current	in	the	source	and	r	is	the	internal	resistance	of	the
source.
or
terminal	p.d.	=	e.m.f.	−	p.d	across	the	internal	resistance
The	potential	difference	across	the	internal	resistance	indicates	the	energy	transferred	to	the	internal
resistance	of	the	supply.	If	you	short-circuit	a	battery	with	a	piece	of	wire,	a	large	current	will	flow,	and
the	battery	will	get	warm	as	energy	is	transferred	within	it.	This	is	also	why	you	may	damage	a	power
supply	by	trying	to	make	it	supply	a	larger	current	than	it	is	designed	to	give.

KEY	EQUATION
Potential	difference	across	a	power	source:

V	=	E	–	Ir

WORKED	EXAMPLE

There	is	a	current	of	0.40	A	when	a	battery	of	e.m.f.	6.0	V	is	connected	to	a	resistor	of	13.5	Ω.
Calculate	the	internal	resistance	of	the	cell.

Substitute	values	from	the	question	in	the	equation	for	e.m.f.:

Rearrange	the	equation	to	make	r	the	subject	and	solve:

Questions
A	battery	of	e.m.f.	5.0	V	and	internal	resistance	2.0	Ω	is	connected	to	an	8.0	Ω	resistor.	Draw	a	circuit
diagram	and	calculate	the	current	in	the	circuit.

Calculate	the	current	in	each	circuit	in	Figure	11.4.
Calculate	also	the	potential	difference	across	the	internal	resistance	for	each	cell,	and	the	terminal
p.d.
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Figure	11.4:	For	Question	2.

Four	identical	cells,	each	of	e.m.f.	1.5	V	and	internal	resistance	0.10	Ω,	are	connected	in	series.	A	lamp
of	resistance	2.0	Ω	is	connected	across	the	four	cells.	Calculate	the	current	in	the	lamp.

PRACTICAL	ACTIVITY	12.1

Determining	e.m.f.	and	internal	resistance
You	can	get	a	good	idea	of	the	e.m.f.	of	an	isolated	power	supply	or	a	battery	by	connecting	a	digital
voltmeter	across	it.	A	digital	voltmeter	has	a	very	high	resistance	(~107	Ω),	so	only	a	tiny	current	will
pass	through	it.	The	potential	difference	across	the	internal	resistance	will	then	only	be	a	tiny	fraction	of
the	e.m.f.	If	you	want	to	determine	the	internal	resistance	r	as	well	as	the	e.m.f.	E,	you	need	to	use	a
circuit	like	that	shown	in	Figure	11.2.	When	the	variable	resistor	is	altered,	the	current	in	the	circuit
changes	and	measurements	can	be	recorded	of	the	circuit	current	I	and	terminal	p.d.	V.	The	internal
resistance	r	can	be	found	from	a	graph	of	V	against	I	(Figure	11.5).
Compare	the	equation	V	=	E	−	Ir	with	the	equation	of	a	straight	line	y	=	mx	+	c.	By	plotting	V	on	the	y-
axis	and	I	on	the	x-axis,	a	straight	line	should	result.	The	intercept	on	the	y-axis	is	E,	and	the	gradient	is
−r.

Figure	11.5:	E	and	r	can	be	found	from	this	graph.

Questions
When	a	high-resistance	voltmeter	is	placed	across	an	isolated	battery,	its	reading	is	3.0	V.	When	a	10	Ω
resistor	is	connected	across	the	terminals	of	the	battery,	the	voltmeter	reading	drops	to	2.8	V.	Use	this
information	to	determine	the	internal	resistance	of	the	battery.
The	results	of	an	experiment	to	determine	the	e.m.f.	E	and	internal	resistance	r	of	a	power	supply	are
shown	in	Table	11.1.	Plot	a	suitable	graph	and	use	it	to	find	E	and	r.

V	/	V 1.43 1.33 1.18 1.10 0.98

I	/	A 0.10 0.30 0.60 0.75 1.00

Table	11.1:	Results	for	Question	5.

The	effects	of	internal	resistance
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You	cannot	ignore	the	effects	of	internal	resistance.	Consider	a	battery	of	e.m.f.	3.0	V	and	of	internal
resistance	1.0	Ω.	The	maximum	current	that	can	be	drawn	from	this	battery	is	when	its	terminals	are
shorted-out.	(The	external	resistance	R	≈	0.)	The	maximum	current	is	given	by:

The	terminal	p.d.	of	the	battery	depends	on	the	resistance	of	the	external	resistor.	For	an	external
resistor	of	resistance	1.0	Ω,	the	terminal	p.d.	is	1.5	V	–	half	of	the	e.m.f.	The	terminal	p.d.	approaches	the
value	of	the	e.m.f.	when	the	external	resistance	R	is	very	much	greater	than	the	internal	resistance	of	the
battery.	For	example,	a	resistor	of	resistance	1000	Ω	connected	to	the	battery	gives	a	terminal	p.d.	of
2.997	V.	This	is	almost	equal	to	the	e.m.f.	of	the	battery.	The	more	current	a	battery	supplies,	the	more	its
terminal	p.d.	will	decrease.	An	example	of	this	can	be	seen	when	a	driver	tries	to	start	a	car	with	the
headlamps	on.	The	starter	motor	requires	a	large	current	from	the	battery,	the	battery’s	terminal	p.d.
drops	and	the	headlamps	dim.

Question
A	car	battery	has	an	e.m.f.	of	12	V	and	an	internal	resistance	of	0.04	Ω.	The	starter	motor	draws	a
current	of	100	A.

Calculate	the	terminal	p.d.	of	the	battery	when	the	starter	motor	is	in	operation.
Each	headlamp	is	rated	as	‘12	V,	36	W’.	Calculate	the	resistance	of	a	headlamp.
To	what	value	will	the	power	output	of	each	headlamp	decrease	when	the	starter	motor	is	in
operation?	(Assume	that	the	resistance	of	the	headlamp	remains	constant.)
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11.2	Potential	dividers
How	can	we	get	an	output	of	3.0	V	from	a	battery	of	e.m.f.	6.0	V?	Sometimes	we	want	to	use	only	part	of
the	e.m.f.	of	a	supply.	To	do	this,	we	use	an	arrangement	of	resistors	called	a	potential	divider	circuit.
Figure	11.6	shows	two	potential	divider	circuits,	each	connected	across	a	battery	of	e.m.f.	6.0	V	and	of
negligible	internal	resistance.	The	high-resistance	voltmeter	measures	the	voltage	across	the	resistor	of
resistance	R2.	We	refer	to	this	voltage	as	the	output	voltage,	Vout,	of	the	circuit.	The	first	circuit,	a,
consists	of	two	resistors	of	values	R1	and	R2.	The	voltage	across	the	resistor	of	resistance	R2	is	half	of	the
6.0	V	of	the	battery.	The	second	potential	divider,	b,	is	more	useful.	It	consists	of	a	single	variable	resistor.
By	moving	the	sliding	contact,	we	can	achieve	any	value	of	Vout	between	0.0	V	(slider	at	the	bottom)	and
6.0	V	(slider	at	the	top).

Figure	11.6:	Two	potential	divider	circuits.

The	output	voltage	Vout	depends	on	the	relative	values	of	R1	and	R2.	You	can	calculate	the	value	of	Vout
using	the	potential	divider	equation:

where	R2	is	the	resistance	of	the	component	over	which	the	output	is	taken,	R1	is	the	resistance	of	the
second	component	in	the	potential	divider	and	Vin	is	the	p.d.	across	the	two	components.

KEY	EQUATION
Potential	divider	equation:

Question
Determine	the	range	of	Vout	for	the	circuit	in	Figure	11.7	as	the	variable	resistor	R2	is	adjusted	over
its	full	range	from	0	Ω	to	40	Ω.	(Assume	the	supply	of	e.m.f.	10	V	has	negligible	internal	resistance.)



Figure	11.7:	For	Question	7.
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Step	1

Step	2

11.3	Sensors
Light-dependent	resistors	as	sensors
How	is	a	light-dependent	resistor	(LDR)	used	as	a	sensor	or	transducer?	A	voltage	is	needed	to	drive	the
output	device,	such	as	a	voltmeter,	yet	the	LDR	only	produces	a	change	in	resistance.	The	sensor	must
use	this	change	in	resistance	to	generate	the	change	in	voltage.	The	solution	is	to	place	the	LDR	in	series
with	a	fixed	resistor,	as	shown	in	Figure	11.8.
The	voltage	of	the	supply	is	shared	between	the	two	resistors	in	proportion	to	their	resistance	so,	as	the
light	level	changes	and	the	LDR’s	resistance	changes,	so	does	the	voltage	across	each	of	the	resistors.
The	two	resistors	form	a	potential	divider	whose	output	changes	automatically	with	changing	light
intensities.

Figure	11.8:	An	LDR	used	as	a	sensor.

WORKED	EXAMPLE

Using	the	graph	in	Figure	11.9,	calculate	Vout	in	Figure	11.8	when	the	light	intensity	is	60	lux.

Figure	11.9:	for	Worked	example	2	and	question	8.

Find	the	resistance	of	the	LDR	at	60	lux.
RLDR	=	20	kΩ

Divide	the	total	voltage	of	10	V	in	the	ratio	3	:	20.	The	total	number	of	parts	is	23	so:

Hint:	The	answer	on	your	calculator	might	be	8.69565.	When	you	give	your	answer	to	three
significant	figures,	do	not	write	8.69	–	you	must	round	correctly.
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Questions
What	is	the	voltage	across	the	3.0	kΩ	resistor	in	Figure	11.9	when	the	light	intensity	is	10	lux?
The	circuit	shown	in	Figure	11.8	produces	a	decreasing	output	voltage	when	the	light	intensity
increases.	How	can	the	circuit	be	altered	to	produce	an	increasing	output	voltage	as	the	light
intensity	increases?

Thermistors	as	a	sensors
The	thermistors	that	we	refer	to	in	this	course	are	known	as	negative	temperature	coefficient	(NTC)
thermistors.	This	means	that,	when	the	temperature	rises,	the	resistance	of	the	thermistor	falls.	This
happens	because	the	thermistor	is	made	from	a	semiconductor	material.	One	property	of	a	semiconductor
is	that	when	the	temperature	rises	the	number	of	free	electrons	increases,	and	thus	the	resistance	falls.
Figure	11.10	shows	a	graph	of	the	resistance	of	a	thermistor	and	the	resistance	of	a	metal	wire	plotted
against	temperature.	You	can	see	that	the	resistance	of	a	metal	wire	increases	with	increase	in
temperature.	A	metal	wire	is	not	a	negative	temperature	device,	but	it	could	be	used	as	a	sensing	device.
A	thermistor	is	more	useful	than	a	metal	wire	because	there	is	a	much	larger	change	in	resistance	with
change	in	temperature.	However,	the	change	in	resistance	of	a	thermistor	is	not	linear	with	temperature;
indeed,	it	is	likely	to	be	an	exponential	decrease.	This	means	that	any	device	used	to	measure
temperature	electronically	must	be	calibrated	to	take	into	account	the	resistance–temperature	graph.	The
scale	on	an	ordinary	laboratory	thermometer	between	0	°C	and	100	°C	is	divided	up	into	100	equal	parts,
each	of	which	represents	1	°C.	If	the	resistance	of	a	thermistor	were	divided	like	this,	the	scale	would	be
incorrect.
The	thermistor	can	be	used	as	a	sensing	device	in	the	same	way	as	an	LDR.	Instead	of	sensing	a	change
in	light	level,	it	senses	a	change	in	temperature.

Figure	11.10:	Variation	of	resistance	with	temperature.

Questions
Explain	how	a	thermistor	can	be	used	as	a	transducer.
State	two	similarities	between	an	LDR	and	a	thermistor.
Design	a	circuit	using	the	thermistor	in	Figure	11.10	that	uses	a	cell	of	10	V	and	produces	an	output
voltage	of	5	V	at	50	°C.	Explain	whether	the	voltage	output	of	your	circuit	increases	or	decreases	as
the	temperature	rises.

	
	



11.4	Potentiometer	circuits
A	potentiometer	is	a	device	used	for	comparing	potential	differences.	For	example,	it	can	be	used	to
measure	the	e.m.f.	of	a	cell,	provided	you	already	have	a	source	whose	e.m.f.	is	known	accurately.	As	we
will	see,	a	potentiometer	can	be	thought	of	as	a	type	of	potential	divider	circuit.
A	potentiometer	consists	of	a	piece	of	resistance	wire,	usually	1	m	in	length,	stretched	horizontally
between	two	points.	In	Figure	11.11,	the	ends	of	the	wire	are	labelled	A	and	B.	A	driver	cell	is	connected
across	the	length	of	wire.	Suppose	this	cell	has	an	e.m.f.	Eo	of	2.0	V.	We	can	then	say	that	point	A	is	at	a
voltage	of	2.0	V,	B	is	at	0	V,	and	the	midpoint	of	the	wire	is	at	1.0	V.	In	other	words,	the	voltage	decreases
steadily	along	the	length	of	the	wire.

Figure	11.11:	A	potentiometer	connected	to	measure	the	e.m.f.	of	cell	X.

Now,	suppose	we	wish	to	measure	the	e.m.f.	EX	of	cell	X	(this	must	have	a	value	less	than	that	of	the
driver	cell).	The	positive	terminal	of	cell	X	is	connected	to	point	A.	(Note	that	both	cells	have	their
positive	terminals	connected	to	A.)	A	lead	from	the	negative	terminal	is	connected	to	a	sensitive
galvanometer	(such	as	a	microammeter),	and	a	lead	from	the	other	terminal	of	the	galvanometer	ends
with	a	metal	jockey.	This	is	a	simple	connecting	device	with	a	very	sharp	edge	that	allows	very	precise
positioning	on	the	wire.
If	the	jockey	is	touched	onto	the	wire	close	to	point	A,	the	galvanometer	needle	will	deflect	in	one
direction.	If	the	jockey	is	touched	close	to	B,	the	galvanometer	needle	will	deflect	in	the	opposite
direction.	Clearly,	there	must	be	some	point	Y	along	the	wire	that,	when	touched	by	the	jockey,	gives	zero
deflection	–	the	needle	moves	neither	to	the	left	nor	the	right.
In	finding	this	position,	the	jockey	must	be	touched	gently	and	briefly	onto	the	wire;	the	deflection	of	the
galvanometer	shows	whether	the	jockey	is	too	far	to	the	left	or	right.	It	is	important	not	to	slide	the
jockey	along	the	potentiometer	wire	as	this	may	scrape	its	surface,	making	it	non-uniform	so	that	the
voltage	does	not	vary	uniformly	along	its	length.
When	the	jockey	is	positioned	at	Y,	the	galvanometer	gives	zero	deflection,	showing	that	there	is	no
current	through	it.	This	can	only	happen	if	the	potential	difference	across	the	length	of	wire	AY	is	equal	to
the	e.m.f.	of	cell	X.	We	can	say	that	the	potentiometer	is	balanced.	If	the	balance	point	was	exactly	half-
way	along	the	wire,	we	would	be	able	to	say	that	the	e.m.f.	of	X	was	half	that	of	the	driver	cell.	This
technique	–	finding	a	point	where	there	is	a	reading	of	zero	–	is	known	as	a	null	method.
To	calculate	the	unknown	e.m.f.	EX	we	measure	the	length	AY.	Then	we	have:

where	Eo	is	the	e.m.f.	of	the	driver	cell.

KEY	EQUATION
To	compare	two	e.m.f.s	Ex	and	Eo:

The	potentiometer	can	be	thought	of	as	a	potential	divider	because	the	point	of	contact	Y	divides	the



resistance	wire	into	two	parts,	equivalent	to	the	two	resistors	of	a	potential	divider.

Comparing	e.m.f.s	with	a	potentiometer
When	a	potentiometer	is	balanced,	no	current	flows	from	the	cell	being	investigated.	This	means	that	its
terminal	p.d.	is	equal	to	its	e.m.f.;	we	do	not	have	to	worry	about	the	potential	difference	across	the
internal	resistance.	This	is	a	great	advantage	that	a	potentiometer	has	over	a	voltmeter,	which	must	draw
a	small	current	in	order	to	work.
However,	there	is	a	problem:	the	driver	cell	is	supplying	current	to	the	potentiometer,	and	so	the	p.d.
between	A	and	B	will	be	less	than	the	e.m.f.	of	the	driver	cell	(some	volts	are	lost	because	of	its	internal
resistance).	To	overcome	this	problem,	we	use	the	potentiometer	to	compare	p.d.s.	Suppose	we	have	two
cells	whose	e.m.f.s	EX	and	EY	we	want	to	compare.	Each	is	connected	in	turn	to	the	potentiometer,	giving
balance	points	at	C	and	D–see	Figure	11.12.	(In	the	diagram,	you	can	see	immediately	that	EY	must	be
greater	than	EX	because	D	is	further	to	the	right	than	C.)

Figure	11.12:	Comparing	two	e.m.f.s	using	a	potentiometer.

The	ratio	of	the	e.m.f.s	of	the	two	cells	will	be	equal	to	the	ratio	of	the	two	lengths	AC	and	AD:

If	one	of	the	cells	used	has	an	accurately	known	e.m.f.,	the	other	can	be	calculated	with	the	same	degree
of	accuracy.

Comparing	p.d.s
The	same	technique	can	be	used	to	compare	potential	differences.	For	example,	two	resistors	could	be
connected	in	series	with	a	cell	(Figure	11.13).	The	p.d.	across	one	resistor	is	first	connected	to	the
potentiometer	and	the	balance	length	found.	This	is	repeated	with	the	other	resistor	and	the	new	balance
point	is	found.	The	ratio	of	the	lengths	is	the	ratio	of	the	p.d.s.

Figure	11.13:	Comparing	two	potential	differences	using	a	potentiometer.
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Since	both	resistors	have	the	same	current	flowing	through	them,	the	ratio	of	the	p.d.s	is	also	the	ratio	of
their	resistances.

Question
To	make	a	potentiometer,	a	driver	cell	of	e.m.f.	4.0	V	is	connected	across	a	1.00	m	length	of	resistance
wire.

What	is	the	potential	difference	across	each	1	cm	length	of	the	wire?	What	length	of	wire	has	a
p.d.	of	1.0	V	across	it?
A	cell	of	unknown	e.m.f.	E	is	connected	to	the	potentiometer	and	the	balance	point	is	found	at	a
distance	of	37.0	cm	from	the	end	of	the	wire	to	which	the	galvanometer	is	connected.	Estimate
the	value	of	E.	Explain	why	this	can	only	be	an	estimate.
A	standard	cell	of	e.m.f.	1.230	V	gives	a	balance	length	of	31.2	cm.	Use	this	value	to	obtain	a
more	accurate	value	for	E.

REFLECTION
A	student	sets	up	a	potentiometer	circuit	to	compare	the	e.m.f.s	of	two	cells.	The	student	is	unable	to
find	a	balance	point.
Discuss	with	a	partner	possible	reasons	for	this.	Consider	using	Kirchhoff’s	Laws	as	a	way	of	exploring
the	reasons.
Did	you	do	your	work	the	way	other	people	did	theirs?	In	what	ways	did	you	do	it	differently?	In	what
ways	was	your	work	or	process	similar?

	
	



SUMMARY

A	source	of	e.m.f.,	such	as	a	battery,	has	an	internal	resistance.	We	can	think	of	the	source	as	having
an	internal	resistance,	r,	in	series	with	an	e.m.f.,	E.

The	terminal	p.d.	of	a	source	of	e.m.f.	is	less	than	the	e.m.f.	because	of	the	potential	difference	across
the	internal	resistor:

terminal	p.d.	=	e.m.f.	−	p.d	across	the	internal	resistor

V	=	E	−	Ir

A	potential	divider	circuit	consists	of	two	or	more	resistors	connected	in	series	to	a	supply.	The	output
voltage	Vout	across	the	resistor	of	resistance	R2	is	given	by:

A	potentiometer	can	be	used	to	compare	potential	differences.
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EXAM-STYLE	QUESTIONS

A	resistor	of	resistance	6.0	Ω	and	a	second	resistor	of	resistance	3.0	Ω	are
connected	in	parallel	across	a	battery	of	e.m.f.	4.5	V	and	internal	resistance
0.50	Ω. 	

What	is	the	current	in	the	battery? [1]

0.47	A 	

1.8	A 	

3.0	A 	

11	A 	

This	diagram	shows	a	potential	divider. 	

Figure	11.14
	

What	happens	when	the	temperature	decreases? [1]

The	resistance	of	the	thermistor	decreases	and	Vout	decreases. 	

The	resistance	of	the	thermistor	decreases	and	Vout	increases. 	

The	resistance	of	the	thermistor	increases	and	Vout	decreases. 	

The	resistance	of	the	thermistor	increases	and	Vout	increases. 	

A	single	cell	of	e.m.f.	1.5	V	is	connected	across	a	0.30	Ω	resistor.	The	current	in
the	circuit	is	2.5	A. 	

Calculate	the	terminal	p.d.	and	explain	why	it	is	not	equal	to	the	e.m.f.	of
the	cell. [2]

Show	that	the	internal	resistance	r	of	the	cell	is	0.30	Ω. [3]

It	is	suggested	that	the	power	dissipated	in	the	external	resistor	is	a
maximum	when	its	resistance	R	is	equal	to	the	internal	resistance	r	of	the
cell. 	

Calculate	the	power	dissipated	when	R	=	r. [1]

Show	that	the	power	dissipated	when	R	=	0.50	Ω	and	R	=	0.20	Ω	is	less
than	that	dissipated	when	R	=	r,	as	the	statement	suggests. [4]

	 [Total:	10]

A	student	is	asked	to	compare	the	e.m.f.s	of	a	standard	cell	and	a	test	cell.	He
sets	up	the	circuit	shown	using	the	test	cell. 	
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Figure	11.15

	

Explain	why	he	is	unable	to	find	a	balance	point	and	state	the	change
he	must	make	in	order	to	achieve	balance. [2]

State	how	he	would	recognise	the	balance	point. [1]

He	achieves	balance	when	the	distance	AB	is	22.5	cm.	He	repeats	the
experiment	with	a	standard	cell	of	e.m.f.	of	1.434	V.	The	balance	point
using	this	cell	is	at	34.6	cm.	Calculate	the	e.m.f.	of	the	test	cell. [2]

	 [Total:	5]

Explain	what	is	meant	by	the	internal	resistance	of	a	cell. [2]

When	a	cell	is	connected	in	series	with	a	resistor	of	2.00	Ω	there	is	a
current	of	0.625	A.	If	a	second	resistor	of	2.00	Ω	is	put	in	series	with	the
first,	the	current	falls	to	0.341	A. 	

Calculate: 	

the	internal	resistance	of	the	cell [2]

the	e.m.f.	of	the	cell. [1]

A	car	battery	needs	to	supply	a	current	of	200	A	to	turn	over	the	starter
motor.	Explain	why	a	battery	made	of	a	series	of	cells	of	the	type	described
b	would	not	be	suitable	for	a	car	battery. [2]

	 [Total:	7]

State	what	is	meant	by	the	term	e.m.f.	of	a	cell. [2]

A	student	connects	a	high-resistance	voltmeter	across	the	terminals	of	a
battery	and	observes	a	reading	of	8.94	V.	He	then	connects	a	12	Ω	resistor
across	the	terminals	and	finds	that	the	potential	difference	falls	to	8.40	V. 	

Explain	why	the	measured	voltage	falls. [2]

Calculate	the	current	in	the	circuit. [2]

Calculate	the	internal	resistance	of	the	cell. [2]

State	any	assumptions	you	made	in	your	calculations. [1]

	 [Total:	9]

This	diagram	shows	two	circuits	that	could	be	used	to	act	as	a	dimmer	switch
for	a	lamp. 	

Figure	11.16

	



a
b				i

ii

8

a

b

c

9

a				i

ii

iii

b

10

a

Explain	one	advantage	circuit	1	has	over	circuit	2. [2]

The	lamp	is	rated	at	60	W	at	240	V.	Calculate	the	resistance	of	the
lamp	filament	at	its	normal	operating	temperature. [2]

State	and	explain	how	the	resistance	of	the	filament	at	room
temperature	would	compare	with	the	value	calculated	in	i. [2]

	 [Total:	6]

This	circuit	shows	a	potential	divider.	The	battery	has	negligible	internal
resistance	and	the	voltmeter	has	infinite	resistance. 	

Figure	11.17
	

State	and	explain	how	the	reading	on	the	voltmeter	will	change	when	the
resistance	of	the	variable	resistor	is	increased. [2]

Resistor	R2	has	a	resistance	of	470	Ω.	Calculate	the	value	of	the	variable
resistor	when	the	reading	on	the	voltmeter	is	2.0	V. [2]

The	voltmeter	is	now	replaced	with	one	of	resistance	2	kΩ.	Calculate	the
reading	on	this	voltmeter. [2]

	 [Total:	6]

This	is	a	potentiometer	circuit. 	

Figure	11.18
	

Sketch	a	graph	of	reading	on	the	voltmeter	against	length,	l,	as	the
jockey	is	moved	from	point	A	to	point	B. [2]

State	the	readings	on	the	voltmeter	when	the	jockey	is	connected	to	A
and	when	it	is	connected	to	B.	(You	may	assume	that	the	driver	cell	has
negligible	internal	resistance.) [1]

Draw	a	circuit	diagram	to	show	how	the	potentiometer	could	be	used
to	compare	the	e.m.f.s	of	two	batteries. [3]

When	a	pair	of	4	Ω	resistors	are	connected	in	series	with	a	battery,	there	is
a	current	of	0.60	A	current	through	the	battery.	When	the	same	two
resistors	are	connected	in	parallel	and	then	connected	across	the	battery,
there	is	a	current	of	1.50	A	through	it.	Calculate	the	e.m.f.	and	the	internal
resistance	of	the	battery. [4]

	 [Total:	10]

A	potentiometer,	which	consists	of	a	driving	cell	connected	to	a	resistance	wire
of	length	100	cm,	is	used	to	compare	the	resistances	of	two	resistors. 	

Draw	a	diagram	to	show	the	circuits	that	are	used	to	compare	the	two
resistances. [2]
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When	resistor	R1	alone	is	tested	the	length	of	resistance	wire	for	balance	is
15.4	cm.	There	is	an	uncertainty	in	measuring	the	beginning	of	the
resistance	wire	of	0.1	cm,	and	in	establishing	the	balance	point	of	a	further
0.1	cm. 	

Determine	the	uncertainty	in	the	balance	length. [1]

When	R1	and	R2	are	tested	in	series	the	balance	length	is	42.6	cm.
There	are	similar	uncertainties	in	measuring	this	balance	length. 	

Calculate	the	ratio	of	 . [1]

Calculate	the	value	of	the	ration	of	 . [2]

Calculate	the	uncertainty	in	the	value	of	the	ratio	 . [2]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	concept	of	internal
resistance	of	a	source	of	e.m.f.

11.1 	 	 	

solve	problems	involving	internal
resistance	and	e.m.f.	and	the	potential
difference	across	the	internal
resistance.

11.1 	 	 	

recognise	a	potential	divider	and	solve
problems	using	the	equation:

11.2,	11.3 	 	 	

use	a	potentiometer	to	compare
potential	differences.

11.4 	 	 	
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	Chapter	12

Waves

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
describe	a	progressive	wave
describe	the	motion	of	transverse	and	longitudinal	waves
describe	 waves	 in	 terms	 of	 their	 wavelength,	 amplitude,	 frequency,	 speed,	 phase	 difference	 and
intensity
use	 the	 time-base	 and	 y-gain	 of	 a	 cathode-ray	 oscilloscope	 (CRO)	 to	 determine	 frequency	 and
amplitude
use	the	wave	equation	v	=	fλ

use	the	equations	 	and	intensity	∝	amplitude2

describe	the	Doppler	effect	for	sound	waves

use	the	equation	

describe	and	understand	electromagnetic	waves
recall	that	wavelengths	in	the	range	400–700	nm	in	free	space	are	visible	to	the	human	eye
describe	and	understand	polarisation
use	Malus’s	law	to	determine	the	intensity	of	transmitted	light	through	a	polarising	filter.

BEFORE	YOU	START
Write	down	definitions	for	displacement,	speed	and	power.
What	do	 you	know	about	 the	 electromagnetic	 spectrum?	Can	 you	name	any	of	 the	waves	 in	 this
spectrum?	Make	a	list	to	share	with	the	class.



VIBRATIONS	MAKING	WAVES
The	wind	blowing	across	the	surface	of	the	sea	produces	waves.	The	surface	of	the	water	starts	to	move
up	and	down,	and	these	vibrations	spread	outwards	–	big	waves	may	travel	thousands	of	kilometres
across	the	ocean	before	they	break	on	a	beach	(Figure	12.1).
How	can	you	tell	from	looking	at	Figure	12.1	that	a	wave	is	a	form	of	energy?

Figure	12.1:	This	photograph	shows	a	wave	breaking	on	the	shore	and	dissipating	the	energy	it	has
drawn	from	the	wind	in	its	journey	across	the	ocean.	The	two	scientists	are	‘storm	chasers’	who	are
recording	the	waves	produced	by	a	hurricane	in	the	Gulf	of	Mexico.
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12.1	Describing	waves
When	you	pluck	the	string	of	a	guitar,	it	vibrates.	The	vibrations	create	a	wave	in	the	air	that	we	call
sound.	In	fact,	all	vibrations	produce	waves	of	one	type	or	another	(Figure	12.2).	Waves	that	move
through	a	material	(or	a	vacuum)	are	called	progressive	waves.	A	progressive	wave	transfers	energy
from	one	position	to	another.
At	the	seaside,	a	wave	is	what	we	see	on	the	surface	of	the	sea.	The	water	moves	around	and	a	wave
travels	across	the	surface.	In	physics,	we	extend	the	idea	of	a	wave	to	describe	many	other	phenomena,
including	light,	sound	and	so	on.	We	do	this	by	imagining	an	ideal	wave,	as	shown	in	Figure	12.3	–	you
will	never	see	such	a	perfect	wave	on	the	sea!

Figure	12.2:	Radio	telescopes	detect	radio	waves	from	distant	stars	and	galaxies;	a	rainbow	is	an	effect
caused	by	the	reflection	and	refraction	of	light	waves	by	water	droplets	in	the	atmosphere.

Figure	 12.3:	 A	 displacement–distance	 graph	 illustrating	 the	 terms	 displacement,	 amplitude	 and
wavelength.

Figure	12.3,	or	a	similar	graph	of	displacement	against	time,	illustrates	the	following	important
definitions	about	waves	and	wave	motion.

The	distance	of	a	point	on	the	wave	from	its	undisturbed	position,	or	equilibrium	position,	 is	called
the	displacement	x.
The	 maximum	 displacement	 of	 any	 point	 on	 the	 wave	 from	 its	 undisturbed	 position	 is	 called	 the
amplitude	A.	The	amplitude	of	a	wave	on	the	sea	is	measured	in	units	of	distance,	such	as	metres.
The	greater	the	amplitude	of	the	wave,	the	louder	the	sound	or	the	rougher	the	sea.
The	distance	between	two	adjacent	points	on	a	wave	oscillating	in	step	with	each	other	is	called	the
wavelength	λ	(the	Greek	letter	lambda).	This	is	the	same	as	the	distance	between	two	adjacent	peaks
or	troughs.	The	wavelength	of	a	wave	on	the	sea	is	measured	in	units	of	distance,	such	as	metres.
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The	time	taken	for	one	complete	oscillation	of	a	point	in	a	wave	is	called	the	period	T.	It	is	the	time
taken	for	a	point	to	move	from	one	particular	position	and	return	to	that	same	position,	moving	in	the
same	direction.	It	is	measured	in	units	of	time,	such	as	seconds.
The	 number	 of	 oscillations	 per	 unit	 time	 of	 a	 point	 in	 a	wave	 is	 called	 its	 frequency	 f.	 For	 sound
waves,	the	higher	the	frequency	of	a	musical	note,	the	higher	is	its	pitch.	Frequency	is	measured	in
hertz	(Hz),	where	1	Hz	=	1	oscillation	per	second	(1	kHz	=	103	Hz	and	1	MHz	=	106	Hz).
The	frequency	f	of	a	wave	is	the	reciprocal	of	the	period	T:

Waves	 are	 called	mechanical	waves	 if	 they	 need	 a	 substance	 (medium)	 through	 which	 to	 travel.
Sound	is	one	example	of	such	a	wave.	Other	cases	are	waves	on	stretched	strings,	seismic	waves	and
water	waves	(Figure	12.4).

Figure	12.4:	The	impact	of	a	droplet	on	the	surface	of	a	liquid	creates	a	vibration,	which	in	turn	gives
rise	to	waves	on	the	surface.

PRACTICAL	ACTIVITY	12.1

Measuring	frequency
You	can	measure	the	frequency	of	sound	waves	using	a	cathode-ray	oscilloscope	(CRO)	or	oscilloscope
for	short.	Figure	12.6	shows	how.
A	microphone	is	connected	to	the	input	of	the	CRO.	The	microphone	converts	the	sound	waves	into	a
varying	voltage	that	has	the	same	frequency	as	the	sound	waves.	This	voltage	is	displayed	on	the	CRO
screen.
It	is	best	to	think	of	a	CRO	as	a	voltmeter	that	is	capable	of	displaying	a	rapidly	varying	voltage.	To	do
this,	its	spot	moves	across	the	screen	at	a	steady	speed,	set	by	the	time-base	control.	At	the	same	time,
the	spot	moves	up	and	down	according	to	the	voltage	of	the	input.
Hence,	the	display	on	the	screen	is	a	graph	of	the	varying	voltage	on	the	(vertical)	y-axis,	with	time	on
the	(horizontal)	x-axis.	If	we	know	the	horizontal	scale,	we	can	determine	the	period	and	hence	the
frequency	of	the	sound	wave.	Worked	example	1	shows	how	to	do	this.	(In	Chapter	14	we	will	look	at
one	method	of	measuring	the	wavelength	of	sound	waves.)
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Figure	12.6:	Determining	the	frequency	of	sound	waves	from	a	vibrating	tuning	fork.

WORKED	EXAMPLE

Figure	12.7	shows	the	trace	on	an	oscilloscope	screen	when	sound	waves	are	detected	by	a
microphone.	The	time-base	is	set	at	1	ms	div−1.	The	y-gain	is	set	to	20	mV	div−1.
Determine	the	frequency	of	the	sound	waves	and	the	amplitude	of	the	oscilloscope	trace.

Figure	12.7:	A	CRO	trace	–	what	is	the	frequency	of	the	sound	waves	detected	by	the	microphone
and	the	amplitude	of	the	trace?

Determine	the	period	of	the	trace	on	the	screen,	in	scale	divisions.	From	Figure	12.7,	you
can	see	that	the	period	is	equivalent	to	4.0	scale	divisions	(div).
period	T	=	4.0	div
Determine	the	period	in	seconds	(s)	using	the	time-base	setting.

period	T	=	4.0	div	×	time-base	setting	=	4.0	div	×	1	ms	div−1	=	4.0	ms

Hint:	Notice	how	div	and	div−1cancel	out.

1	ms	=	10−3	s

Therefore,	period	T	=	4.0	×	10−3	s
Calculate	the	frequency	f	from	the	period	T:

So,	the	sound	wave	frequency	is	250	Hz.
Determine	the	amplitude	of	the	trace	on	the	screen,	in	scale	divisions.	From	Figure	12.7,
you	can	see	that	the	amplitude	is	equivalent	to	3.5	scale	divisions	(div).	Remember	that	the
amplitude	is	measured	from	the	0	volt	position.
amplitude	of	trace	=	3.5	div
Determine	the	amplitude	in	volts	(V)	using	the	y-gain	setting.

amplitude	=	3.5	div	×	y-setting	=	3.5	div	×	20	mV	div−1	=	70	mV



1
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Hint:	Notice	how	div	and	div−1cancel	out	again.

1	mV	=	10−3	V

Therefore,	amplitude	=	70	×	10−3	V	=	0.070	V

Questions
Determine	the	wavelength	and	amplitude	of	each	of	the	two	waves	shown	in	Figure	12.5.

Figure	12.5:	Two	waves	for	Question	1.

A	microphone	detects	sound	waves.	The	microphone	is	connected	to	a	CRO.	On	the	CRO	screen,	two
complete	cycles	occupy	five	scale	divisions	along	the	x-axis.	The	calibrated	time-base	is	set	on	0.005	s
div−1.
Determine	the	frequency	of	the	sound	waves.
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12.2	Longitudinal	and	transverse	waves
There	are	two	distinct	types	of	wave,	longitudinal	and	transverse.	Both	can	be	demonstrated	using	a
toy	spring	lying	along	a	bench.
Push	the	end	of	the	spring	back	and	forth;	the	segments	of	the	spring	become	compressed	and	then
stretched	out,	along	the	length	of	the	spring.	Wave	pulses	run	along	the	spring.	These	are	longitudinal
waves.
Waggle	the	end	of	the	spring	from	side	to	side.	The	segments	of	the	spring	move	from	side	to	side	as	the
wave	travels	along	the	spring.	These	are	transverse	waves.
So,	the	distinction	between	longitudinal	and	transverse	waves	is	as	follows.

In	 longitudinal	 waves,	 the	 particles	 of	 the	 medium	 vibrate	 parallel	 to	 the	 direction	 of	 the	 wave
velocity.
In	transverse	waves,	the	particles	of	the	medium	vibrate	at	right	angles	to	the	direction	of	the	wave
velocity.

Sound	waves	are	an	example	of	a	longitudinal	wave.	Light	and	all	other	electromagnetic	waves	are
transverse	waves.	Waves	in	water	are	quite	complex.	Particles	of	the	water	may	move	both	up	and	down
and	from	side	to	side	as	a	water	wave	travels	through	the	water.	You	can	investigate	water	waves	in	a
ripple	tank.	There	is	more	about	water	waves	in	Table	12.1	and	in	Chapter	13.

Representing	waves
Figure	12.8	shows	how	we	can	represent	longitudinal	and	transverse	waves.	The	longitudinal	wave	shows
how	the	material	through	which	it	is	travelling	is	alternately	compressed	and	expanded.	This	gives	rise	to
high	and	low	pressure	regions,	respectively.

Figure	12.8:	a	Longitudinal	waves	and	b	transverse	waves.	A	=	amplitude,	λ	=	wavelength.

However,	this	can	be	difficult	to	draw,	so	you	will	often	see	a	longitudinal	wave	represented	as	if	it	were	a
sine	wave.	The	displacement	referred	to	in	the	graph	is	the	displacement	of	the	particles	in	the	wave.
We	can	compare	the	compressions	and	rarefactions	(or	expansions)	of	the	longitudinal	wave	with	the
peaks	and	troughs	of	the	transverse	wave.

Phase	and	phase	difference
All	points	along	a	wave	have	the	same	pattern	of	vibration.	However,	different	points	do	not	necessarily
vibrate	in	step	with	one	another.	As	one	point	on	a	wave	vibrates,	the	point	next	to	it	vibrates	slightly	out-
of-step	with	it.	We	say	that	they	vibrate	out	of	phase	with	each	other	–	there	is	a	phase	difference
between	them.	This	is	the	amount	by	which	one	oscillation	leads	or	lags	behind	another.
Two	particles	oscillating	in	step	have	a	phase	difference	of	0°,	360°	and	so	on	(or	0	rad,	2π	rad	and	so	on).
Two	particles	oscillating	in	antiphase	have	a	phase	difference	of	180°,	270°	and	so	on	(or	π	rad,	3π	rad
and	so	on).
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Phase	difference	is	measured	in	degrees	or	in	radians.	As	you	can	see	from	Figure	12.9,	two	points	A	and
B,	with	a	separation	of	one	whole	wavelength	λ,	vibrate	in	phase	with	each	other.	The	phase	difference
between	these	two	oscillating	particles	at	A	and	B	is	360°.	(You	can	also	say	it	is	0°.)	The	phase	difference
between	any	other	two	points	between	A	and	B	can	have	any	value	between	0°	and	360°.	A	complete
cycle	of	the	wave	is	thought	of	as	360°.	The	separation	between	points	C	and	D	is	quarter	of	a	wavelength
–	the	phase	difference	between	these	two	points	is	90°.	In	general,	when	the	separation	between	two
oscillating	particles	on	a	wave	is	x,	then	the	phase	difference	ϕ	between	these	particles	in	degrees	can	be
calculated	using	the	expression:

where	λ	is	the	wavelength	of	the	wave.
The	idea	of	phase	difference	is	revisited	in	Chapter	13.

Figure	12.9:	Different	points	along	a	wave	have	different	phases.

Question
Using	axes	of	displacement	and	distance,	sketch	two	waves	A	and	B	such	that	A	has	twice	the
wavelength	and	half	the	amplitude	of	B.
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12.3	Wave	energy
It	is	important	to	realise	that,	for	both	types	of	mechanical	wave,	the	particles	that	make	up	the	material
through	which	the	wave	is	travelling	do	not	move	along	–	they	only	oscillate	about	a	fixed	point.	It	is
energy	that	is	transmitted	by	the	wave.	Each	particle	vibrates;	as	it	does	so,	it	pushes	its	neighbour,
transferring	energy	to	it.	Then	that	particle	pushes	its	neighbour,	which	pushes	its	neighbour.	In	this	way,
energy	is	transmitted	from	one	particle	to	the	next,	to	the	next	and	so	on	down	the	line.

Intensity
The	term	intensity	has	a	very	precise	meaning	in	physics.	The	intensity	of	a	wave	is	defined	as	the	rate	of
energy	transmitted	(power)	per	unit	area	at	right	angles	to	the	wave	velocity.

Intensity	is	measured	in	watts	per	square	metre	(W	m−2).	For	example,	when	the	Sun	is	directly
overhead,	the	intensity	of	its	radiation	is	about	1.0	kW	m−2	(1	kilowatt	per	square	metre).	This	means
that	energy	arrives	at	the	rate	of	about	1	kW	(1000	J	s−1)	on	each	square	metre	of	the	surface	of	the
Earth.	At	the	top	of	the	atmosphere,	the	intensity	of	sunlight	is	greater,	about	1.4	kW	m−2.

KEY	EQUATION

Question
A	100	W	lamp	emits	electromagnetic	radiation	in	all	directions.	Assuming	the	lamp	to	be	a	point
source,	calculate	the	intensity	of	the	radiation:

at	a	distance	of	1.0	m	from	the	lamp
at	a	distance	of	2.0	m	from	the	lamp.

Hint:	Think	of	the	area	of	a	sphere	at	each	of	the	two	radii.

Intensity	and	amplitude
The	intensity	of	a	wave	generally	decreases	as	it	travels	along.	There	are	two	reasons	for	this:

The	wave	may	‘spread	out’	(as	in	the	example	of	light	spreading	out	from	a	lamp	in	Question	4).
The	wave	may	be	absorbed	or	scattered	(as	when	light	passes	through	the	Earth’s	atmosphere).

As	a	wave	spreads	out,	its	amplitude	decreases.	This	suggests	that	the	intensity	I	of	a	wave	is	related	to
its	amplitude	A.
In	fact,	intensity	I	is	directly	proportional	to	the	square	of	the	amplitude	A:

KEY	EQUATION

The	relationship	also	implies	that,	for	a	particular	wave:

So,	if	one	wave	has	twice	the	amplitude	of	another,	it	has	four	times	the	intensity.	This	means	that	the
wave	is	transmitting	four	times	the	power	per	unit	area	at	right	angles	to	the	wave	velocity.

Question
A	wave	from	a	source	has	an	amplitude	of	5.0	cm	and	an	intensity	of	400	W	m−2.

The	amplitude	of	the	wave	is	increased	to	10.0	cm.	Calculate	the	intensity	now.



b The	intensity	of	the	wave	is	decreased	to	100	W	m−2.	Calculate	the	amplitude	now.
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12.4	Wave	speed
The	speed	with	which	energy	is	transmitted	by	a	wave	is	known	as	the	wave	speed	v.	This	is	measured	in
m	s−1.	The	wave	speed	for	sound	in	air	at	atmospheric	pressure	of	105	Pa	and	a	temperature	of	0	°C	is
about	330	m	s−1,	while	for	light	in	a	vacuum	it	is	almost	300	000	000	m	s−1.

The	wave	equation
An	important	equation	connecting	the	speed	v	of	a	wave	with	its	frequency,	f	and	wavelength,	λ	can	be
determined	as	follows.	We	can	find	the	speed	of	the	wave	using:

A	wave	will	travel	a	distance	of	one	whole	wavelength,	λ	in	a	time	equal	to	one	period,	T.	So:

However,	 	and	so:

v	=	f	×	λ

where	v	is	the	speed	of	the	wave,	f	is	the	frequency	and	λ	is	the	wavelength.

KEY	EQUATION

v	=	fλ

where	v	is	the	speed	of	the	wave,	f	is	the	frequency	and	λ	is	the
wavelength.

A	numerical	example	may	help	to	make	this	clear.	Imagine	a	wave	of	frequency	5	Hz	and	wavelength	3	m
going	past	you.	In	1	s,	five	complete	wave	cycles,	each	of	length	3	m,	go	past.	So	the	total	length	of	the
waves	going	past	in	1	s	is	15	m.	The	distance	travelled	by	the	wave	per	second	is	its	speed,	therefore	the
speed	of	the	wave	is	15	m	s−1.
You	can	see	that,	for	a	given	speed	of	wave,	the	greater	the	wavelength,	the	smaller	the	frequency	(and
the	smaller	the	wavelength,	the	greater	the	frequency).	This	means,	that	for	a	constant	wave	speed,	the
wavelength	is	inversely	proportional	to	the	frequency.	The	speed	of	sound	in	air	is	constant	(for	a	given
temperature	and	pressure).	The	wavelength	of	sound	can	be	made	smaller	by	increasing	the	frequency	of
the	source	of	sound.
Table	12.1	gives	typical	values	of	speed	v,	frequency	f	and	wavelength	λ	for	some	mechanical	waves.	You
can	check	for	yourself	that	v	=	fλ	is	valid.

	 Water	waves	in	a
ripple	tank

Sound	waves	in	air Waves	on	a	toy	spring

Speed	v	/	m	s−1 about	0.12 330 about	1

Frequency	f	/	Hz about	6 20	to	20	000	(limits	of
human	hearing)

about	2

Wavelength	λ	/	m about	0.2 16.5	to	0.0165 about	0.5

Table	12.1:	Data	for	some	mechanical	waves	that	are	often	investigated	in	the	laboratory.

WORKED	EXAMPLE

Middle	C	on	a	piano	tuned	to	concert	pitch	should	have	a	frequency	of	264	Hz	(Figure	12.10).	If	the
speed	of	sound	is	330	m	s−1,	calculate	the	wavelength	of	the	sound	produced	from	this	note.

We	rearrange	the	wave	equation	to	the	form:
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Substituting	the	values	we	get:

The	wavelength,	λ	is	1.25	m.

Figure	12.10:	Each	string	in	a	piano	produces	a	different	note.

Questions
Sound	is	a	mechanical	wave	that	can	be	transmitted	through	a	solid.
Calculate	the	frequency	of	sound	of	wavelength	0.25	m	that	travels	through	steel	at	a	speed	of	5060	m
s−1.
A	cello	string	vibrates	with	a	frequency	of	64	Hz.
Calculate	the	speed	of	the	transverse	waves	on	the	cello	string	given	that	the	wavelength	is	140	cm.
An	oscillator	is	used	to	send	a	transverse	wave	along	a	stretched	string.	The	wavelength	of	the	wave	is
5.0	cm	when	the	frequency	of	the	oscillator	is	30	Hz.
For	this	wave,	calculate:

its	frequency
its	speed.

Copy	and	complete	Table	12.2.	(You	may	assume	that	the	speed	of	radio	waves	is	3.00	×	108	m	s−1.)

Station Wavelength	/	m Frequency	/	MHz
Radio	A	(FM) 	 97.6

Radio	B	(FM) 	 94.6

Radio	B	(LW) 1515 	

Radio	C	(MW) 693 	

Table	12.2:	For	Question	9.
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12.5	The	Doppler	effect	for	sound	waves
You	may	have	noticed	a	change	in	pitch	of	the	note	heard	when	an	emergency	vehicle	passes	you	while
sounding	its	siren.	The	pitch	is	higher	as	the	vehicle	approaches	you,	and	lower	as	it	moves	away
(recedes).	This	is	an	example	of	the	Doppler	effect;	you	can	hear	the	same	thing	if	a	train	passes	at
speed	while	sounding	its	whistle.
Figure	12.11	shows	why	this	change	in	frequency	is	observed.	It	shows	a	source	of	sound	emitting	waves
with	a	constant	frequency	fs,	together	with	two	observers	A	and	B.

If	 the	 source	 is	 stationary	 (Figure	 12.11a),	waves	 arrive	 at	A	 and	B	 at	 the	 same	 rate,	 and	 so	 both
observers	hear	sounds	of	the	same	frequency	fs.

If	the	source	is	moving	towards	A	and	away	from	B	(Figure	12.11b),	the	situation	is	different.	From
the	diagram,	you	can	see	that	the	waves	are	squashed	together	in	the	direction	of	A	and	spread	apart
in	the	direction	of	B.

Observer	A	will	observe,	or	detect,	waves	whose	wavelength	is	shortened.	More	wavelengths	per	second
arrive	at	A,	and	so	A	observes	a	sound	of	higher	frequency	than	fs.	Similarly,	the	waves	arriving	at	B	have
been	stretched	out	and	B	will	observe	a	frequency	lower	than	fs.

Figure	12.11:	Sound	waves	(green	lines)	emitted	at	constant	frequency	by	a	a	stationary	source,	and	b
a	source	moving	with	speed	vs.	The	separation	between	adjacent	green	lines	is	equal	to	one	wavelength.

An	equation	for	observed	frequency
There	are	two	different	speeds	involved	in	this	situation.	The	source	is	moving	with	speed	vs.	The	sound
waves	travel	through	the	air	with	speed	v,	which	is	unaffected	by	the	speed	of	the	source.	(Remember,	the
speed	of	a	wave	depends	only	on	the	medium	it	is	travelling	through.)
The	frequency	and	wavelength	observed	by	an	observer	will	change	according	to	the	speed	vs	at	which
the	source	is	moving	relative	to	the	stationary	observer.	Figure	12.12	shows	how	we	can	calculate	the
observed	wavelength	λ0	and	the	observed	frequency	f0.

The	wave	sections	shown	in	Figure	12.12	represent	the	fs	wavelengths	emitted	by	the	source	in	1	s.
Provided	the	source	is	stationary	(Figure	12.12a),	the	length	of	this	section	is	equal	to	the	wave	speed	v.
The	wavelength	observed	by	the	observer	is	simply:

The	situation	is	different	when	the	source	is	moving	away	(receding)	from	the	observer	(Figure	12.12b).



•

•

In	1	s,	the	source	moves	a	distance	vs.	Now	the	section	of	fs	wavelengths	will	have	a	length	equal	to	v	+
vs.

Figure	12.12:	 Sound	waves,	 emitted	at	 constant	 frequency	by	a	 a	 stationary	 source,	 and	b	 a	 source
moving	with	speed	vs	away	from	the	observer	(that	is,	the	person	hearing	the	sound).

The	observed	wavelength	is	now	given	by:

The	observed	frequency	is	given	by:

where	f0	is	the	observed	frequency,	fs	is	the	frequency	of	the	source,	v	is	the	speed	of	the	wave	and	vs	is
the	speed	of	the	source	relative	to	the	observer.
This	shows	us	how	to	calculate	the	observed	frequency	when	the	source	is	moving	away	from	the
observer.	If	the	source	is	moving	towards	the	observer,	the	section	of	fs	wavelengths	will	be	compressed
into	a	shorter	length	equal	to	v	−	vs,	and	the	observed	frequency	will	be	given	by:

We	can	combine	these	two	equations	to	give	a	single	equation	for	the	Doppler	shift	in	frequency	due	to	a
moving	source:

KEY	EQUATION
Doppler	effect:

where	the	plus	sign	applies	to	a	receding	source	and	the	minus	sign	to	an	approaching	source.	Note	these
important	points:

The	frequency	fs	of	the	source	is	not	affected	by	the	movement	of	the	source.

The	speed	v	of	the	waves	as	they	travel	through	the	air	(or	other	medium)	is	also	unaffected	by	the
movement	of	the	source.
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Note	that	a	Doppler	effect	can	also	be	heard	when	an	observer	is	moving	relative	to	a	stationary	source,
and	also	when	both	source	and	observer	are	moving.	There	is	more	about	the	Doppler	effect	and	light	in
Chapter	31.

WORKED	EXAMPLE

A	train	with	a	whistle	that	emits	a	note	of	frequency	800	Hz	is	approaching	a	stationary	observer	at
a	speed	of	60	m	s−1.
Calculate	the	frequency	of	the	note	heard	by	the	observer.
speed	of	sound	in	air	=	330	m	s−1

Select	the	appropriate	form	of	the	Doppler	equation.	Here	the	source	is	approaching	the
observer	so	we	choose	the	minus	sign:

Substitute	values	from	the	question	and	solve:

So,	the	observer	hears	a	note	whose	pitch	is	raised	significantly,	because	the	train	is
travelling	at	a	speed	that	is	a	significant	fraction	of	the	speed	of	sound.

Question
A	plane’s	engine	emits	a	note	of	constant	frequency	120	Hz.	It	is	flying	away	from	a	stationary
observer	at	a	speed	of	80	m	s–1.	Calculate:

the	observed	wavelength	of	the	sound	received	by	the	observer
its	observed	frequency.
(Speed	of	sound	in	air	=	330	m	s−1.)

	
	



12.6	Electromagnetic	waves
You	will	have	learnt	that	light	is	a	region	of	the	electromagnetic	spectrum.	You	might	not	think	that
light	has	any	connection	at	all	with	electricity,	magnetism	and	waves	–	but	it	does.	Physicists	studied
these	topics	for	centuries	before	the	connections	between	them	became	apparent.
An	electric	current	always	gives	rise	to	a	magnetic	field	(this	is	known	as	electromagnetism).	A
magnetic	field	is	created	by	any	moving	charged	particles	such	as	electrons.	Similarly,	a	changing
magnetic	field	will	induce	a	current	in	a	nearby	conductor.	These	observations	led	to	the	unification	of	the
theories	of	electricity	and	magnetism	by	Michael	Faraday	in	the	mid-19th	century.	A	vast	technology
based	on	the	theories	of	electromagnetism	developed	rapidly,	and	continues	to	expand	today	(Figure
12.13).
Faraday’s	studies	were	extended	by	James	Clerk	Maxwell.	He	produced	mathematical	equations	that
predicted	that	a	changing	electric	or	magnetic	field	would	give	rise	to	transverse	waves	travelling
through	space.	When	he	calculated	the	speed	of	these	waves,	it	turned	out	to	be	the	known	speed	of	light.
He	concluded	that	light	is	a	wave,	known	as	an	electromagnetic	wave,	that	can	travel	through	space
(including	a	vacuum)	as	vibrations	of	electric	and	magnetic	fields.
Faraday	had	unified	electricity	and	magnetism;	now	Maxwell	had	unified	electromagnetism	and	light.	In
the	20th	century,	Abdus	Salam	(Figure	12.14)	managed	to	unify	electromagnetic	forces	with	the	weak
nuclear	force,	responsible	for	radioactive	decay.	Physicists	continue	to	strive	to	unify	the	big	ideas	of
physics;	you	may	occasionally	hear	talk	of	a	theory	of	everything.	This	would	not	truly	explain
everything,	but	it	would	explain	all	known	forces,	as	well	as	the	existence	of	the	various	fundamental
particles	of	matter.

Figure	12.13:	These	 telecommunications	masts	are	situated	4.5	km	above	sea	 level	 in	Ecuador.	They
transmit	microwaves,	a	form	of	electromagnetic	radiation,	across	the	mountain	range	of	the	Andes.



Figure	12.14:	Abdus	Salam,	the	Pakistani	physicist,	won	the	1979	Nobel	Prize	for	Physics	for	his	work
on	unification	of	the	fundamental	forces.
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12.7	Electromagnetic	radiation
By	the	end	of	the	19th	century,	several	types	of	electromagnetic	wave	had	been	discovered:

radio	waves	–	these	were	discovered	by	Heinrich	Hertz	when	he	was	investigating	electrical	sparks
infrared	and	ultraviolet	waves–these	lie	beyond	either	end	of	the	visible	spectrum
X-rays	 –	 these	were	discovered	by	Wilhelm	Röntgen	and	were	produced	when	a	beam	of	 electrons
collided	with	a	metal	target	such	as	tungsten
γ-rays	–	these	were	discovered	by	Henri	Becquerel	when	he	was	investigating	radioactive	substances.

We	now	regard	all	of	these	types	of	radiation	as	parts	of	the	same	electromagnetic	spectrum,	and	we
know	that	they	can	be	produced	in	a	variety	of	different	ways.

The	speed	of	light
James	Clerk	Maxwell	showed	that	the	speed	c	of	electromagnetic	waves	in	a	vacuum	(free	space)	was
independent	of	the	frequency	of	the	waves.	In	other	words,	all	types	of	electromagnetic	wave	travel	at	the
same	speed	in	a	vacuum.	In	the	SI	system	of	units,	c	has	the	value:

c	=	299	792	458	m	s−1

The	approximate	value	for	the	speed	of	light	in	a	vacuum,	which	is	often	used	in	calculations,	is	3.0	×	108
m	s−1.
The	wavelength	λ	and	the	frequency	f	of	the	waves	are	related	by	the	equation:

c	=	fλ

This	is	the	same	as	the	wave	equation:	the	wave	speed	v	=	c.	When	light	travels	from	a	vacuum	into	a
material	medium	such	as	glass,	its	speed	decreases	but	its	frequency	remains	the	same,	and	so	we
conclude	that	its	wavelength	must	decrease.	We	often	characterise	different	forms	of	electromagnetic	by
their	different	wavelengths.	But	it	is	better	to	characterise	them	by	their	different	frequencies.	That’s
because	their	wavelengths	depend	on	the	medium	through	which	they	are	travelling.
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12.8	Orders	of	magnitude
Table	12.3	shows	the	approximate	ranges	of	wavelengths	in	a	vacuum	of	the	principal	bands	that	make	up
the	electromagnetic	spectrum.	This	information	is	shown	as	a	diagram	in	Figure	12.15.

Figure	12.15:	Wavelengths	of	the	electromagnetic	spectrum.	The	boundaries	between	some	regions	are
fuzzy.

Here	are	some	points	to	note.
There	 are	 no	 clear	 divisions	 between	 the	 different	 ranges	 or	 bands	 in	 the	 spectrum.	 The	 divisions
shown	in	Table	12.3	are	somewhat	arbitrary.
The	naming	of	subdivisions	is	also	arbitrary.	For	example,	microwaves	are	sometimes	regarded	as	a
subdivision	of	radio	waves.
The	wavelength	in	the	range	400	nm	to	700	nm	in	free	space	(vacuum)	are	visible	to	the	human	eye.
Remember,	1	nm	=	10−9	m
The	ranges	of	X-rays	and	γ-rays	overlap.	The	distinction	 is	 that	X-rays	are	produced	when	electrons
decelerate	 rapidly	 or	when	 they	 hit	 a	 target	metal	 at	 high	 speeds.	 γ-rays	 are	 produced	 by	 nuclear
reactions,	such	as	radioactive	decay.	There	is	no	difference	whatsoever	in	the	radiation	between	an	X-
ray	and	a	γ-ray	of	wavelength,	say,	10−11	m.

Type	of	electromagnetic	waves Wavelength	range	/	m

radio	waves >106	to	10−1

microwaves 10−1	to	10−3

infrared 10−3	to	7	×	10−7

visible 7	×	10−7	(red)	to	4	×	10−7	(violet)

ultraviolet 4	×	10−7	to	10−8

X-rays 10−8	to	10−13

γ-rays 10−10	to	10−16

Table	12.3:	Wavelengths	(in	a	vacuum)	of	the	electromagnetic	spectrum.

Questions
Copy	Table	12.3.	Add	a	third	column	showing	the	range	of	frequencies	of	each	type	of	radiation.
Study	Table	12.3	and	answer	the	questions.
Which	type	of	radiation	has	the	narrowest	range	of	wavelengths?
Which	has	the	second	narrowest	range?
What	is	the	range	of	wavelengths	of	microwaves,	in	millimetres?
What	is	the	range	of	wavelengths	of	visible	light,	in	nanometres?
What	is	the	frequency	range	of	visible	light?

For	each	of	the	following	wavelengths	measured	in	a	vacuum,	state	the	type	of	electromagnetic
radiation	to	which	it	corresponds.
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1	km
3	cm
5000	nm
500	nm
50	nm
10−12	m

For	each	of	the	following	frequencies,	state	the	type	of	electromagnetic	wave	to	which	it	corresponds.
200	kHz
100	MHz
5	×	1014	Hz
1018	Hz

	
	



12.9	The	nature	of	electromagnetic	waves
An	electromagnetic	wave	is	a	disturbance	in	the	electric	and	magnetic	fields	in	space.	Figure	12.16	shows
how	we	can	represent	such	a	wave.	In	this	diagram,	the	wave	is	travelling	from	left	to	right.
The	electric	field	is	shown	oscillating	in	the	vertical	plane.	The	magnetic	field	is	shown	oscillating	in	the
horizontal	plane.	These	are	arbitrary	choices;	the	point	is	that	the	two	fields	vary	at	right	angles	to	each
other,	and	also	at	right	angles	to	the	direction	in	which	the	wave	is	travelling.	This	shows	that
electromagnetic	waves	are	transverse	waves.

Figure	12.16:	An	electromagnetic	wave	is	a	periodic	variation	in	electric	and	magnetic	fields.

	
	



12.10	Polarisation
Polarisation	is	a	wave	property	associated	with	transverse	waves	only.
Imagine	you	fixed	one	end	of	a	rope	to	a	post.	Grab	the	other	end	of	the	rope	and	pull	it	tight	so	that	it	is
stretched	out	horizontally.	Move	the	rope	repeatedly	vertically	up	and	down.	This	will	produce	a
transverse	wave	on	the	rope.	The	vibrations	of	the	rope	are	in	just	one	plane	–	the	vertical	plane.	The
vibrations	are	described	as	plane	polarised	in	the	vertical	plane.	You	can	produce	plane	polarised
vibrations	in	the	horizontal	plane	by	moving	the	rope	repeatedly	from	side	to	side.	It	would	also	be	fun	to
keep	changing	the	direction	of	vibration	of	the	rope	–	in	this	case,	you	will	produce	an	unpolarised	wave
where	the	vibrations	are	in	more	than	one	plane.
A	plane	polarised	wave	incident	at	a	vertical	slit	will	pass	through	this	slit.	When	the	slit	is	turned
through	90°,	the	plane	polarised	wave	will	be	blocked.	When	an	unpolarised	wave	is	incident	at	a	vertical
slit,	then	all	vibrations,	other	than	those	in	the	vertical	plane,	will	be	blocked	(see	Figure	12.17).	The
wave	passing	through	the	slit	will	be	a	plane	polarised	wave	in	the	vertical	plane.

Figure	12.17:	The	slit	helps	to	produce	a	plane	polarised	wave.

Only	transverse	waves	can	be	plane	polarised.	So,	it	should	be	possible	to	produce	plane	polarised	light
waves.	In	fact,	all	types	of	electromagnetic	waves	can	be	plane	polarised.
Longitudinal	waves	vibrate	along	the	direction	of	wave	travel,	so	no	matter	what	the	orientation	of	the
slit,	the	waves	will	be	able	to	get	through.	In	short,	longitudinal	waves,	such	as	sound,	cannot	be
polarised.

Polarised	light
Light	is	a	transverse	wave.	Its	transverse	nature	can	be	demonstrated	by	polarising	light.	As	mentioned
previously,	light	consists	of	oscillating	electric	and	magnetic	fields.	Light	from	the	Sun,	or	a	filament
lamp,	is	unpolarised.	This	means	it	has	oscillating	electric	fields	in	all	planes	at	right	angles	to	the
direction	in	which	it	travels.	What	can	we	use	to	plane	polarise	such	light?
We	can	use	transparent	polymer	material,	such	as	a	Polaroid,	a	type	of	polarising	filter.	The	Polaroid	has
long	chains	of	molecules	all	aligned	in	one	particular	direction.	Any	electric	field	vibrations	along	these
chains	of	molecules	are	absorbed.	The	energy	absorbed	is	transferred	to	thermal	energy	in	the	Polaroid.
Electric	field	vibrations	at	right	angles	to	the	chains	of	molecules	are	transmitted	with	negligible
absorption.	Figure	12.18	shows	the	unpolarised	light	incident	at	a	Polaroid–the	transmitted	light	is	plane
polarised.
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Figure	12.18:	A	Polaroid	has	a	unique	axis	of	transmission	for	light.

What	would	happen	when	you	view	unpolarised	light	using	two	Polaroids?	Figure	12.19	shows	plane
polarised	light	produced	by	the	first	Polaroid.	This	plane	polarised	light	is	incident	at	the	second	Polaroid,
whose	transmission	axis	is	initially	vertical.	The	second	Polaroid	is	often	known	as	the	analyser.	The
incident	light	passes	straight	through.	Now	rotate	the	analyser	through	90°,	so	its	transmission	axis	is
horizontal.	This	time,	the	analyser	will	absorb	all	the	light.	The	analyser	will	appear	black.	Turning	the
analyser	through	a	further	90°	will	let	the	light	through	the	analyser	again.	What	happens	at	angles	other
than	0°	and	90°	is	discussed	later.
Here	are	a	few	things	you	can	try	with	a	single	Polaroid.

Light	 reflected	 from	 the	 surface	 of	water,	 or	 glass,	 is	 partially	 polarised	 in	 a	 plane	 parallel	 to	 the
reflecting	 surface.	 Holding	 a	 Polaroid	 with	 its	 transmission	 axis	 vertical,	 will	 reduce	 the	 glare	 of
reflected	 light.	 This	 is	 how	 your	 Polaroid	 sunglasses	 work.	 Polarising	 filters	 help	 in	 photography
(Figure	12.20).
Light	from	your	laptop	screen	is	plane	polarised.	You	can	completely	cut	out	the	display	by	viewing
the	 screen	 through	 a	 Polaroid.	 You	 can	 observe	 the	 same	 effect	 with	 your	 LCD	 calculator	 display.
Twist	the	Polaroid,	and	see	the	display	vanish.

Figure	12.19:	The	light	is	blocked	by	the	analyser	when	its	transmission	axis	is	90°	to	the	plane	of	the
incident	light.	The	dashed	lines	are	transmission	axes	of	the	Polaroid	and	the	analyser.



Figure	12.20:	Polarising	filters	are	used	in	photography	–	there	is	no	glare	and	you	can	see	the	sharks
and	the	boy	snorkeling.

Malus’s	law
Figure	12.21	shows	plane	polarised	light	incident	at	a	Polaroid.	The	transmission	axis	of	this	Polaroid	is	at
an	angle	θ	to	the	plane	of	the	incident	light.	Now	you	already	know	that	when	θ	=	0,	then	the	light	will	go
through	the	Polaroid,	and	when	θ	=	90°,	there	is	no	transmitted	light.	The	intensity	of	the	transmitted
light	depends	on	the	angle	θ.

Figure	 12.21:	 The	 amplitude,	 and	 hence	 the	 intensity	 of	 light,	 transmitted	 through	 the	 Polaroid
depends	on	the	angle	θ.

Consider	the	incident	plane	polarised	light	of	amplitude	A0.	The	component	of	the	amplitude	transmitted
through	the	Polaroid	along	its	transmission	axis	is	A0	cos	θ.	You	know	that	the	intensity	of	light	is	directly
proportional	to	the	amplitude	squared.	So,	the	intensity	of	light	transmitted	will	be	given	by	the
expression:

I	=	I0	cos2	θ

where	I0	is	the	intensity	of	the	incident	and	I	is	the	transmitted	intensity	at	an	angle	θ	between	the
transmission	axis	of	the	Polaroid	and	the	plane	of	the	incident	polarised	wave.
The	relationship	is	known	as	Malus’s	law.

KEY	EQUATION
Malus’s	law:

I	=	I0	cos2	θ
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Note	that	the	fraction	of	the	light	intensity	transmitted	is	equal	to	cos2	θ.	This	means	that	a	graph	of	I
against	θ	is	a	cosine	squared	graph,	see	Figure	12.22.

Figure	12.22:	Variation	of	transmitted	intensity	I	with	angle	θ.	Notice	maximum	intensity	when	θ	=	0°,
180°	and	so	on,	and	zero	when	θ	=	90°,	270°	and	so	on.

Questions
Explain	what	happens	to	unpolarised	light	incident	at	a	Polaroid.
Plane	polarised	light	of	intensity	12	W	m−2	is	incident	at	a	Polaroid.
Calculate	the	intensity	of	the	transmitted	light	when	the	angle	between	the	plane	of	polarisation	of
the	incident	light	and	the	transmission	axis	of	the	Polaroid	is

45°
60°.

Plane	polarised	light	is	incident	at	a	Polaroid.
Calculate	the	angle	θ,	which	gives	transmitted	light	of	intensity	30%	that	of	the	incident	intensity	of
light.

REFLECTION
Can	you	think	of	any	applications	of	Malus’s	law?
Make	a	list	of	some	key	words	in	this	chapter.	Ask	a	classmate	to	make	a	similar	list.	Now	compare	your
lists.	How	good	was	your	list?	Did	you	miss	out	anything	important?	What	things	might	you	want	more
help	with?

	
	



SUMMARY

A	progressive	wave	carries	energy	from	one	place	to	another.

There	are	two	types	of	progressive	waves–longitudinal	and	transverse.	Longitudinal	waves	have
vibrations	parallel	to	the	direction	in	which	the	wave	travels,	whereas	transverse	waves	have
vibrations	at	right	angles	to	the	direction	in	which	the	wave	travels.

Displacement	is	the	distance	of	a	point	on	the	wave	from	its	undisturbed	position	or	equilibrium
position.

Amplitude	is	maximum	displacement	of	a	wave.

Wavelength	is	the	distance	between	two	adjacent	points	on	a	wave	oscillating	in	step	with	each	other.

Period	is	time	taken	for	one	complete	oscillation	of	a	point	in	a	wave.

Frequency	is	the	number	of	oscillations	per	unit	time	of	a	point	in	a	wave.

Phase	difference	is	the	fraction	of	a	cycle	between	oscillating	particles,	expressed	either	in	degrees	or
in	radians.

Two	points	on	a	wave	separated	by	a	distance	of	one	wavelength	have	a	phase	difference	of	0°	or
360°.

The	frequency	f	of	a	wave	is	related	to	its	period	T	by	the	equation:

The	frequency	of	a	sound	wave	can	be	measured	using	a	cathode-ray	oscilloscope	(CRO).

The	speed	of	all	waves	is	given	by	the	wave	equation:

wave	speed	=	frequency	×	wavelength

v	=	fλ

The	Doppler	effect	is	the	change	in	an	observed	wave	frequency	when	a	source	moves	with	speed	vs.
The	observed	frequency	is	given	by:

The	intensity	of	a	wave	is	defined	as	the	wave	power	transmitted	per	unit	area	at	right	angles	to	the
wave	velocity.	So:

Intensity	has	units	of	W	m−2.

The	intensity	I	of	a	wave	is	directly	proportional	to	the	square	of	the	amplitude	 .

All	electromagnetic	waves	travel	at	the	same	speed	of	3.0	×	108	m	s−1	in	a	vacuum,	but	have	different
wavelengths	and	frequencies.	Electromagnetic	waves	are	transverse	waves.

The	regions	of	the	electromagnetic	spectrum	in	order	of	increasing	wavelength	are:	γ-rays,	X-rays,
ultraviolet,	visible,	infrared,	microwaves	and	radio	waves.

A	plane	polarised	wave	has	oscillations	in	just	one	plane.

Only	transverse	waves	can	be	plane	polarised.

Equation	for	Malus’s	law:

I	=	I0	cos2	θ



where	I	is	the	intensity	of	the	transmitted	light	through	the	polarising	filter,	I0	is	the	incident	intensity
of	light	and	θ	is	the	angle	between	the	transmission	axis	of	the	filter	and	the	plane	of	polarisation	of
the	incident	light.
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EXAM-STYLE	QUESTIONS

What	is	the	correct	unit	for	intensity? [1]

J	m2 	

J	s−1 	

W	m2 	

W	m−2 	

This	image	shows	the	screen	of	an	oscilloscope.	The	time-base	of	the
oscilloscope	is	set	at	500	µs	div−1. 	

Figure	12.23
	

Calculate	the	time	period	of	the	signal	and	hence	its	frequency. [3]

State	two	main	properties	of	electromagnetic	waves. [2]

State	one	major	difference	between	microwaves	and	radio	waves. [1]

Estimate	the	wavelength	in	metres	of	X-rays. [1]

Use	your	answer	to	i	to	determine	the	frequency	of	the	X-rays. [1]

	 [Total:	5]

A	student	is	sitting	on	the	beach,	observing	a	power	boat	moving	at	speed	on
the	sea.	The	boat	has	a	siren	emitting	a	constant	sound	of	frequency	420	Hz. 	

The	boat	moves	around	in	a	circular	path	with	a	speed	of	25	m	s−1.	The
student	notices	that	the	pitch	of	the	siren	changes	with	a	regular	pattern. 	

Explain	why	the	pitch	of	the	siren	changes,	as	observed	by	the	student. [1]

Determine	the	maximum	and	minimum	frequencies	that	the	student	will
hear. [4]

At	which	point	in	the	boat’s	motion	will	the	student	hear	the	most	high-
pitched	note? [1]

(Speed	of	sound	in	air	=	330	m	s−1.) 	

	 [Total:	6]

This	diagram	shows	some	air	particles	as	a	sound	wave	passes. 	

Figure	12.24
	

On	a	copy	of	the	diagram,	mark: 	

a	region	of	the	wave	that	shows	a	compression–label	it	C [1]

a	region	of	the	wave	that	shows	a	rarefaction–label	it	R. [1]

Describe	how	the	particle	labelled	P	moves	as	the	wave	passes. [2]

The	sound	wave	has	a	frequency	of	240	Hz.	Explain,	in	terms	of	the
movement	of	an	individual	particle,	what	this	means. [2]
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The	wave	speed	of	the	sound	is	320	m	s−1.	Calculate	the	wavelength	of	the
wave.

[2]

	 [Total:	8]

In	an	experiment,	a	student	is	determining	the	speed	of	sound	using	the
equation	v	=	fλ.	The	values	of	frequency	f	and	wavelength	λ	are	shown	below: 	

f	=	1000	±	10	Hz 	

λ	=	33	±	2	cm 	

Determine	the	speed	v	including	the	absolute	uncertainty. [5]

This	diagram	shows	a	loudspeaker	producing	a	sound	and	a	microphone
connected	to	a	cathode-ray	oscilloscope	(CRO). 	

Figure	12.25
	

Sound	is	described	as	a	longitudinal	wave.	Describe	sound	waves	in	terms
of	the	movements	of	the	air	particles. [1]

The	time-base	on	the	oscilloscope	is	set	at	5	ms	div−1.	Calculate	the
frequency	of	the	CRO	trace. [2]

The	wavelength	of	the	sound	is	found	to	be	1.98	m. 	

Calculate	the	speed	of	sound. [2]

	 [Total:	5]

The	Doppler	effect	can	be	used	to	measure	the	speed	of	blood.	Ultrasound,
which	is	sound	of	high	frequency,	is	passed	from	a	transmitter	into	the	body,
where	it	reflects	off	particles	in	the	blood.	The	shift	in	frequency	is	measured
by	a	stationary	detector,	placed	outside	the	body	and	close	to	the	transmitter. 	

In	one	patient,	particles	in	the	blood	are	moving	at	a	speed	of	30	cm	s−1	in	a
direction	directly	away	from	the	transmitter.	The	speed	of	ultrasound	in	the
body	is	1500	cm	s−1. 	

This	situation	is	partly	modelled	by	considering	the	particles	to	be	emitting
sound	of	frequency	4.000	MHz	as	they	move	away	from	the	detector.	This
sound	passes	to	the	detector	outside	the	body	and	the	frequency	measured	by
the	detector	is	not	4.000	MHz.

	

State	whether	the	frequency	received	by	the	stationary	detector	is
higher	or	lower	than	the	frequency	emitted	by	the	moving	particles. [1]

Explain	your	answer	to	part	i. [3]

Calculate	the	difference	between	the	frequency	emitted	by	the	moving
particles	and	the	frequency	measured	by	the	detector. [3]

Suggest	why	there	is	also	a	frequency	difference	between	the	sound
received	by	the	particles	and	the	sound	emitted	by	the	transmitter. [1]

	 [Total:	8]
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State	what	is	meant	by	plane	polarised	light. [1]

Reflected	light	from	the	surface	of	water	is	partially	plane	polarised. 	

Describe	briefly	how	you	could	demonstrate	this. [2]

Vertically	plane	polarised	light	is	incident	on	three	polarising	filters.	The
transmission	axis	of	the	first	Polaroid	is	vertical.	The	transmission	axis	of
the	second	filter	is	45°	to	the	vertical	and	the	transmission	axis	of	the	last
filter	is	horizontal. 	

Show	that	the	intensity	of	light	emerging	from	the	final	filter	is	not	zero. [4]

	 [Total:	7]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	this	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	transverse	and	longitudinal
waves

12.2 	 	 	

define	the	terms	wavelength,	amplitude,
frequency,	wave	speed,	phase	difference
and	intensity

12.1,	12.2,
12.3

	 	 	

use	a	cathode-ray	oscilloscope	(CRO)	to
determine	frequency	and	amplitude

12.1 	 	 	

use	the	equations:

v	=	fλ,	 	and	intensity
∝	amplitude2

12.3,	12.4 	 	 	

describe	the	Doppler	effect	for	sound
waves

12.5 	 	 	

use	the	Doppler	equation	
for	approaching	and	receding	sound-
source

12.5 	 	 	

understand	the	properties	of
electromagnetic	waves

12.6 	 	 	

recall	that	wavelengths	in	the	range
400–700	nm	in	free	space	are	visible	to
the	human	eye

12.8 	 	 	

describe	and	understand	polarisation	of
light

12.10 	 	 	

use	Malus’s	law:

I	=	I0	cos2	θ

12.10 	 	 	
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	Chapter	13

Superposition	of	waves

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
explain	and	use	the	principle	of	superposition
explain	the	meaning	of	diffraction,	interference,	path	difference	and	coherence
understand	experiments	that	demonstrate	diffraction
understand	experiments	that	demonstrate	two-source	interference
understand	the	conditions	required	if	two-source	interference	fringes	are	to	be	observed
recall	and	use	 	for	double-slit	interference	using	light

recall	and	use	 	for	a	diffraction	grating
use	a	diffraction	grating	to	determine	the	wavelength	of	light.

BEFORE	YOU	START
Can	you	recall	 the	general	properties	of	waves,	 including	electromagnetic	waves?	Write	down	as
many	properties	as	you	can	remember.
Knowledge	 of	 phase	 difference	 is	 vital	 in	 understanding	 how	 waves	 combine	 in	 space–remind
yourself	by	writing	down	the	phase	difference	of	two	particles	oscillating	in	step,	and	two	particles
oscillating	in	antiphase.

VIBRATIONS	MAKING	WAVES
High-level	of	noise	would	not	be	suitable	in	some	jobs,	such	as	working	in	a	ship’s	engine	room	or
looking	after	airplanes	landing	and	lifting	off	at	an	airport.	The	simple	solution	would	be	to	wear
headphones.	These	will	significantly	reduce	the	intensity	of	the	noise	reaching	the	ears.	Wearing	noise-
cancelling	headphones	will	do	a	better	job	at	protecting	the	ears.	Electronics	within	such	headphones



create	their	own	sound	that	is	an	exact	copy	of	the	incident	noise,	except	it	is	always	in	antiphase
(phase	difference	of	180°)	with	the	noise.	The	addition	of	these	two	waves	has	the	effect	of	reducing
the	intensity	of	the	sound	reaching	the	ears	to	almost	zero.
Noise-cancelling	headphones	are	useful	in	some	situations,	but	they	are	not	ideal	if	you	are	at	a
concert!
Can	you	think	of	other	jobs	where	such	headphones	would	be	useful?
In	this	chapter,	we	will	study	how	waves	add-up	and	cancel-out.	The	principle	of	superposition	of	waves
is	an	excellent	starting	point.

Figure	13.1:	The	headphones	actively	cancel	out	the	noise	–	protecting	the	ears	from	damage.

	
	



13.1	The	principle	of	superposition	of	waves
In	Chapter	12,	we	studied	the	production	of	waves	and	the	difference	between	longitudinal	and
transverse	waves.	In	this	chapter,	we	are	going	to	consider	what	happens	when	two	or	more	waves	meet
at	a	point	in	space	and	combine	together	(Figure	13.2).
So	what	happens	when	two	waves	arrive	together	at	the	same	place?	We	can	answer	this	from	our
everyday	experience.	What	happens	when	the	beams	of	light	waves	from	two	torches	cross	over?	They
pass	straight	through	one	another.	Similarly,	sound	waves	pass	through	one	another,	apparently	without
affecting	each	other.	This	is	very	different	from	the	behaviour	of	particles.	Two	marbles	meeting	in	mid-
air	would	ricochet	off	one	another	in	a	very	un-wave-like	way.	If	we	look	carefully	at	how	two	sets	of
waves	interact	when	they	meet,	we	find	some	surprising	results.

Figure	13.2:	Ripples	produced	when	drops	of	water	 fall	 into	a	swimming	pool.	The	ripples	overlap	to
produce	a	complex	pattern	of	crests	and	troughs.

When	two	waves	meet,	they	combine,	with	the	displacements	of	the	two	waves	adding	together.	Figure
13.3	shows	the	displacement–distance	graphs	for	two	sinusoidal	waves	(blue	and	green)	of	different
wavelengths.	It	also	shows	the	resultant	wave	(red),	which	comes	from	combining	these	two.	How	do	we
find	this	resultant	displacement	shown	in	red?
Consider	position	A.	Here,	the	displacement	of	both	waves	is	zero,	and	so	the	resultant	displacement
must	also	be	zero.	At	position	B,	both	waves	have	positive	displacement.	The	resultant	displacement	is
found	by	adding	these	together.	At	position	C,	the	displacement	of	one	wave	is	positive	while	the	other	is
negative.	The	resultant	displacement	lies	between	the	two	displacements.	In	fact,	the	resultant
displacement	is	the	algebraic	sum	of	the	displacements	of	waves	A	and	B;	that	is,	their	sum,	taking
account	of	their	signs	(positive	or	negative).

Figure	13.3:	Adding	two	waves	by	the	principle	of	superposition	–	the	red	line	is	the	resultant	wave.

We	can	work	our	way	along	the	distance	axis	in	this	way,	calculating	the	resultant	of	the	two	waves	by
algebraically	adding	them	up	at	intervals.	Notice	that,	for	these	two	waves,	the	resultant	wave	is	a	rather
complex	wave	with	dips	and	bumps	along	its	length.
The	idea	that	we	can	find	the	resultant	of	two	waves	that	meet	at	a	point	simply	by	adding	up	the
displacements	at	each	point	is	called	the	principle	of	superposition	of	waves.	This	principle	can	be
applied	to	more	than	two	waves	and	also	to	all	types	of	waves.	A	statement	of	the	principle	of
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superposition	is:
When	two	or	more	waves	meet	at	a	point,	the	resultant	displacement	is	the	algebraic	sum	of	the
displacements	of	the	individual	waves.

Question
On	graph	paper,	draw	two	‘triangular’	waves	similar	to	those	shown	in	Figure	13.4.	(These	are	easier
to	work	with	than	sinusoidal	waves.)	One	should	have	wavelength	8.0	cm	and	amplitude	2.0	cm.	The
other	should	have	wavelength	16.0	cm	and	amplitude	3.0	cm.
Use	the	principle	of	superposition	of	waves	to	determine	the	resultant	displacement	at	suitable	points
along	the	waves,	and	draw	the	complete	resultant	wave.

Figure	13.4:	Two	triangular	waves.

	
	



13.2	Diffraction	of	waves
You	should	be	aware	that	all	waves	(such	as	sound	and	light)	can	be	reflected	and	refracted.	Another
wave	phenomenon	that	applies	to	all	waves	is	that	they	can	be	diffracted.	Diffraction	is	the	spreading	of
a	wave	as	it	passes	through	a	gap	or	around	an	edge.	It	is	easy	to	observe	and	investigate	diffraction
effects	using	water	waves,	as	shown	in	Practical	Activity	13.1.

Diffraction	of	sound	and	light
Diffraction	effects	are	greatest	when	waves	pass	through	a	gap	with	a	width	roughly	equal	to	their
wavelength	of	the	waves.	This	is	useful	in	explaining	why	we	can	observe	diffraction	readily	for	some
waves,	but	not	for	others.	For	example,	sound	waves	in	the	audible	range	have	wavelengths	from	a	few
centimetres	to	a	few	metres	(see	Table	12.1).	So,	we	might	expect	to	observe	diffraction	effects	for	sound
in	our	environment.	Sounds,	for	example,	diffract	as	they	pass	through	doorways.	The	width	of	a	doorway
is	comparable	to	the	wavelength	of	a	sound	and	so	a	noise	in	one	room	spreads	out	into	the	next	room.

Visible	light	has	much	shorter	wavelengths	(about	5	×	10−7	m).	It	is	not	diffracted	noticeably	by
doorways	because	the	width	of	the	gap	is	a	million	times	larger	than	the	wavelength	of	light.	However,	we
can	observe	diffraction	of	light	by	passing	it	through	a	very	narrow	slit	or	a	very	small	hole.	When	laser
light	is	directed	onto	a	slit	whose	width	is	comparable	to	the	wavelength	of	the	incident	light,	it	spreads
out	into	the	space	beyond	to	form	a	smear	on	the	screen	(Figure	13.5).	An	adjustable	slit	allows	you	to	see
the	effect	of	gradually	narrowing	the	gap.
You	can	see	the	effects	of	diffraction	for	yourself	by	making	a	narrow	slit	with	your	two	thumbs	and
looking	through	the	slit	at	a	distant	light	source	(Figure	13.8).	By	gently	pressing	your	thumbs	together	to
narrow	the	gap	between	them,	you	can	see	the	effect	of	narrowing	the	slit.

Figure	13.5:	Light	is	diffracted	as	it	passes	through	a	very	narrow	slit.

PRACTICAL	ACTIVITY	13.1

Observing	diffraction	in	a	ripple	tank
A	ripple	tank	can	be	used	to	show	diffraction.	Plane	waves	are	generated	using	a	vibrating	bar,	and
move	towards	a	gap	in	a	barrier	(Figure	13.6).	Where	the	ripples	strike	the	barrier,	they	are	reflected
back.	Where	they	arrive	at	the	gap,	however,	they	pass	through	and	spread	out	into	the	space	beyond.
It	is	this	spreading	out	of	waves	as	they	travel	through	a	gap	(or	past	the	edge	of	a	barrier)	that	is
called	diffraction.
The	extent	to	which	ripples	are	diffracted	depends	on	the	width	of	the	gap.	This	is	illustrated	in	Figure
13.6.	The	lines	in	this	diagram	show	the	wavefronts.	It	is	as	if	we	are	looking	down	on	the	ripples	from
above,	and	drawing	lines	to	represent	the	tops	of	the	ripples	at	some	instant	in	time.	The	separation
between	adjacent	wavefronts	is	equal	to	the	wavelength	λ	of	the	ripples.
When	the	waves	encounter	a	gap	in	a	barrier,	the	amount	of	diffraction	depends	on	the	width	of	the
gap.	There	is	hardly	any	noticeable	diffraction	when	the	gap	is	very	much	larger	than	the	wavelength.



As	the	gap	becomes	narrower,	the	diffraction	effect	becomes	more	noticeable.	It	is	greatest	when	the
width	of	the	gap	is	roughly	equal	to	the	wavelength	of	the	ripples.

Figure	13.6:	Ripples,	initially	straight,	spread	out	into	the	space	beyond	the	gap	in	the	barrier.

Figure	 13.7:	 The	 extent	 to	 which	 ripples	 spread	 out	 depends	 on	 the	 relationship	 between	 their
wavelength	 and	 the	 width	 of	 the	 gap.	 In	 a,	 the	 width	 of	 the	 gap	 is	 very	 much	 greater	 than	 the
wavelength	and	there	is	hardly	any	noticeable	diffraction.	In	b,	 the	width	of	the	gap	is	greater	than
the	 wavelength	 and	 there	 is	 limited	 diffraction.	 In	 c,	 the	 gap	 width	 is	 approximately	 equal	 to	 the
wavelength	and	the	diffraction	effect	is	greatest.

Figure	13.8:	 You	 can	 see	 the	 effects	 of	 diffraction	 by	 looking	 at	 a	 bright	 source	 (lamp)	 through	 a
narrow	 slit.	 What	 happens	 when	 you	 make	 the	 slit	 narrower?	 What	 happens	 to	 the	 amount	 of
diffraction	when	you	put	different	coloured	filters	in	front	of	the	lamp?	What	does	this	tell	you	about
the	wavelengths	of	the	different	colours?
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Diffraction	of	radio	waves	and	microwaves
Radio	waves	can	have	wavelengths	of	the	order	of	a	kilometre.	These	waves	are	easily	diffracted	by	gaps
in	the	hills	and	by	the	tall	buildings	around	our	towns	and	cities.	Microwaves,	used	by	the	mobile	phone
network,	have	wavelengths	of	about	10	cm.	These	waves	are	not	easily	diffracted	(because	their
wavelengths	are	much	smaller	than	the	dimensions	of	the	gaps)	and	mostly	travel	through	space	in
straight	lines.
Cars	need	external	radio	aerials	because	radio	waves	have	wavelengths	longer	than	the	size	of	the
windows,	so	they	cannot	diffract	into	the	car.	If	you	try	listening	to	a	radio	in	a	train	without	an	external
aerial,	you	will	find	that	FM	signals	can	be	picked	up	weakly	(their	wavelength	is	about	3	m),	but	AM
signals,	with	longer	wavelengths,	cannot	get	in	at	all.

Question
A	microwave	oven	(Figure	13.9)	uses	microwaves	with	a	wavelength	of	12.5	cm.	The	front	door	of	the
oven	is	made	of	glass	with	a	metal	grid	inside;	the	gaps	in	the	grid	are	a	few	millimetres	across.
Explain	how	this	design	allows	us	to	see	the	food	inside	the	oven,	while	the	microwaves	are	not
allowed	to	escape	into	the	kitchen	(where	they	might	harm	us).

Figure	13.9:	A	microwave	oven	has	a	metal	grid	in	the	door	to	keep	microwaves	in	and	let	light	out

Explaining	diffraction
Diffraction	is	a	wave	effect	that	can	be	explained	by	the	principle	of	superposition.	We	have	to	think	about
what	happens	when	a	plane	ripple	reaches	a	gap	in	a	barrier	(Figure	13.10).	Each	point	on	the	surface	of
the	water	in	the	gap	is	moving	up	and	down.	Each	of	these	moving	points	can	be	thought	of	as	a	source	of
new	ripples	spreading	out	into	the	space	beyond	the	barrier.	Now	we	have	a	lot	of	new	ripples,	and	we
can	use	the	principle	of	superposition	to	find	their	resultant	effect.	Without	trying	to	calculate	the	effect
of	an	infinite	number	of	ripples,	we	can	say	that	in	some	directions	the	ripples	add	together	while	in	other
directions	they	cancel	out.



Figure	13.10:	Ripples	from	all	points	across	the	gap	contribute	to	the	pattern	in	the	space	beyond.

	
	



13.3	Interference
Adding	waves	of	different	wavelengths	and	amplitudes	results	in	complex	waves	–	by	complex,	we	really
mean	not	sinusoidal.	We	can	find	some	interesting	effects	if	we	consider	what	happens	when	two	waves	of
the	same	type,	and	having	the	same	wavelength,	overlap	at	a	point.	Again,	we	will	use	the	principle	of
superposition	to	explain	what	we	observe.

PRACTICAL	ACTIVITY	13.2

Observing	interference

Interference	of	sound	waves
A	simple	experiment	shows	what	happens	when	two	sets	of	sound	waves	meet.	Two	loudspeakers	are
connected	to	a	single	signal	generator	(Figure	13.11).	They	each	produce	sound	waves	of	the	same
wavelength.	Walk	around	in	the	space	in	front	of	the	loudspeakers;	you	will	hear	the	resultant	effect.
You	may	predict	that	we	would	hear	a	sound	twice	as	loud	as	that	from	a	single	loudspeaker.	However,
this	is	not	the	case.	At	some	points,	the	sound	is	louder	than	for	a	single	loudspeaker.	At	other	points,
the	sound	is	much	quieter.	The	space	around	the	two	loudspeakers	consists	of	a	series	of	loud	and	quiet
regions.	We	are	observing	the	phenomenon	known	as	interference.	This	phenomenon	results	in	the
formation	of	points	of	cancellation	and	reinforcement	where	two	coherent	waves	pass	through	each
other.

Figure	13.11:	The	sound	waves	from	two	loudspeakers	combine	to	give	an	interference	pattern.	This
experiment	is	best	done	outside	so	that	reflections	of	sounds	(or	echoes)	do	not	affect	the	results.

Interference	in	a	ripple	tank
Look	at	Figure	13.12.	The	two	dippers	in	the	ripple	tank	should	be	positioned	so	that	they	are	just
touching	the	surface	of	the	water.	When	the	bar	vibrates,	each	dipper	acts	as	a	point-source	of	circular
ripples	spreading	outwards.	Where	these	sets	of	ripples	overlap,	we	observe	an	interference	pattern.
Another	way	to	observe	interference	in	a	ripple	tank	is	to	use	plane	waves	passing	through	two	gaps	in
a	barrier.	The	water	waves	are	diffracted	at	the	two	gaps	and	then	interfere	beyond	the	gaps.	Figure
13.13	shows	the	interference	pattern	produced	by	two	vibrating	dippers	in	a	ripple	tank.



Figure	13.12:	A	ripple	tank	can	be	used	to	show	how	two	sets	of	circular	ripples	combine.

Figure	13.13:	Ripples	from	two	point-sources	produce	an	interference	pattern.

Explaining	interference
Figure	13.14	shows	how	interference	arises.	The	loudspeakers	in	Figure	13.11	(Practical	Activity	13.2)
are	emitting	waves	that	are	in	phase	because	both	are	connected	to	the	same	signal	generator.	At	each
point	in	front	of	the	loudspeakers,	waves	are	arriving	from	the	two	loudspeakers.	At	some	points,	the	two
waves	arrive	in	phase	(in	step)	with	one	another	and	with	equal	amplitude	(Figure	13.14a).	The	principle
of	superposition	predicts	that	the	resultant	wave	has	twice	the	amplitude	of	a	single	wave.	We	hear	a
louder	sound.
At	other	points,	something	different	happens.	The	two	waves	arrive	completely	out	of	phase	or	in
antiphase	(phase	difference	is	180°)	with	one	another	(Figure	13.14b).	There	is	a	cancelling	out,	and	the
resultant	wave	has	zero	amplitude.	At	this	point,	we	would	expect	silence.	At	other	points	again,	the
waves	are	neither	perfectly	out	of	step	nor	perfectly	in	step,	and	the	resultant	wave	has	an	amplitude	less
than	that	at	the	loudest	point.
Where	two	waves	arrive	at	a	point	in	phase	with	one	another	so	that	they	add	up,	we	call	this	effect
constructive	interference.	Where	they	cancel	out,	the	effect	is	known	as	destructive	interference.
Where	two	waves	have	different	amplitudes	but	are	in	phase	(Figure	13.14c),	constructive	interference
results	in	a	wave	whose	amplitude	is	the	sum	of	the	two	individual	amplitudes.
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Figure	 13.14:	 Adding	 waves	 by	 the	 principle	 of	 superposition.	 Blue	 and	 orange	 waves	 of	 the	 same
amplitude	may	 give	a	 constructive	 or	 b	 destructive	 interference,	 depending	 on	 the	 phase	 difference
between	them.	c	Waves	of	different	amplitudes	can	also	interfere	constructively.

Question
Explain	why	the	two	loudspeakers	producing	sounds	of	slightly	different	frequencies	will	not	produce
stable	effects	of	interference.

How	can	we	explain	the	interference	pattern	observed	in	a	ripple	tank	(Practical	Activity	13.2)?	Look	at
Figure	13.15	and	compare	it	to	Figure	13.13.	Figure	13.15	shows	two	sets	of	waves	setting	out	from	their
sources.	At	a	position	such	as	A,	ripples	from	the	two	sources	arrive	in	phase	with	one	another,	and
constructive	interference	occurs.	At	B,	the	two	sets	of	ripples	arrive	in	antiphase,	and	there	is	destructive
interference.	Although	waves	are	arriving	at	B,	the	surface	of	the	water	remains	approximately	flat.
Whether	the	waves	combine	constructively	or	destructively	at	a	point	depends	on	the	path	difference	of
the	waves	from	the	two	coherent	sources.	The	path	difference	is	defined	as	the	extra	distance
travelled	by	one	of	the	waves	compared	with	the	other.
At	point	A	in	Figure	13.15,	the	waves	from	the	red	source	have	travelled	three	whole	wavelengths.	The
waves	from	the	yellow	source	have	travelled	four	whole	wavelengths.	The	path	difference	between	the
two	sets	of	waves	is	one	wavelength.	A	path	difference	of	one	wavelength	is	equivalent	to	a	phase
difference	of	zero.	This	means	that	the	two	waves	are	in	phase,	so	they	interfere	constructively.

Figure	13.15:	The	result	of	interference	depends	on	the	path	difference	between	the	two	waves.



Now	think	about	destructive	interference.	At	point	B,	the	waves	from	the	red	source	have	travelled	three
wavelengths;	the	waves	from	the	yellow	source	have	travelled	2.5	wavelengths.	The	path	difference
between	the	two	sets	of	waves	is	0.5	wavelengths,	which	is	equivalent	to	a	phase	difference	of	180°.	The
waves	interfere	destructively	because	they	are	in	antiphase.	The	conditions	for	constructive	interference
and	destructive	interference,	in	general,	are	outlined	next.	These	conditions	apply	to	all	waves	(water
waves,	light,	microwaves,	radio	waves,	sound	and	so	on)	that	show	interference	effects.	In	the	equations,
n	is	an	integer	(any	whole	number,	including	zero).
For	constructive	interference	the	path	difference	is	a	whole	number	of	wavelengths:

path	difference	=	0,	λ,	2λ,	3λ,	and	so	on

or

path	difference	=	nλ

For	destructive	interference	the	path	difference	is	an	odd	number	of	half	wavelengths:

or

PRACTICAL	ACTIVITY	13.3

Interference	of	radiation

Interference	of	light
Here	is	one	way	to	show	the	interference	effects	produced	by	light.	A	simple	arrangement	involves
directing	the	light	from	a	laser	at	a	double-slit	(Figure	13.16).	The	slits	are	two	clear	lines	on	a	black
slide,	separated	by	a	fraction	of	a	millimetre.	Where	the	light	falls	on	the	screen,	a	series	of	equally
spaced	dots	of	light	are	seen	(see	Figure	13.21).	These	bright	dots	are	referred	to	as	interference
maxima	or	‘fringes’,	and	they	are	regions	where	light	waves	from	the	two	slits	are	arriving	in	phase
with	each	other;	in	other	words,	there	is	constructive	interference.	The	dark	regions	in	between	are	the
result	of	destructive	interference.
If	you	carry	out	experiments	using	a	laser,	you	should	follow	correct	safety	procedures.	In	particular,
you	should	wear	eye	protection	and	avoid	allowing	the	beam	to	enter	your	eye	directly.
These	bright	and	dark	fringes	are	the	equivalent	of	the	loud	and	quiet	regions	that	you	detected	if	you
investigated	the	interference	pattern	of	sounds	from	the	two	loudspeakers	described	in	Practical
Activity	13.2.	Bright	fringes	correspond	to	loud	sound,	and	dark	fringes	to	quiet	sound	or	silence.
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Figure	13.16:	Laser	light	passing	through	the	two	slits	show	interference	effects	in	the	space	beyond.

You	can	check	that	light	is	indeed	reaching	the	screen	from	both	slits	as	follows.	Mark	a	point	on	the
screen	where	there	is	a	dark	fringe.	Now	carefully	cover	up	one	of	the	slits	so	that	light	from	the	laser
is	only	passing	through	one	slit.	You	should	find	that	the	pattern	of	interference	fringes	disappears.
Instead,	a	broad	band	of	light	appears	across	the	screen.	This	broad	band	of	light	is	the	diffraction
pattern	produced	by	a	single	slit.	The	point	that	was	dark	is	now	light.	Cover	up	the	other	slit	instead,
and	you	will	see	the	same	effect.	You	have	now	shown	that	light	is	arriving	at	the	screen	from	both	slits,
but	at	some	points	(the	dark	fringes)	the	two	beams	of	light	cancel	each	other	out.
You	can	achieve	similar	results	with	a	bright	light	bulb	rather	than	a	laser,	but	a	laser	is	much	more
convenient	because	the	light	is	concentrated	into	a	narrow,	more	intense	beam.	This	famous
experiment	is	called	the	Young	double-slit	experiment	(discussed	in	more	detail	later	in	this	chapter),
although	Thomas	Young	had	no	laser	available	to	him	when	he	first	demonstrated	it	in	1801.

Interference	of	microwaves
Using	2.8	cm	wavelength	microwave	equipment	(Figure	13.17),	you	can	observe	an	interference
pattern.	The	microwave	transmitter	is	directed	towards	the	double	gap	in	a	metal	barrier.	The
microwaves	are	diffracted	at	the	two	gaps	so	that	they	spread	out	into	the	region	beyond,	where	they
can	be	detected	using	the	microwave	probe	(receiver).	By	moving	the	probe	around,	it	is	possible	to
detect	regions	of	high	intensity	(constructive	interference)	and	low	intensity	(destructive	interference).
The	probe	may	be	connected	to	a	meter,	or	to	an	audio	amplifier	and	loudspeaker	to	give	an	audible
output.

Figure	13.17:	Microwaves	also	show	interference	effects.

Question
Look	at	the	experimental	arrangement	shown	in	Figure	13.17.	Suppose	that	the	microwave	probe	is
placed	at	a	point	of	low	intensity	in	the	interference	pattern.
Suggest	what	will	happen	if	one	of	the	gaps	in	the	barrier	is	now	blocked.

Coherence
We	are	surrounded	by	many	types	of	wave	–	light,	infrared	radiation,	radio	waves,	sound	and	so	on.	There
are	waves	coming	at	us	from	all	directions.	So	why	do	we	not	observe	interference	patterns	all	the	time?
Why	do	we	need	special	equipment	in	a	laboratory	to	observe	these	effects?
In	fact,	we	can	see	interference	of	light	occurring	in	everyday	life.	For	example,	you	may	have	noticed
haloes	of	light	around	street	lamps	or	the	Moon	on	a	foggy	night.	You	may	have	noticed	light	and	dark
bands	of	light	if	you	look	through	fabric	at	a	bright	source	of	light.	These	are	all	examples	of	interference
effects.
We	usually	need	specially	arranged	conditions	to	produce	interference	effects	that	we	can	measure.	Think
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about	the	demonstration	with	two	loudspeakers.	If	they	were	connected	to	different	signal	generators
with	slightly	different	frequencies,	the	sound	waves	might	start	off	in	phase	with	one	another,	but	they
would	soon	go	out	of	phase	(Figure	13.18).	We	would	hear	loud,	then	soft,	then	loud	again.	The
interference	pattern	would	keep	shifting	around	the	room	–	there	would	be	no	stable	interference	pattern
of	loud	and	quiet	regions.

Figure	13.18:	Waves	of	slightly	different	 frequencies	 (and	therefore	wavelengths)	move	 in	and	out	of
phase	with	one	another.

By	connecting	the	two	loudspeakers	to	the	same	signal	generator,	we	can	be	sure	that	the	sound	waves
that	they	produce	are	constantly	in	phase	with	one	another.	We	say	that	they	act	as	two	coherent
sources	of	sound	waves	(coherent	means	sticking	together).	The	sound	waves	from	the	loudspeakers	has
coherence.	Coherent	sources	emit	waves	that	have	a	constant	phase	difference.	Note	that	the	two
waves	can	only	have	a	constant	phase	difference	if	their	frequency	is	the	same	and	remains	constant.
Now	think	about	the	laser	experiment.	Could	we	have	used	two	lasers	producing	exactly	the	same
frequency	and	hence	wavelength	of	light?	Figure	13.19a	represents	the	light	from	a	laser.	We	can	think	of
it	as	being	made	up	of	many	separate	bursts	of	light.	We	cannot	guarantee	that	these	bursts	from	two
lasers	will	always	be	in	phase	with	one	another.
This	problem	is	overcome	by	using	a	single	laser	and	dividing	its	light	using	the	two	slits	(Figure	13.19b).
The	slits	act	as	two	coherent	sources	of	light.	They	are	constantly	in	phase	with	one	another	(or	there	is	a
constant	phase	difference	between	them).
If	they	were	not	coherent	sources,	the	interference	pattern	would	be	constantly	changing,	far	too	fast	for
our	eyes	to	detect.	We	would	simply	see	a	uniform	band	of	light,	without	any	definite	bright	and	dark
regions.	From	this	you	should	be	able	to	see	that,	in	order	to	observe	interference,	we	need	two	coherent
sources	of	waves.

Figure	13.19:	Waves	must	be	coherent	if	they	are	to	produce	a	clear	interference	pattern.

Question
Draw	sketches	of	displacement	against	time	to	illustrate	the	following:

two	waves	having	the	same	amplitude	and	in	phase	with	one	another
two	waves	having	the	same	amplitude	and	with	a	phase	difference	of	90°
two	waves	initially	in	phase	but	with	slightly	different	wavelengths.

	
	



13.4	The	Young	double-slit	experiment
Now	we	will	take	a	close	look	at	a	famous	experiment	that	Thomas	Young	performed	in	1801.	He	used
this	experiment	to	show	the	wave-nature	of	light.	A	beam	of	light	is	shone	on	a	pair	of	parallel	slits	placed
at	right	angles	to	the	beam.	Light	diffracts	and	spreads	outwards	from	each	slit	into	the	space	beyond.
The	light	from	the	two	slits	overlaps	on	a	screen.	An	interference	pattern	of	light	and	dark	bands	called
‘fringes’	is	formed	on	the	screen.

Explaining	the	experiment
In	order	to	observe	interference,	we	need	two	sets	of	waves.	The	sources	of	the	waves	must	be	coherent–
the	phase	difference	between	the	waves	emitted	at	the	sources	must	remain	constant.	This	also	means
that	the	waves	must	have	the	same	wavelength.	Today,	this	is	readily	achieved	by	passing	a	single	beam
of	laser	light	through	the	two	slits.	A	laser	produces	intense	coherent	light.	As	the	light	passes	through
the	slits,	it	is	diffracted	so	that	it	spreads	out	into	the	space	beyond	(Figure	13.20).	Now	we	have	two
overlapping	sets	of	waves,	and	the	pattern	of	fringes	on	the	screen	shows	us	the	result	of	their
interference	(Figure	13.21).

Figure	13.20:	 Interference	 occurs	where	diffracted	beams	 from	 the	 two	 slits	 overlap.	How	does	 this
pattern	arise?	We	will	consider	 three	points	on	the	screen	(Figure	13.22),	and	explain	what	we	would
expect	to	observe	at	each.

Figure	13.21:	Interference	fringes	obtained	using	a	laser	and	a	double-slit.

Point	A
This	point	is	directly	opposite	the	midpoint	of	the	slits.	Two	rays	of	light	arrive	at	A,	one	from	slit	1	and
the	other	from	slit	2.	Point	A	is	equidistant	from	the	two	slits,	and	so	the	two	rays	of	light	have	travelled
the	same	distance.	The	path	difference	between	the	two	rays	of	light	is	zero.	If	we	assume	that	they	were
in	phase	(in	step)	with	each	other	when	they	left	the	slits,	then	they	will	be	in	phase	when	they	arrive	at
A.	Hence	they	will	interfere	constructively,	and	we	will	observe	a	bright	fringe	at	A.



6

•

•

•

Point	B
This	point	is	slightly	to	the	side	of	point	A,	and	is	the	midpoint	of	the	first	dark	fringe.	Again,	two	rays	of
light	arrive	at	B,	one	from	each	slit.	The	light	from	slit	1	has	to	travel	slightly	further	than	the	light	from
slit	2,	and	so	the	two	rays	are	no	longer	in	step.	Since	point	B	is	at	the	midpoint	of	the	dark	fringe,	the
two	rays	must	be	in	antiphase	(phase	difference	of	180°).	The	path	difference	between	the	two	rays	of
light	must	be	half	a	wavelength,	and	so	the	two	rays	interfere	destructively.

Point	C
This	point	is	the	midpoint	of	the	next	bright	fringe,	with	AB	=	BC.	Again,	ray	1	has	travelled	further	than
ray	2;	this	time,	it	has	travelled	an	extra	distance	equal	to	a	whole	wavelength	λ.	The	path	difference
between	the	rays	of	light	is	now	a	whole	wavelength.	The	two	rays	are	in	phase	at	the	screen.	They
interfere	constructively,	and	we	see	a	bright	fringe.
The	complete	interference	pattern	(Figure	13.21)	can	be	explained	in	this	way.

Figure	13.22:	 The	 type	 of	 interference,	 and	 hence	whether	 a	 bright	 or	 a	 dark	 fringe	 is	 seen	 on	 the
screen,	depends	on	the	path	difference	between	the	rays	of	light	arriving	at	the	screen	from	the	double-
slit.

Question
Consider	points	D	and	E	on	the	screen	in	Figure	13.22,	where	BC	=	CD	=	DE.	State	and	explain	what
you	would	expect	to	observe	at	D	and	E.

Determining	wavelength	λ
The	double-slit	experiment	can	be	used	to	determine	the	wavelength	λ	of	monochromatic	light.	The
following	three	quantities	have	to	be	measured:

Slit	 separation	 a	 –	 This	 is	 the	 distance	 between	 the	 centres	 of	 the	 slits,	 which	 is	 the	 distance
between	slits	1	and	2	in	Figure	13.22.
Fringe	separation	x	–	This	is	the	distance	between	the	centres	of	adjacent	bright	(or	dark)	fringes,
which	is	the	distance	AC	in	Figure	13.22.
Slit-to-screen	distance	D	–	This	is	the	distance	from	the	midpoint	of	the	slits	to	the	central	fringe	on
the	screen.

Once	these	three	quantities	have	been	determined,	the	wavelength	λ	of	the	light	can	be	found	using	the
relationship:
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KEY	EQUATION
The	double-slit	equation:

where	λ	is	the	wavelength	of	the	monochromatic	light	incident	normally	at	the	double-slit.	a	is	the
separation	between	the	centres	of	the	slits,	x	is	the	separation	between	the	centres	of	adjacent	bright	(or
dark)	fringes	and	D	is	distance	between	the	slits	and	the	screen.

WORKED	EXAMPLE

In	a	double-slit	experiment	using	light	from	a	helium–neon	laser,	a	student	obtained	the	following
results:
width	of	10	fringes	10x	=	1.5	cm
separation	of	slits	a	=	1.0	mm
slit-to-screen	distance	D	=	2.40	m
Calculate	the	wavelength	of	the	light	in	nm.

Work	out	the	fringe	separation	x	in	metres	(m):

Substitute	the	values	of	a,	x	and	D	(all	in	metres)	into	the	equation	and	then	calculate	the
wavelength	λ:

1	nm	=	10−9	m
Therefore:
λ	=	630	nm

Question
The	student	in	Worked	example	1	moved	the	screen	to	a	distance	of	4.8	m	from	the	slits.	Determine
the	fringe	separation	x	now.

PRACTICAL	ACTIVITY	13.4

Using	Young’s	slits	to	determine	λ
The	Young	double-slit	experiment	can	be	used	to	determine	the	wavelength	λ	of	monochromatic	light.
Here,	we	look	at	a	number	of	practical	features	of	the	experiment	and	consider	how	the	percentage
uncertainty	in	the	value	of	λ	can	be	reduced.
One	way	to	carry	out	the	double-slit	experiment	is	shown	in	Figure	13.23.	Here,	a	white	light	source	is
used,	rather	than	a	laser.	A	monochromatic	filter	allows	only	one	wavelength	of	light	to	pass	through.	A
single	slit	diffracts	the	light.	This	diffracted	light	arrives	in	phase	at	the	double	slit,	which	ensures	that
the	two	parts	of	the	double	slit	behave	as	coherent	sources	of	light.	The	double	slit	is	placed	a
centimetre	or	two	beyond	the	single	slit,	and	the	fringes	are	observed	on	a	screen	a	metre	or	so	away.
The	experiment	has	to	be	carried	out	in	a	darkened	room,	as	the	intensity	of	the	bright	fringes	is	low	–
making	them	hard	to	see.
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Figure	13.23:	Arrangement	for	seeing	fringes	using	a	white	light	source.

There	are	three	important	factors	involved	in	the	way	the	equipment	is	set	up:
All	 slits	 are	 a	 fraction	 of	 a	 millimetre	 in	 width.	 Since	 the	 wavelength	 of	 light	 is	 less	 than	 a
micrometre	(10−6	m),	this	gives	a	small	amount	of	diffraction	in	the	space	beyond.	If	the	slits	were
narrower,	the	intensity	of	the	light	would	be	too	low	for	visible	fringes	to	be	achieved.
The	double	slits	are	about	a	millimetre	apart.	If	they	were	much	further	apart,	the	fringes	would	be
too	close	together	to	be	distinguishable.
The	 screen	 is	 about	 a	metre	 from	 the	 slits.	 The	 fringes	 produced	 are	 clearly	 separated	 without
being	too	dim.

Measuring	a,	x	and	D
Measuring	slit	separation	a:	a	travelling	microscope	is	suitable	for	measuring	a.	It	is	difficult	to	judge
the	position	of	the	centre	of	a	slit.	If	the	slits	are	the	same	width,	the	separation	of	their	left-hand	edges
is	the	same	as	the	separation	of	their	centres.
Measuring	fringe	width	x:	it	is	best	to	measure	across	several	fringes	(say,	ten)	and	then	to	calculate
the	average	separation	later.	A	30	cm	ruler	or	a	travelling	microscope	can	be	used.
Measuring	the	slit-to-screen	distance	D:	this	can	be	measured	using	a	metre	rule	or	a	tape	measure.

Reducing	percentage	errors
Why	use	a	laser	rather	than	white	light?	With	a	laser,	the	light	beam	is	more	concentrated,	and	the
initial	single	slit	is	not	necessary.	The	greater	intensity	of	the	beam	means	that	the	screen	can	be
further	from	the	slits,	so	that	the	fringes	are	further	apart.	This	reduces	the	percentage	uncertainties	in
measurements	of	x	and	D.	Consequently,	the	overall	percentage	uncertainty	in	the	calculated	value	for
the	wavelength	λ	will	be	smaller.
A	laser	has	a	second	advantage.	The	light	from	a	laser	is	monochromatic;	that	is,	it	consists	of	a	single
wavelength.	This	makes	the	fringes	very	clear,	and	they	are	present	in	large	numbers	across	the
screen.	With	white	light,	a	range	of	wavelengths	is	present.	Different	wavelengths	form	fringes	at
different	points	across	the	screen,	smearing	them	out	so	that	they	are	not	as	clear.
Using	white	light	with	no	filter	results	in	a	central	fringe	that	is	white	(because	all	wavelengths	are	in
phase	here),	but	the	other	fringes	show	coloured	effects,	as	the	different	wavelengths	interfere
constructively	at	different	points.	In	addition,	only	a	few	fringes	are	visible	in	the	interference	pattern.

Questions
Use	the	equation	 	to	explain	the	following	observations:

With	the	slits	closer	together,	the	fringes	are	further	apart.
Interference	fringes	for	blue	light	are	closer	together	than	for	red	light.
In	an	experiment	to	measure	the	wavelength	of	light,	it	is	desirable	to	have	the	screen	as	far	from
the	slits	as	possible.

Yellow	light	from	a	sodium	source	is	used	in	the	double-slit	experiment.	This	yellow	light	has
wavelength	589	nm.	The	slit	separation	is	0.20	mm,	and	the	screen	is	placed	1.20	m	from	the	slits.
Calculate	the	separation	between	adjacent	bright	fringes	formed	on	the	screen.
In	a	double-slit	experiment,	filters	were	placed	in	front	of	a	white	light	source	to	investigate	the	effect
of	changing	the	wavelength	of	the	light.	At	first,	a	red	filter	was	used	instead	(λ	=	600	nm)	and	the
fringe	separation	was	found	to	be	2.4	mm.	A	blue	filter	was	then	used	instead	(λ	=	450	nm).
Calculate	the	fringe	separation	with	the	blue	filter.

	
	





13.5	Diffraction	gratings
A	transmission	diffraction	grating	is	similar	to	the	slide	used	in	the	double-slit	experiment,	but	with
many	more	slits	than	just	two.	It	consists	of	a	large	number	of	equally	spaced	lines	ruled	on	a	glass	or
plastic	slide.	Each	line	is	capable	of	diffracting	the	incident	light.	There	may	be	as	many	as	10	000	lines
per	centimetre.	When	light	is	shone	through	this	grating,	a	pattern	of	interference	fringes	is	seen.
A	reflection	diffraction	grating	consists	of	lines	made	on	a	reflecting	surface	so	that	light	is	both
reflected	and	diffracted	by	the	grating.	The	shiny	surface	of	a	CD	(compact	disc),	or	a	DVD	(digital
versatile	disc),	is	an	everyday	example	of	a	reflection	diffraction	grating.	Hold	a	CD	in	your	hand	so	that
you	are	looking	at	the	reflection	of	light	from	a	lamp.	You	will	observe	coloured	bands	(Figure	13.24).	A
CD	has	thousands	of	equally	spaced	lines	of	microscopic	pits	on	its	surface;	these	carry	the	digital
information.	It	is	the	diffraction	from	these	lines	that	produces	the	coloured	bands	of	light	from	the
surface	of	the	CD.

Figure	13.24:	A	CD	acts	as	a	reflection	diffraction	grating.	White	light	is	reflected	and	diffracted	at	its
surface,	producing	a	display	of	spectral	colours.

Observing	diffraction	with	a	transmission	grating
In	Figure	13.25,	monochromatic	light	from	a	laser	is	incident	normally	on	a	transmission	diffraction
grating.	In	the	space	beyond,	interference	fringes	are	formed.	These	can	be	observed	on	a	screen,	as	with
the	double	slit.	However,	it	is	usual	to	measure	the	angle	θ	at	which	they	are	formed,	rather	than
measuring	their	separation.	With	double	slits,	the	fringes	are	equally	spaced	and	the	angles	are	very
small.	With	a	diffraction	grating,	the	angles	are	much	greater	and	the	fringes	are	not	equally	spaced.
The	bright	fringes	are	also	referred	to	as	maxima.	The	central	fringe	is	called	the	zeroth-order	maximum,
the	next	fringe	is	the	first-order	maximum,	and	so	on.	The	pattern	is	symmetrical,	so	there	are	two	first-
order	maxima,	two	second-order	maxima,	and	so	on.

Figure	13.25:	A	 laser	beam	passing	 through	a	diffraction	grating	produces	a	 symmetrical	 pattern	of
maxima	on	a	screen.
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Explaining	the	experiment
The	principle	is	the	same	as	for	the	double-slit	experiment,	but	here	we	have	light	passing	through	many
slits.	As	it	passes	through	each	slit,	it	diffracts	into	the	space	beyond.	So	now	we	have	many	overlapping
beams	of	light,	and	these	interfere	with	one	another.
There	is	a	bright	fringe,	the	zeroth-order	maximum,	in	the	straight-through	direction	(θ	=	0).	This	is
because	all	of	the	rays	here	are	travelling	parallel	to	one	another	and	in	phase,	so	the	interference	is
constructive	(Figure	13.26a).
Imagine	if	you	could	look	through	the	diffraction	grating	at	the	source	of	light.	Your	eye	would	be	focused
on	the	light	source,	which	is	far	away.	All	the	rays	with	θ	=	0	come	together	at	the	back	of	your	eye,
where	an	image	is	formed.	It	is	here	that	interference	occurs.

Figure	13.26:	a	Waves	from	each	slit	are	in	phase	in	the	straight-through	direction.	b	In	the	direction	of
the	 first-order	maximum,	 the	waves	 are	 in	 phase,	 but	 each	 one	 has	 travelled	 one	wavelength	 further
than	the	one	below	it.

The	first-order	maximum	forms	in	a	specific	direction	as	follows.	Diffraction	occurs	at	all	of	the	slits.	Rays
of	light	emerge	from	all	of	the	slits	to	form	a	bright	fringe	–	all	the	rays	must	be	in	phase.	In	the	direction
of	the	first-order	maximum,	ray	1	has	travelled	the	smallest	distance	(Figure	13.26b).	Ray	2	has	travelled
an	extra	distance	equal	to	one	whole	wavelength	and	is	therefore	in	phase	with	ray	1.	The	path	difference
between	ray	1	and	ray	2	is	equal	to	one	wavelength	λ.	Ray	3	has	travelled	two	extra	wavelengths	and	is	in
phase	with	rays	1	and	2.	In	fact,	the	rays	from	all	of	the	slits	are	in	step	in	this	direction,	and	a	bright
fringe	results.

Question
Explain	how	the	second-order	maximum	arises	in	terms	of	path	difference.

Determining	wavelength	λ	with	a	diffraction	grating
By	measuring	the	angles	at	which	the	maxima	occur,	we	can	determine	the	wavelength	λ	of	the	incident
monochromatic	light.	The	wavelength	λ	is	related	to	the	angle	θ	by	the	equation:

KEY	EQUATION

WORKED	EXAMPLE

Monochromatic	light	is	incident	normally	on	a	diffraction	grating	having	300	lines	mm−1.	The	angle
θ	between	the	zeroth-	and	first-order	maxima	is	measured	to	be	10.0°.
Calculate	the	wavelength	of	the	incident	light.

Calculate	the	distance	between	the	adjacent	lines	(grating	spacing)	d.	Since	there	are	3000
lines	mm-1,	d	must	be:
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Rearrange	the	equation	 	and	substitute	values:

This	is	the	same	as	580	nm.	(1	nm	=	10−9	m.)

where	d	is	the	separation	between	adjacent	lines	of	the	grating,	θ	is	the	angle	for	the	nth-order	maximum
and	λ	is	the	wavelength	of	the	monochromatic	light	incident	normally	at	the	diffraction	grating.	n	is
known	as	the	order	of	the	maximum;	n	can	only	have	integer	values	0,	1,	2,	3	and	so	on.	The	distance	d	is
also	known	as	the	grating	element	or	grating	spacing.
Worked	example	2	shows	how	you	can	determine	λ.

Questions
For	the	case	described	in	Worked	example	2,	with	λ	=	580	nm,	calculate	the	angle	θ	for	the
second-order	maximum.
Repeat	the	calculation	of	θ	for	n	=	3,	4,	and	so	on.	Determine	how	many	maxima	can	be	seen.
Explain	your	answer.

Consider	the	equation	 .	State	and	explain	how	the	interference	pattern	would	change
when:

the	wavelength	of	the	incident	light	is	increased	for	the	same	grating
the	grating	is	changed	for	one	with	more	lines	per	cm	for	the	same	incident	light.

A	student	is	trying	to	make	an	accurate	measurement	of	the	wavelength	of	green	light	from	a
mercury	lamp.	The	wavelength	λ	of	this	light	is	546	nm.	Using	a	double-slit	of	separation	0.50	mm,	the
student	can	see	10	clear	bright	fringes	on	a	screen	at	a	distance	of	0.80	m	from	the	slits.	The	student
can	measure	their	overall	width	to	within	±1	mm	using	a	ruler.
The	student	then	tries	an	alternative	experiment	using	a	diffraction	grating	with	3000	lines	cm-1.	The
angle	between	the	two	second-order	maxima	can	be	measured	to	within	±0.1°.

Determine	the	width	of	the	10	fringes	that	the	student	can	measure	in	the	first	experiment.
Determine	the	angle	of	the	second-order	maximum	that	the	student	can	measure	in	the	second
experiment.
Based	on	your	answers	to	parts	a	and	b,	suggest	which	experiment	you	think	will	give	the	more
accurate	value	of	λ.

Diffracting	white	light
A	diffraction	grating	can	be	used	to	split	white	light	up	into	its	component	colours.	This	splitting	of	light
is	known	as	dispersion,	shown	in	Figure	13.27.	A	beam	of	white	light	is	shone	onto	the	grating.	A	zeroth-
order,	white	maximum	is	observed	at	θ	=	0°,	because	all	waves	of	each	colour	are	in	phase	in	this
direction.
On	either	side,	a	series	of	spectra	appear,	with	violet	closest	to	the	centre	and	red	furthest	away.	We	can
see	why	different	wavelengths	have	their	maxima	at	different	angles	if	we	rearrange	the	equation	

	to	give:

From	this	it	follows	that	the	greater	the	wavelength	λ,	the	greater	the	value	of	sin	θ	and	hence	the	greater
the	angle	θ.	Red	light	is	at	the	long	wavelength	end	of	the	visible	spectrum,	and	so	it	appears	at	the
greatest	angle.
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Figure	 13.27:	 A	 diffraction	 grating	 is	 a	 simple	 way	 of	 separating	 white	 light	 into	 its	 constituent
wavelengths.

PRACTICAL	ACTIVITY	13.5

Diffraction	gratings	versus	double-slit
It	is	worth	comparing	the	use	of	a	diffraction	grating	to	determine	wavelength	with	the	Young	two-slit
experiment.

With	a	diffraction	grating,	the	maxima	are	very	sharp.
With	 a	 diffraction	 grating,	 the	 maxima	 are	 also	 very	 bright.	 This	 is	 because	 rather	 than
contributions	from	only	two	slits,	there	are	contributions	from	a	thousand	or	more	slits.
With	double-slit,	there	may	be	a	large	uncertainty	in	the	measurement	of	the	slit	separation	a.	The
fringes	are	close	together,	so	their	separation	may	also	be	measured	imprecisely.
With	a	diffraction	grating	the	maxima	are	widely	separated,	the	angle	θ	can	be	measured	to	a	high
degree	of	precision.	So,	an	experiment	with	a	diffraction	grating	can	be	expected	to	give	a	value	for
the	wavelength	to	a	much	higher	degree	of	precision	than	a	simple	double-slit	arrangement.

Question
White	light	is	incident	normally	on	a	diffraction	grating	with	a	slit-separation	d	of	2.00	×	10−6	m.	The
visible	spectrum	has	wavelengths	between	400	nm	and	700	nm.

Calculate	the	angle	between	the	red	and	violet	ends	of	the	first-order	spectrum.
Explain	why	the	second-	and	third-order	spectra	overlap.

REFLECTION
Make	a	short	list	of	everyday	items	that	would	diffract	sound,	then	do	the	same	for	light.
Summarise	two	experiments	for	your	fellow	learners	for	determining	the	wavelength	of	visible	light.
What	did	you	learn	about	yourself	as	you	worked	on	this	summary?

	
	



SUMMARY

The	principle	of	superposition	states	that	when	two	or	more	waves	meet	at	a	point,	the	resultant
displacement	is	the	algebraic	sum	of	the	displacements	of	the	individual	waves.

When	waves	pass	through	a	slit,	they	may	be	diffracted	so	that	they	spread	out	into	the	space	beyond.
The	diffraction	effect	is	greatest	when	the	wavelength	of	the	waves	is	similar	to	the	width	of	the	gap.

Interference	is	the	superposition	of	two	or	more	waves	from	coherent	sources.

Two	sources	are	coherent	when	they	emit	waves	that	have	a	constant	phase	difference.	(This	can
only	happen	if	the	waves	have	the	same	frequency	or	wavelength.)

Path	difference	is	the	extra	distance	travelled	by	one	of	the	waves	compared	with	the	other.

For	constructive	interference,	the	path	difference	is	a	whole	number	of	wavelengths	
,	or	simply	path	difference	=	nλ.

For	constructive	interference,	the	waves	are	always	in	phase	(phase	difference	=	0°).

For	destructive	interference,	the	path	difference	is	an	odd	number	of	half	wavelengths	
	or	simply	 .

For	destructive	interference,	the	waves	are	completely	out	of	phase	(e.g.	phase	difference	=	180°).

When	light	passes	through	a	double-slit,	it	is	diffracted	at	each	slit	and	an	interference	pattern	of
equally	spaced	light	and	dark	fringes	is	observed.	This	can	be	used	to	determine	the	wavelength	of
light	using	the	equation:

This	equation	can	be	used	for	all	waves,	including	sound	and	microwaves.

A	diffraction	grating	diffracts	light	at	its	many	slits	or	lines.	The	diffracted	light	interferes	in	the	space
beyond	the	grating.

The	equation	for	a	diffraction	grating	is:

where	d	is	the	distance	between	adjacent	lines	of	the	grating	θ	is	the	angle	between	the	zeroth	order
and	nth-order	maximum,	and	λ	is	the	wavelength	of	the	light	incident	normally	at	the	grating.
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EXAM-STYLE	QUESTIONS

Rays	of	light	from	two	coherent	sources	produces	constructive	interference. 	

Which	of	the	following	cannot	be	the	phase	difference	between	these	two
rays? [1]

0° 	

270° 	

360° 	

720° 	

Copy	the	waves	shown	in	the	diagram	onto	a	sheet	of	graph	paper	and	use
the	principle	of	superposition	to	sketch	the	resultant	wave. [2]

Compare	the	wavelength	of	the	resultant	wave	with	that	of	the	component
waves. [1]

Figure	13.28
	

	 [Total:	3]

Figure	13.29
	

State	how	the	diffracted	pattern	will	change	when: 	

the	wavelength	of	the	incident	wave	is	increased [1]

the	wavelength	of	the	incident	wave	is	decreased. [1]

	 [Total:	2]

Explain	why,	in	remote	mountainous	regions,	such	as	the	Hindu	Kush,	radio
signals	from	terrestrial	transmitters	can	be	received,	but	television	reception
can	only	be	received	from	satellite	transmissions. [2]

A	constant	frequency	signal	from	a	signal	generator	is	fed	to	two	loudspeakers
placed	1.5	m	apart.	A	student,	who	is	8.0	m	away	from	the	loudspeakers,	walks
across	in	a	line	parallel	to	the	line	between	the	loudspeakers.	The	student
measures	the	distance	between	successive	spots	of	loudness	to	be	1.2	m. 	

Calculate: 	

the	wavelength	of	the	sound [2]

the	frequency	of	the	sound	(assume	the	speed	of	sound	is	330	m	s−1) [2]

	 [Total:	4]
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Two	signal	generators	feed	signals	with	slightly	different	frequencies	to	two
separate	loudspeakers.	Suggest	why	a	sound	of	continuously	rising	and	falling
loudness	is	heard. [3]

One	of	the	spectral	lines	from	a	hydrogen	discharge	lamp	has	wavelength	656
nm.	This	light	is	incident	normally	at	a	diffraction	grating	with	5000	lines	cm
−1. 	

Calculate	the	angles	for	the	first-	and	second-order	maxima	for	this	light. [5]

Explain	what	is	meant	by	the	term	superposition. [2]

In	a	double-slit	experiment,	yellow	light	of	wavelength	590	nm	from	a
sodium	discharge	tube	is	used.	A	student	sets	up	a	screen	1.8	m	from	the
double-slit.	The	distance	between	12	bright	fringes	is	measured	to	be	16.8
mm. 	

Calculate	the	separation	of	the	slits. [3]

Describe	the	effect	of: 	

using	slits	of	narrower	width,	but	with	the	same	separation [2]

using	slits	with	a	smaller	separation,	but	of	the	same	width. [2]

	 [Total:	9]

A	laser	light	is	described	as	producing	light	that	is	both	highly	coherent
and	highly	monochromatic. 	

Explain	what	is	meant	by	the	terms	coherent	and	monochromatic. [2]

This	diagram	shows	the	experimental	setup	(left)	used	to	analyse	the
spectrum	of	a	sodium	discharge	lamp	with	a	diffraction	grating	with	500
lines	mm−1,	and	the	spectral	lines	observed	(right)	in	the	developed
photographic	film. 	

Figure	13.30
	

Explain	why	two	spectra	are	observed. [2]

Describe	two	differences	between	these	two	spectra. [2]

The	green	maximum	near	end	A	is	at	an	angle	θ	of	19.5°. 	

Calculate	the	wavelength	of	the	green	light. [3]

Calculate	the	angle	produced	by	the	second	green	line. [2]

	 [Total:	11]

Explain	what	is	meant	by	destructive	interference. [2]

A	student	sets	up	an	experiment	to	investigate	the	interference	pattern
formed	by	microwaves	of	wavelength	1.5	cm.	The	apparatus	is	set	up	as	in
Figure	13.17.	The	distance	between	the	centres	of	the	two	slits	is	12.5	cm.
The	detector	is	centrally	placed	1.2	m	from	the	metal	plates	where	it
detects	a	maximum.	The	student	moves	the	detector	450	cm	across	the
bench	parallel	to	the	plates. 	

Calculate	how	many	maxima	the	detector	will	be	moved	through. [3]

Calculate	the	frequency	of	these	microwaves. [2]

	 [Total:	7]

Explain	what	is	meant	by	the	diffraction	of	a	wave. [2]

This	diagram	shows	waves,	in	a	ripple	tank,	spreading	out	from	two	slits. 	
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Figure	13.31
	

Copy	this	diagram.	On	your	diagram,	sketch: 	

a	line	showing	points	along	the	central	maximum–label	this	line	0 [1]

a	line	showing	the	points	along	first	maximum–label	this	line	1 [1]

a	line	showing	points	along	one	of	the	first	minima–label	this	line	min. [1]

The	centres	of	the	slits	are	12	cm	apart.	At	a	distance	of	60	cm	from	the
barrier,	the	first	maxima	are	18	cm	either	side	of	the	central	maximum.
Calculate	the	wavelength	of	the	waves.	(You	may	assume	that	the	double-
slit	equation	developed	for	light	is	applicable	to	ripples.) [3]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	this	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	principle	of
superposition

13.1 	 	 	

understand	diffraction,	interference,
path	difference	and	coherence

13.2,	13.3 	 	 	

understand	the	conditions	for
constructive	and	destructive
interference

13.3 	 	 	

understand	experiments	involving	two
coherent	sources

13.3 	 	 	

recall	and	use	 	for	double-slit
interference	using	light

13.4 	 	 	

recall	and	use	 	for	a
diffraction	grating

13.5 	 	 	

use	a	diffraction	grating	to	determine
the	wavelength	of	light.

13.5 	 	 	
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	Chapter	14

Stationary	waves

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
explain	the	formation	of	stationary	waves	using	graphical	methods
understand	experiments	to	demonstrate	stationary	waves	using	microwaves,	stretched	strings	and
air	columns
identify	nodes	and	antinodes
determine	the	wavelength	of	sound	using	stationary	waves.

BEFORE	YOU	START
Write	down	the	wave	equation	and	use	it	to	estimate	the	wavelength	of	ripples	on	the	surface	of	a
pond.
Write	 down	 a	 few	 notes	 about	 the	 principle	 of	 superposition	 of	 waves.	 This	 will	 help	 you	 to
understand	how	stationary	(standing)	waves	are	formed.

THE	BRIDGE	THAT	BROKE
Figure	14.1a	shows	the	Normandy	Bridge	under	construction	in	France.	When	designing	bridges,
engineers	must	take	into	account	the	possibility	of	the	wind	causing	a	build-up	of	stationary	waves,
which	may	lead	the	bridge	to	oscillate	violently.	Famously,	this	happened	in	October	1940	to	the
Tacoma	Narrows	Bridge	in	Washington	State,	USA.	High	winds	caused	the	bridge	to	vibrate	with
increasing	amplitude	until	it	fell	apart	(Figure	14.1b).
Did	you	know	that	the	Tacoma	Narrows	Bridge	fell	apart	because	its	natural	frequency	of	oscillation
matched	the	thumping	frequency	of	the	swirling	wind?	Do	a	web	search	for	a	videoclip	of	this
momentous	event.



Figure	 14.1:	a	 A	 suspension	 bridge	 under	 construction.	b	 One	 that	 failed	 –	 the	 Tacoma	 Narrows
Bridge.

	
	



14.1	From	moving	to	stationary
The	waves	we	have	considered	so	far	in	Chapters	12	and	13	have	been	progressive	waves;	they	start
from	a	source	and	travel	outwards,	transferring	energy	from	one	place	to	another.	A	second	important
class	of	waves	is	stationary	waves	(standing	waves).	These	can	be	observed	as	follows.	Use	a	long
spring	or	a	plastic	toy	spring.	A	long	rope	or	piece	of	rubber	tubing	will	also	do.	Lay	it	on	the	floor	and	fix
one	end	firmly.	Move	the	other	end	from	side	to	side	so	that	transverse	waves	travel	along	the	length	of
the	spring	and	reflect	off	the	fixed	end	(Figure	14.2).	If	you	adjust	the	frequency	of	the	shaking,	you
should	be	able	to	achieve	a	stable	pattern	like	one	of	those	shown	in	Figure	14.3.	Alter	the	frequency	in
order	to	achieve	one	of	the	other	patterns.

Figure	14.2:	A	toy	spring	is	used	to	generate	a	stationary	wave	pattern.

Figure	14.3:	Different	stationary	wave	patterns	are	possible,	depending	on	the	frequency	of	vibration.

You	should	notice	that	you	have	to	move	the	end	of	the	spring	with	just	the	right	frequency	to	get	one	of
these	interesting	patterns.	The	pattern	disappears	when	the	frequency	of	the	shaking	of	the	free	end	of
the	spring	is	slightly	increased	or	decreased.
	
	



14.2	Nodes	and	antinodes
What	you	have	observed	is	a	stationary	wave	on	the	long	spring.	There	are	points	along	the	spring	that
remain	(almost)	motionless	while	points	on	either	side	are	oscillating	with	the	greatest	amplitude.	The
points	that	do	not	move	are	called	the	nodes	and	the	points	where	the	spring	oscillates	with	maximum
amplitude	are	called	the	antinodes.	At	the	same	time,	it	is	clear	that	the	wave	profile	is	not	travelling
along	the	length	of	the	spring.	Hence,	we	call	it	a	stationary	wave	or	a	standing	wave.
We	normally	represent	a	stationary	wave	by	drawing	the	shape	of	the	spring	in	its	two	extreme	positions
(Figure	14.4).	The	spring	appears	as	a	series	of	loops,	separated	by	nodes.	In	this	diagram,	point	A	is
moving	downwards.	At	the	same	time,	point	B	in	the	next	loop	is	moving	upwards.	The	phase	difference
between	points	A	and	B	is	180°.	Hence,	the	sections	of	spring	in	adjacent	loops	are	always	moving	in
antiphase;	they	are	half	a	cycle	out	of	phase	with	one	another.

Figure	14.4:	The	fixed	ends	of	a	long	spring	must	be	nodes	in	the	stationary	wave	pattern.
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14.3	Formation	of	stationary	waves
Imagine	a	string	stretched	between	two	fixed	points,	for	example,	a	guitar	string.	Pulling	the	middle	of
the	string	and	then	releasing	it	produces	a	stationary	wave.	There	is	a	node	at	each	of	the	fixed	ends	and
an	antinode	in	the	middle.	Releasing	the	string	produces	two	progressive	waves	travelling	in	opposite
directions.	These	are	reflected	at	the	fixed	ends.	The	reflected	waves	combine	to	produce	the	stationary
wave.
Figure	14.3	shows	how	a	stationary	wave	can	be	set	up	using	a	long	spring.	A	stationary	wave	is	formed
whenever	two	progressive	waves	of	the	same	amplitude	and	wavelength,	travelling	in	opposite
directions,	superpose.	Figure	14.5	uses	a	displacement–distance	graph	(s–x)	to	illustrate	the	formation	of
a	stationary	wave	along	a	long	spring	(or	a	stretched	length	of	string):

At	time	t	=	0,	the	progressive	waves	travelling	to	the	left	and	right	are	in	phase.	The	waves	combine
constructively,	giving	an	amplitude	twice	that	of	each	wave.
After	 a	 time	 equal	 to	 one-quarter	 of	 a	 period	 ,	 each	wave	 has	 travelled	 a	 distance	 of	 one
quarter	 of	 a	wavelength	 to	 the	 left	 or	 right.	 Consequently,	 the	 two	waves	 are	 in	 antiphase	 (phase
difference	=	180°).	The	waves	combine	destructively,	giving	zero	displacement.
After	a	time	equal	to	one-half	of	a	period	 ,	the	two	waves	are	back	in	phase	again.	They	once
again	combine	constructively.

After	 a	 time	equal	 to	 three-quarters	 of	 a	period	 ,	 the	waves	 are	 in	 antiphase	again.	They
combine	destructively,	with	the	resultant	wave	showing	zero	displacement.
After	a	time	equal	to	one	whole	period	(t	=	T),	the	waves	combine	constructively.	The	profile	of	the
spring	is	as	it	was	at	t	=	0.

This	cycle	repeats	itself,	with	the	long	spring	showing	nodes	and	antinodes	along	its	length.	The
separation	between	adjacent	nodes	or	antinodes	tells	us	about	the	progressive	waves	that	produce	the
stationary	wave.
A	closer	inspection	of	the	graphs	in	Figure	14.5	shows	that	the	separation	between	adjacent	nodes	or
antinodes	is	related	to	the	wavelength	λ	of	the	progressive	wave.	The	important	conclusions	are:

separation	between	two	adjacent	nodes	(or	between	two	adjacent	antinodes)	=	

separation	between	adjacent	node	and	antinode	=	

The	wavelength	λ	of	any	progressive	wave	can	be	determined	from	the	separation	between
neighbouring	nodes	or	antinodes	of	the	resulting	stationary	wave	pattern.

(This	separation	is	 .)	This	can	then	be	used	to	determine	either	the	speed	v	of	the	progressive	wave	or
its	frequency	f	by	using	the	wave	equation:

KEY	EQUATION

The	wave	equation,	where	v	is	the	speed	of	the	wave,	f	is	the	frequency
and	λ	is	the	wavelength.
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Figure	14.5:	The	blue-coloured	wave	is	moving	to	the	left	and	the	red-coloured	wave	to	the	right.	The
principle	of	superposition	of	waves	 is	used	to	determine	the	resultant	displacement.	The	profile	of	 the
long	spring	is	shown	in	green.

It	is	worth	noting	that	a	stationary	wave	does	not	travel	and	therefore	has	no	speed.	It	does	not	transfer
energy	between	two	points	like	a	progressive	wave.	Table	14.1	shows	some	of	the	key	features	of	a
progressive	wave	and	its	stationary	wave.

	 Progressive	wave Stationary	wave

wavelength λ λ

frequency f f

speed v zero

Table	14.1:	A	summary	of	progressive	and	stationary	waves.

Question
A	stationary	(standing)	wave	is	set	up	on	a	vibrating	spring.	Adjacent	nodes	are	separated	by	25	cm.
Calculate:

the	wavelength	of	the	progressive	wave
the	distance	from	a	node	to	an	adjacent	antinode.

PRACTICAL	ACTIVITY	14.1

Observing	stationary	waves
Here	we	look	at	experimental	arrangements	for	observing	stationary	waves,	for	mechanical	waves	on
strings,	microwaves	and	sound	waves	in	air	columns.

Stretched	strings:	Melde’s	experiment
A	string	is	attached	at	one	end	to	a	vibration	generator,	driven	by	a	signal	generator	(Figure	14.6).	The
other	end	hangs	over	a	pulley	and	weights	maintain	the	tension	in	the	string.	When	the	signal
generator	is	switched	on,	the	string	vibrates	with	small	amplitude.	Larger	amplitude	stationary	waves
can	be	produced	by	adjusting	the	frequency.



Figure	14.6:	Melde’s	experiment	for	investigating	stationary	waves	on	a	string.

The	pulley	end	of	the	string	cannot	vibrate;	this	is	a	node.	Similarly,	the	end	attached	to	the	vibrator
can	only	move	a	small	amount,	and	this	is	also	a	node.	As	the	frequency	is	increased,	it	is	possible	to
observe	one	loop	(one	antinode),	two	loops,	three	loops	and	more.	Figure	14.7	shows	a	vibrating	string
where	the	frequency	of	the	vibrator	has	been	set	to	produce	two	loops.
A	flashing	stroboscope	is	useful	to	reveal	the	motion	of	the	string	at	these	frequencies,	which	look
blurred	to	the	eye.	The	frequency	of	vibration	is	set	so	that	there	are	two	loops	along	the	string;	the
frequency	of	the	stroboscope	is	set	so	that	it	almost	matches	that	of	the	vibrations.	Now	we	can	see	the
string	moving	‘in	slow	motion’,	and	it	is	easy	to	see	the	opposite	movements	of	the	two	adjacent	loops.

Figure	14.7:	When	 a	 stationary	wave	 is	 established,	 one	 half	 of	 the	 string	moves	 upwards	 as	 the
other	half	moves	downwards.	In	this	photograph,	the	string	is	moving	too	fast	to	observe	the	effect.

This	experiment	is	known	as	Melde’s	experiment,	and	it	can	be	extended	to	investigate	the	effect	of
changing	the	length	of	the	string,	the	tension	in	the	string	and	the	thickness	of	the	string.

Microwaves
Start	by	directing	the	microwave	transmitter	at	a	metal	plate,	which	reflects	the	microwaves	back
towards	the	source	(Figure	14.8).	Move	the	probe	receiver	around	in	the	space	between	the	transmitter
and	the	reflector	and	you	will	observe	positions	of	high	and	low	intensity.	This	is	because	a	stationary
wave	is	set	up	between	the	transmitter	and	the	sheet;	the	positions	of	high	and	low	intensity	are	the
antinodes	and	nodes,	respectively.



Figure	14.8:	A	stationary	wave	is	created	when	microwaves	are	reflected	from	the	metal	sheet.

If	the	probe	is	moved	along	the	direct	line	from	the	transmitter	to	the	plate,	the	wavelength	of	the
microwaves	can	be	determined	from	the	distance	between	the	nodes.	Knowing	that	microwaves	travel
at	the	speed	of	light	c	(3.0	×	108	m	s−1),	we	can	then	determine	their	frequency	f	using	the	wave
equation:

c	=	fλ

An	air	column	closed	at	one	end
A	glass	tube	(open	at	both	ends)	is	clamped	so	that	one	end	dips	into	a	cylinder	of	water.	By	adjusting
its	height	in	the	clamp,	you	can	change	the	length	of	the	column	of	air	in	the	tube	(Figure	14.9).	When
you	hold	a	vibrating	tuning	fork	above	the	open	end,	the	air	column	may	be	forced	to	vibrate	and	the
note	of	the	tuning	fork	sounds	much	louder.	This	is	an	example	of	a	phenomenon	called	resonance.	The
experiment	described	here	is	known	as	the	resonance	tube.

Figure	14.9:	A	stationary	wave	is	created	in	the	air	in	the	tube	when	the	length	of	the	air	column	is
adjusted	to	the	correct	length.



For	resonance	to	occur,	the	length	of	the	air	column	must	be	just	right.	The	air	at	the	bottom	of	the
tube	is	unable	to	vibrate,	so	this	point	must	be	a	node.	The	air	at	the	open	end	of	the	tube	can	vibrate
most	freely,	so	this	is	an	antinode.	Hence,	the	length	of	the	air	column	must	be	one-quarter	of	a
wavelength	(Figure	14.10a).	(Alternatively,	the	length	of	the	air	column	could	be	set	to	equal	three-
quarters	of	a	wavelength	–	see	Figure	14.10b.)
Take	care!	The	representation	of	stationary	sound	waves	can	be	misleading.	Remember	that	a	sound
wave	is	a	longitudinal	wave,	but	the	diagram	we	draw	is	more	like	a	transverse	wave.	Figure	14.11a
shows	how	we	normally	represent	a	stationary	sound	wave,	while	Figure	14.11b	shows	the	direction	of
vibration	of	the	particles	along	the	wave.

Open-ended	air	columns
The	air	in	a	tube	that	is	open	at	both	ends	will	vibrate	in	a	similar	way	to	that	in	a	closed	column.	Take
an	open-ended	tube	and	blow	gently	across	the	top.	You	should	hear	a	note	whose	pitch	depends	on	the
length	of	the	tube.	Now	cover	the	bottom	of	the	tube	with	the	palm	of	your	hand	and	repeat	the
process.	The	pitch	of	the	note	now	produced	will	be	about	an	octave	lower	than	the	previous	note,
which	means	that	the	frequency	is	approximately	half	of	the	original	frequency.

Figure	14.10:	Stationary	wave	patterns	for	air	in	a	tube	with	one	end	closed.

It	is	rather	surprising	that	a	stationary	wave	can	be	set	up	in	an	open	column	of	air	in	this	way.	What	is
going	on?	Figure	14.12	compares	the	situation	for	open	and	closed	tubes.	An	open-ended	tube	has	two
open	ends,	so	there	must	be	an	antinode	at	each	end.	There	is	a	node	at	the	midpoint.
For	a	tube	of	length	l	you	can	see	that	in	the	closed	tube	the	stationary	wave	formed	is	one-quarter	of	a
wavelength,	so	the	wavelength	is	4l,	whereas	in	the	open	tube	it	is	half	a	wavelength,	giving	a
wavelength	of	2l.	Closing	one	end	of	the	tube	thus	doubles	the	wavelength	of	the	note	and	so	the
frequency	halves.
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Figure	14.11:	a	 The	 standard	 representation	 of	 a	 stationary	 sound	wave	may	 suggest	 that	 it	 is	 a
transverse	wave.	b	A	sound	wave	is	really	a	longitudinal	wave,	so	that	the	particles	vibrate	as	shown.

Figure	14.12:	Stationary	wave	patterns	for	sound	waves	in	a	a	closed	tube,	and	b	an	open	tube.

Questions
Look	at	the	stationary	(standing)	wave	on	the	string	in	Figure	14.7.	The	length	of	the	vibrating	section
of	the	string	is	60	cm.

Determine	the	wavelength	of	the	progressive	wave	and	the	separation	of	the	two	neighbouring
antinodes.
The	frequency	of	vibration	is	increased	until	a	stationary	wave	with	three	antinodes	appears	on
the	string.
Sketch	a	stationary	wave	pattern	to	illustrate	the	appearance	of	the	string.
Calculate	the	wavelength	of	the	progressive	wave	on	this	string.
Sketch	a	stationary	wave	pattern	for	the	microwave	experiment	in	Practical	Activity	14.1.	Clearly
show	whether	there	is	a	node	or	an	antinode	at	the	reflecting	sheet.
The	separation	of	two	adjacent	points	of	high	intensity	is	found	to	be	14	mm.	Calculate	the
wavelength	and	frequency	of	the	microwaves.

Explain	how	two	sets	of	identical	but	oppositely	travelling	waves	are	established	in	the	microwave
and	air	column	experiments	described	in	Practical	Activity	14.1.

Stationary	waves	and	musical	instruments	(extension)
The	production	of	different	notes	by	musical	instruments	often	depends	on	the	creation	of	stationary
waves	(Figure	14.13).	For	a	stringed	instrument,	such	as	a	guitar,	the	two	ends	of	a	string	are	fixed,	so



nodes	must	be	established	at	these	points.	When	the	string	is	plucked	half-way	along	its	length,	it	vibrates
with	an	antinode	at	its	midpoint.	This	is	known	as	the	fundamental	mode	of	vibration	of	the	string.	The
fundamental	frequency	is	the	minimum	frequency	of	a	stationary	wave	for	a	given	system	or
arrangement.

Figure	14.13:	When	 a	 guitar	 string	 is	 plucked,	 the	 vibrations	 of	 the	 strings	 continue	 for	 some	 time
afterwards.	Here,	you	can	clearly	see	a	node	close	to	the	end	of	each	string.

Similarly,	the	air	column	inside	a	wind	instrument	is	caused	to	vibrate	by	blowing,	and	the	note	that	is
heard	depends	on	a	stationary	wave	being	established.	By	changing	the	length	of	the	air	column,	as	in	a
trombone,	the	note	can	be	changed.	Alternatively,	holes	can	be	uncovered	so	that	the	air	can	vibrate	more
freely,	giving	a	different	pattern	of	nodes	and	antinodes.
In	practice,	the	sounds	that	are	produced	are	made	up	of	several	different	stationary	waves	having
different	patterns	of	nodes	and	antinodes.	For	example,	a	guitar	string	may	vibrate	with	two	antinodes
along	its	length.	This	gives	a	note	having	twice	the	frequency	of	the	fundamental,	and	is	described	as	a
harmonic	of	the	fundamental.	The	musician’s	skill	is	in	stimulating	the	string	or	air	column	to	produce	a
desired	mixture	of	frequencies.
The	frequency	of	a	harmonic	is	always	a	multiple	of	the	fundamental	frequency.	The	diagrams	show	some
of	the	modes	of	vibration	of	a	fixed	length	of	string	(Figure	14.14)	and	an	air	column	in	a	tube	of	a	given
length	that	is	closed	at	one	end	(Figure	14.15).

Figure	14.14:	Some	of	the	possible	stationary	waves	for	a	fixed	string	of	length	l.	The	frequency	of	the
harmonics	is	a	multiple	of	the	fundamental	frequency	f0.



Figure	 14.15:	 Some	 of	 the	 possible	 stationary	 waves	 for	 an	 air	 column,	 closed	 at	 one	 end.	 The
frequency	of	each	harmonic	is	an	odd	multiple	of	the	fundamental	frequency	f0.

	
	



14.4	Determining	the	wavelength	and	speed	of
sound
Since	we	know	that	adjacent	nodes	(or	antinodes)	of	a	stationary	wave	are	separated	by	half	a
wavelength,	we	can	use	this	fact	to	determine	the	wavelength	λ	of	a	progressive	wave.	If	we	also	know	the
frequency	f	of	the	waves,	we	can	find	their	speed	v	using	the	wave	equation	v	=	fλ.
One	approach	uses	Kundt’s	dust	tube	(Figure	14.16).	A	loudspeaker	sends	sound	waves	along	the	inside
of	a	tube.	The	sound	is	reflected	at	the	closed	end.	When	a	stationary	wave	is	established,	the	dust	(fine
powder)	at	the	antinodes	vibrates	violently.	It	tends	to	accumulate	at	the	nodes,	where	the	movement	of
the	air	is	zero.	Hence,	the	positions	of	the	nodes	and	antinodes	can	be	clearly	seen.

Figure	14.16:	Kundt’s	dust	tube	can	be	used	to	determine	the	speed	of	sound.

PRACTICAL	ACTIVITY	14.2

Using	stationary	sound	waves	to	determine	λ	and	v
This	method	is	shown	in	Figure	14.17;	it	is	the	same	arrangement	as	used	for	microwaves	(Practical
Activity	14.1).	The	loudspeaker	produces	sound	waves,	and	these	are	reflected	from	the	vertical	board.
The	microphone	detects	the	stationary	sound	wave	in	the	space	between	the	speaker	and	the	board,
and	its	output	is	displayed	on	the	oscilloscope.	It	is	simplest	to	turn	off	the	time-base	of	the
oscilloscope,	so	that	the	spot	no	longer	moves	across	the	screen.	The	spot	moves	up	and	down	the
screen,	and	the	height	of	the	vertical	trace	gives	a	measure	of	the	intensity	of	the	sound.
By	moving	the	microphone	along	the	line	between	the	speaker	and	the	board,	it	is	easy	to	detect	nodes
and	antinodes.	For	maximum	accuracy,	we	do	not	measure	the	separation	of	adjacent	nodes;	it	is	better
to	measure	the	distance	across	several	nodes.
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Figure	14.17:	A	stationary	sound	wave	is	established	between	the	loudspeaker	and	the	board.

Questions
For	the	arrangement	shown	in	Figure	14.17,	suggest	why	it	is	easier	to	determine	accurately	the
position	of	a	node	rather	than	an	antinode.
Explain	why	it	is	better	to	measure	the	distance	across	several	nodes.

For	sound	waves	of	frequency	2500	Hz,	it	is	found	that	two	nodes	are	separated	by	20	cm,	with	three
antinodes	between	them.

Determine	the	wavelength	of	these	sound	waves.
Use	the	wave	equation	v	=	fλ	to	determine	the	speed	of	sound	in	air.

REFLECTION
Explain	to	your	classmates	the	difference	between	progressive	sound	waves	and	stationary	sound
waves.
Sketch	four	possible	stationary	wave	patterns	in	a	tube	closed	at	just	one	end.	Show	these	to	your
fellow	learners.	What	grade	would	you	give	yourself	for	the	patterns?	Why?

	
	



SUMMARY

Stationary	waves	are	formed	when	two	identical	progressive	waves	travelling	in	opposite	directions
meet	and	superpose.	This	usually	happens	when	one	wave	is	a	reflection	of	the	other.

A	stationary	wave	has	a	characteristic	pattern	of	nodes	and	antinodes.

A	node	is	a	point	where	the	amplitude	is	always	zero.

An	antinode	is	a	point	of	maximum	amplitude.

Adjacent	nodes	(or	adjacent	antinodes)	are	separated	by	a	distance	equal	to	half	a	wavelength	of	the
progressive	wave.

We	can	use	the	wave	equation	v	=	fλ	to	determine	the	speed	v	or	the	frequency	f	of	a	progressive
wave.	The	wavelength	λ	is	found	using	the	nodes	or	antinodes	of	the	stationary	wave	pattern.
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EXAM-STYLE	QUESTIONS

Which	statement	is	not	correct	about	stationary	waves? [1]

A	stationary	wave	always	has	transverse	oscillations. 	

A	stationary	wave	must	have	at	least	one	node. 	

The	separation	between	two	adjacent	nodes	is	 ,	where	λ	is	the
wavelength	of	the	progressive	wave. 	

The	superposition	of	two	progressive	waves	travelling	in	opposite
directions	will	produce	a	stationary	wave. 	

A	string	is	fixed	between	points	X	and	Y. 	

A	stationary	wave	pattern	is	formed	on	the	stretched	string. 	

Figure	14.18
	

The	distance	between	X	and	Y	is	78.0	cm.	The	string	vibrates	at	a	frequency	of
120	Hz. 	

What	is	the	speed	of	the	progressive	wave	on	the	string? [1]

11.7	m	s−1 	

23.4	m	s−1 	

46.8	m	s−1 	

93.6	m	s−1 	

This	diagram	shows	a	stationary	wave	on	a	string. 	

Figure	14.19
	

On	a	copy	of	the	diagram,	label	one	node	(N)	and	one	antinode	(A). [1]

Mark	on	your	diagram	the	wavelength	of	the	progressive	wave	and	label	it
λ. [1]

The	frequency	of	the	vibrator	is	doubled.	Describe	the	changes	in	the
stationary	wave	pattern. [1]

	 [Total:	3]

A	tuning	fork	that	produces	a	note	of	256	Hz	is	placed	above	a	tube	that	is
nearly	filled	with	water.	The	water	level	is	lowered	until	resonance	is	first
heard. 	

Explain	what	is	meant	by	the	term	resonance. [1]

The	length	of	the	column	of	air	above	the	water	when	resonance	is	first
heard	is	31.2	cm. 	

Calculate	the	speed	of	the	sound	wave. [2]

	 [Total:	3]

State	two	similarities	and	two	differences	between	progressive	waves	and
stationary	waves. [4]
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This	diagram	shows	an	experiment	to	measure	the	speed	of	a	sound	in	a
string.	The	frequency	of	the	vibrator	is	adjusted	until	the	stationary	wave
shown	is	formed. 	

Figure	14.20
	

On	a	copy	of	the	diagram,	mark	a	node	(label	it	N)	and	an	antinode
(label	it	A). [2]

The	frequency	of	the	vibrator	is	120	Hz.	Calculate	the	speed	at	which	a
progressive	wave	would	travel	along	the	string. [3]

The	experiment	is	now	repeated	with	the	load	on	the	string	halved.	In
order	to	get	a	similar	stationary	wave	the	frequency	has	to	be	decreased	to
30	Hz.	Explain,	in	terms	of	the	speed	of	the	wave	in	the	string,	why	the
frequency	must	be	adjusted. [2]

	 [Total:	11]

This	diagram	shows	a	stationary	wave,	of	frequency	400	Hz,	produced	by	a
loudspeaker	in	a	closed	tube. 	

Figure	14.21
	

Describe	the	movement	of	the	air	particles	at: 	

A [2]

B [1]

The	length	the	tube	is	63.8	cm. 	

Calculate	the	speed	of	the	sound. [3]

	 [Total:	6]

Explain	what	is	meant	by: 	

a	coherent	source	of	waves. [2]

phase	difference. [2]

A	student,	experimenting	with	microwaves,	sets	up	the	arrangement	shown
in	this	diagram. 	
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Figure	14.22

	

With	the	metal	plate	at	position	A	there	is	a	very	small	signal.	He	slowly
moves	the	plate	back,	leaving	the	receiver	in	the	same	position.	As	he	does
so,	he	finds	that	the	intensity	initially	rises	until	it	becomes	a	maximum,
then	falls	back	to	a	minimum.	This	cycle	repeats	a	total	of	five	times	until
the	plate	reaches	position	B,	where	once	again	there	is	a	minimum. 	

Explain	why	a	series	of	maxima	and	minima	are	heard. [2]

Determine	the	frequency	of	the	microwaves. [5]

Explain	why	there	was	a	minimum	when	the	plate	was	at	position	A,	next
to	the	detector. [2]

	 [Total:	13]

This	diagram	shows	an	experiment	to	measure	the	speed	of	sound	in	air. 	

Figure	14.23
	

A	small	amount	of	dust	is	scattered	along	the	tube.	The	loudspeaker	is
switched	on.	When	the	frequency	is	set	at	512	Hz	the	dust	collects	in	small
piles	as	shown	in	the	diagram. 	

Determine	the	wavelength	of	the	sound	wave	and	calculate	the	speed	of
sound	in	the	air	in	the	tube. [3]

On	a	copy	of	the	diagram,	show	the	movement	of	the	air	particles	at
positions	P,	Q,	R,	S	and	T. [3]

Mark	two	points	on	your	diagram	where	the	movements	of	the	air	particles
are	180°	out	of	phase	with	each	other.	Label	them	A	and	B. [1]

	 [Total:	7]

The	speed	v	of	a	transverse	wave	on	a	stretched	wire	is	given	by	the
expression	 	

where	T	is	the	tension	in	the	wire. 	

A	length	of	wire	is	stretched	between	two	fixed	point.	The	tension	in	the	wire	is



T.	The	wire	is	gently	plucked	from	the	middle.	A	stationary	wave,	of
fundamental	frequency	210	Hz,	is	produced.

	

The	tension	in	the	wire	is	now	increased	to	1.4T.	The	percentage	uncertainty	in
new	tension	is	8.0%.	The	length	of	the	wire	is	unchanged. 	

Calculate	the	new	value	for	the	fundamental	frequency	when	the	wire	is
plucked	in	the	middle.	Your	answer	must	include	the	absolute	uncertainty
written	to	an	appropriate	number	of	significant	figures. [4]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

explain	the	formation	of	stationary
waves	using	graphical	methods

14.1,	14.3 	 	 	

describe	experiments	that	demonstrate
stationary	waves	using	microwaves,
stretched	strings	and	air	columns

14.3 	 	 	

state	what	is	meant	by	nodes	and
antinodes

14.2 	 	 	

recall	the	separation	between
neighbouring	nodes	(or	antinodes)	in
terms	of	the	wavelength	of	the
progressive	wave

14.3 	 	 	

determine	the	wavelength	of	sound
using	stationary	waves.

14.4 	 	 	
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	Chapter	15

Atomic	structure	and	particle	physics

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
describe	the	nuclear	model	of	the	atom	and	the	evidence	for	it
show	an	understanding	of	the	nature	and	properties	of	α-,	β-	and	γ-radiations
understand	that	in	α	and	β	decay	a	nuclide	changes	into	a	different	nuclide
recognise	that	there	are	two	classes	of	sub-atomic	particles	–	leptons	and	hadrons
recognise	that	leptons	are	fundamental	particles
appreciate	that	electrons	and	neutrinos	are	leptons
recognise	that	hadrons	are	not	fundamental	particles
understand	that	hadrons	are	made	up	of	particles	called	quarks.

BEFORE	YOU	START
Try	drawing	the	structure	of	the	atom.
Suggest	why,	in	the	late	19th	century,	physicists	felt	that	atoms	were	not	the	basic	building	blocks
of	matter	and	 that	 the	atoms	 themselves	had	an	 internal	 structure.	Discuss	your	 ideas	with	your
fellow	students.

RADIOACTIVITY	AT	WORK
Radioactive	substances	have	many	uses,	for	example,	in	engineering	and	medicine.
In	the	1950s,	many	shoe	shops	had	an	X-ray	machine	where	you	put	your	feet	into	an	opening	and	you
could	view	the	bones	in	your	feet	on	a	fluorescent	screen	–	quite	exciting	for	a	young	child!	These	have
long	since	disappeared.	Why	do	you	think	they	are	not	used	anymore?
Radioactive	substances	must	be	handled	with	great	care	to	ensure	that	no-one	becomes	contaminated



and	so	exposed	to	the	radiation	that	comes	from	these	substances	(Figure	15.1).
Do	you	know	how	modern-day	workers	who	are	likely	to	be	exposed	to	radiation	(such	as	radiographers
in	a	hospital)	are	protected	from	radiation?	Are	the	short-term	and	long-term	protections	different?
In	this	chapter,	we	will	look	at	the	structure	of	the	atom,	and	then	the	nature	of	radioactive	substances
and	the	different	types	of	radiation	they	produce.

Figure	15.1:	A	worker	at	a	nuclear	power	station	is	checked	for	any	radioactive	material	on	his	body.

	
	



15.1	Looking	inside	the	atom
The	idea	that	matter	is	composed	of	very	small	particles	called	atoms	was	first	suggested	by	the	Ancient
Greeks	about	2000	years	ago.	However,	it	was	not	until	the	middle	of	the	19th	century	that	any	ideas
about	the	inside	of	the	atom	were	proposed.
It	was	the	English	scientist	J.J.	Thomson	who	suggested	that	the	atom	is	a	neutral	particle	made	of	a
positive	charge	with	lumps	of	negative	charge	(electrons)	in	it.	He	could	not	determine	the	charge	and
the	mass	of	the	negative	particles	separately,	but	it	was	clear	that	a	new	particle,	probably	much	smaller
than	the	hydrogen	atom,	had	been	discovered.	Since	atoms	are	neutral	and	physicists	had	discovered	a
negatively	charged	part	of	an	atom,	it	meant	that	there	were	both	positive	and	negative	charges	in	an
atom.	We	now	call	this	the	plum	pudding	model	of	the	atom	(positive	pudding	with	negative	plums!).

Other	experiments	show	that	the	electron	has	a	mass	of	approximately	9.11	×	10−31	kg	(me)	and	a	charge
of	−1.60	×	10−19	C	(−e).	Today,	we	use	the	idea	of	the	electron	to	explain	all	sorts	of	phenomena,
including	electrostatics,	current	electricity	and	electronics.
	
	



15.2	Alpha-particle	scattering	and	the	nucleus
Early	in	the	20th	century,	many	physicists	were	investigating	the	recently	discovered	phenomenon	of
radioactivity,	the	process	whereby	unstable	nuclei	emit	radiation.	One	kind	of	radiation	they	found
consisted	of	what	they	called	α-particles	(alpha-particles).
These	α-particles	were	known	to	have	a	similar	mass	to	the	smaller	atoms	(such	as	hydrogen,	helium	and
lithium)	and	had	relatively	high	kinetic	energies.	Hence,	they	were	useful	in	experiments	designed	to
discover	the	composition	of	atoms.

Figure	15.2:	 Ernest	Rutherford	 (on	 the	 right)	 in	 the	Cavendish	 Laboratory,	Cambridge,	 England.	He
had	a	loud	voice	that	could	disturb	sensitive	apparatus	and	so	the	notice	was	a	joke	aimed	at	him.

In	1906,	while	experimenting	with	the	passage	of	α-particles	through	a	thin	mica	sheet,	Ernest	Rutherford
(Figure	15.2)	noticed	that	most	of	the	α-particles	passed	straight	through.	(Mica	is	a	natural	mineral	that
can	be	split	into	very	thin	sheets.)	This	suggested	to	him	that	there	might	be	a	large	amount	of	empty
space	in	the	atom,	and	by	1909	he	had	developed	what	we	now	call	the	nuclear	model	of	the	atom.
In	1911,	Rutherford	carried	out	a	further	series	of	experiments	with	Hans	Geiger	and	Ernest	Marsden	at
the	University	of	Manchester	using	gold	foil	in	place	of	the	mica.	They	directed	parallel	beams	of	α-
particles	at	a	piece	of	gold	foil	only	10−6	m	thick.	Most	of	the	α-particles	went	straight	through.	Some
were	deflected	slightly,	but	about	1	in	20	000	were	deflected	through	an	angle	of	more	than	90°,	so	that
they	appeared	to	bounce	back	off	the	foil.	This	helped	to	confirm	Rutherford	in	his	thinking	about	the
atom	–	that	it	was	mostly	empty	space,	with	most	of	the	mass	and	all	of	the	positive	charge	concentrated
in	a	tiny	region	at	the	centre.	This	central	nucleus	only	affected	the	α-particles	when	they	came	close	to
it.
Later,	Rutherford	wrote:	‘It	was	quite	the	most	incredible	event	that	has	happened	to	me	in	my	life.	It	was
almost	as	incredible	as	if	you	fired	a	15-inch	shell	at	a	piece	of	tissue	paper	and	it	came	back	and	hit	you.’
In	fact,	he	was	not	quite	as	surprised	as	this	suggests,	because	the	results	confirmed	ideas	he	had	used	in
designing	the	experiment.
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Figure	15.3:	The	apparatus	used	for	the	α-scattering	experiment.	The	microscope	can	be	moved	round
to	detect	scattered	radiation	at	different	angles.

Figure	15.3	shows	the	apparatus	used	in	the	α-scattering	experiment.	Notice	the	following	points:
The	α-particle	source	was	encased	in	metal	with	a	small	aperture,	allowing	a	fine	beam	of	α-particles
to	emerge.
Air	in	the	apparatus	was	pumped	out	to	leave	a	vacuum;	α-radiation	is	absorbed	by	a	few	centimetres
of	air.
One	reason	for	choosing	gold	was	that	it	can	be	made	into	a	very	thin	sheet	or	foil.	Rutherford’s	foil
was	only	a	few	hundreds	of	atoms	thick.
The	α-particles	were	detected	when	they	struck	a	solid	‘scintillating’	material.	Each	α-particle	gave	a
tiny	flash	of	light	and	these	were	counted	by	the	experimenters	(Geiger	and	Marsden).
The	detector	could	be	moved	round	to	detect	α-particles	scattered	through	different	angles.

Geiger	and	Marsden	had	the	difficult	task	of	observing	and	counting	the	tiny	flashes	of	light	produced	by
individual	α-particles	striking	the	scintillation	screen.	They	had	to	spend	several	minutes	in	the	darkened
laboratory	to	allow	the	pupils	of	their	eyes	to	become	dilated	so	that	they	could	see	the	faint	flashes.	Each
experimenter	could	only	stare	into	the	detector	for	about	a	minute	before	the	strain	was	too	much	and
they	had	to	change	places.

Explaining	α-scattering
How	can	we	explain	the	back-scattering	of	α-particles	by	the	gold	atoms?
If	the	atom	was	as	Thomson	pictured	it,	with	negatively	charged	electrons	scattered	through	a	‘pudding’
of	positive	charge,	an	individual	α-particle	would	pass	through	it	like	a	bullet,	hardly	being	deflected	at
all.	This	is	because	the	α-particles	are	more	massive	than	electrons–they	might	push	an	electron	out	of	the
atom,	but	their	own	path	would	be	scarcely	affected.
However,	if	the	mass	and	positive	charge	of	the	atom	were	concentrated	at	one	point	in	the	atom,	as
Rutherford	suggested,	an	α-particle	striking	this	part	would	be	striking	something	more	massive	than
itself	and	with	a	greater	charge.	A	head-on	collision	would	send	the	α-particle	backwards.
The	paths	of	an	α-particle	near	a	nucleus	are	shown	in	Figure	15.4.

Figure	 15.4:	 Possible	 paths	 of	 an	 α-particle	 near	 a	 nucleus.	 The	 nucleus	 and	 the	 α-particle	 both
experience	electrostatic	repulsion.
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Rutherford	reasoned	that	the	large	deflection	of	the	α-particle	must	be	due	to	a	very	small	charged
nucleus.	From	his	experiments	he	calculated	that	the	diameter	of	the	gold	nucleus	was	about	10−14	m.	It
has	since	been	shown	that	the	very	large	deflection	of	the	α-particle	is	due	to	the	electrostatic	repulsion
between	the	positive	charge	of	the	α-particle	and	the	positive	charge	of	the	nucleus	of	the	atom.	The
closer	the	path	of	the	α-particle	gets	to	the	nucleus,	the	greater	will	be	this	repulsion.	An	α-particle
making	a	‘head-on’	collision	with	a	nucleus	is	back-scattered	through	360°.	The	α-particle	and	nucleus
both	experience	an	equal	but	opposite	repulsive	electrostatic	force	F.	This	force	has	a	much	greater	effect
on	the	motion	of	the	α-particle	than	on	the	massive	nucleus	of	gold.

PRACTICAL	ACTIVITY	15.1

An	analogy	for	Rutherford	scattering
Roll	a	ball-bearing	down	a	slope	towards	a	cymbal.	It	may	be	deflected	but,	even	if	you	roll	it	directly	at
the	cymbal’s	centre,	it	will	not	come	back	–	it	will	roll	over	the	centre	and	carry	on	to	the	other	side.
However,	if	you	roll	the	ball-bearing	towards	a	‘tin	hat’	shape	(with	a	much	narrower	but	higher	central
bulge)	any	ball-bearings	that	you	roll	close	to	the	centre	will	deflect	a	lot,	and	any	ball-bearings	that
you	roll	directly	towards	the	centre	will	roll	straight	back.	This	is	a	very	simple	analogy	(or	model)	of
Rutherford’s	experiment.

Figure	15.5:	An	analogy	for	Rutherford’s	experiment.

The	shape	of	the	cymbal	represents	the	shape	of	the	electric	field	of	an	atom	in	the	‘plum	pudding’
model:	low	central	intensity	and	spread	out.	The	‘tin	hat’	represents	the	shape	of	the	electric	field	for
the	nuclear	model:	high	central	intensity	and	concentrated.
From	the	α-particle	scattering	experiment,	Rutherford	deduced	the	following.

An	α-particle	is	deviated	due	to	the	repulsive	force	between	the	α-particle	and	the	positive	charge	in
the	atom.
Most	α-particles	have	little	or	no	deviation–so	most	of	an	atom	is	empty	space.
A	very	few	α-particles	are	deviated	more	than	90°	–	so	most	of	the	mass	of	an	atom	is	concentrated
in	a	small	space	(the	nucleus)	and	most	of	the	atom	is	empty	space.

Questions
Rutherford’s	scattering	experiments	were	done	in	an	evacuated	container.	Explain	why	this	is
necessary.
In	Rutherford’s	experiment,	α-particles	were	directed	at	a	thin	gold	foil.	A	small	fraction	of	the	α-
particles	were	back-scattered	through	180°.
Describe	and	explain	how	the	fraction	back-scattered	changes	if	each	of	the	following	changes	are
(separately)	made.

A	thicker	foil	is	used.
Faster	α-particles	are	used.
A	silver	foil	is	used	–	a	silver	nucleus	has	less	positive	charge	than	a	gold	nucleus.
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15.3	A	simple	model	of	the	atom
After	Rutherford	had	presented	his	findings,	the	nuclear	model	of	the	atom	gained	rapid	acceptance.	This
was	partly	because	it	helped	chemists	to	explain	the	phenomenon	of	chemical	bonding	(the	way	in	which
atoms	bond	together	to	form	molecules).	Subsequently,	the	proton	was	discovered.	It	had	a	positive
charge,	equal	and	opposite	to	that	of	the	electron.	However,	its	mass	was	too	small	to	account	for	the
entire	mass	of	the	atom	and	it	was	not	until	the	early	1930s	that	this	puzzle	was	solved	by	the	discovery
of	the	neutron,	an	uncharged	particle	with	a	similar	mass	to	that	of	the	proton.	This	suggests	a	model	for
the	atom	like	the	one	shown	in	Figure	15.6:

Protons	and	neutrons	make	up	the	nucleus	of	the	atom.
The	electrons	move	around	the	nucleus	in	a	cloud,	some	closer	to	and	some	further	from	the	centre	of
the	nucleus.

Figure	15.6:	A	simple	model	of	the	atom.	If	the	nucleus	were	drawn	to	scale,	it	would	be	invisible	(and
the	electrons	are	even	smaller!).

From	this	model	it	looks	as	though	all	matter,	including	ourselves,	is	mostly	empty	space.	For	example,	if
we	scaled	up	the	hydrogen	atom	so	that	the	nucleus	was	the	size	of	a	1	cm	diameter	marble,	the	orbiting
electron	would	be	a	grain	of	sand	about	800	m	away!

The	scale	of	things
It	is	useful	to	have	an	idea	of	the	approximate	sizes	of	typical	particles:

radius	of	proton	~	radius	of	neutron	~	10−15	m

radius	of	nucleus	~	10−15	m	to	10−14	m

radius	of	atom	~	10−10	m

size	of	molecule	~	10−10	m	to	10−6	m.
(Some	molecules,	such	as	large	protein	molecules,	are	very	large	indeed	–	compared	to	an	atom!)

The	radii	of	nuclear	particles	are	often	quoted	in	femtometres	(fm),	where	1	fm	=	10−15	m.

Nuclear	density
We	can	picture	a	proton	as	a	small,	positively	charged	sphere.	Knowing	its	mass	and	radius,	we	can
calculate	its	density:

mass	of	proton	mp	=	1.67	×	10−27	kg

radius	of	proton	r	=	0.80	fm	=	0.80	×	10−15	m

(In	fact,	the	radius	of	the	proton	is	not	very	accurately	known;	it	is	probably	between	0.80	×	10−15	m	and
0.86	×	10−15	m.)
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So	the	proton	has	a	density	of	roughly	1018	kg	m−3.	This	is	also	the	density	of	a	neutron,	and	of	an	atomic
nucleus,	because	nuclei	are	made	of	protons	and	neutrons	held	closely	together.

Compare	the	density	of	nuclear	material	with	that	of	water	whose	density	is	1000	kg	m−3	–	the	nucleus	is
1015	times	as	dense.	Nuclear	matter	the	size	of	a	tiny	grain	of	sand	would	have	a	mass	of	about	a	million
tonnes!	This	is	a	consequence	of	the	fact	that	the	nucleus	occupies	only	a	tiny	fraction	of	the	volume	of	an
atom.	The	remainder	is	occupied	by	the	cloud	of	orbiting	electrons	whose	mass	makes	up	less	than	one-
thousandth	of	the	atomic	mass.

Question
Gold	has	a	density	of	19	700	kg	m−3.	A	mass	of	193	g	of	gold	contains	6.02	×	1023	atoms.	Use	this
information	to	estimate	the	volume	of	a	gold	atom,	and	hence	its	radius.	State	any	assumptions	you
make.

	
	



•

•
•

15.4	Nucleons	and	electrons
We	will	start	this	topic	with	a	summary	of	the	particles	mentioned	so	far	(Table	15.1).

Particle Relative	mass	(proton	=	1)(a) Charge(b)

proton	(p) 1 +e

neutron	(n) 1 0

electron	(e) 0.0005 −e

alpha-particle	(α) 4 +2e

(a)	The	numbers	given	for	the	masses	are	approximate.
(b)	e	=	1.60	×	10−19	C.

Table	15.1:	Summary	of	the	particles	that	we	have	met	so	far	in	this	chapter.	The	α-particle	 is	 in	fact	a
helium	nucleus	(with	two	protons	and	two	neutrons).

All	nuclei,	except	the	lightest	form	of	hydrogen,	contain	protons	and	neutrons,	and	each	nucleus	is
described	by	the	number	of	protons	and	neutrons	that	it	contains.

Protons	and	neutrons	in	a	nucleus	are	collectively	called	nucleons.	For	example,	in	a	nucleus	of	gold,
there	are	79	protons	and	118	neutrons,	giving	a	total	of	197	nucleons	altogether.
The	total	number	of	nucleons	in	a	nucleus	is	called	the	nucleon	number	(or	mass	number)	A.
The	nucleon	number	is	the	sum	of	the	number	of	neutrons	and	protons	in	the	nucleus,	or	A	=	N	+Z
(where	A	=	nucleon	number,	N	=	neutron	number	and	Z	=	proton	number).

The	unit	used	to	measure	masses	at	this	level	is	the	unified	atomic	mass	unit	(u).
1	u	is	defined	as	being	one-twelfth	of	the	mass	of	a	carbon-12	atom.
An	isolated	proton	has	a	mass	of	1.007	276	466	77	u	and	an	isolated	neutron	has	a	mass	1.008	665	u.	You
can	see	that	there	is	a	discrepancy	between	the	sum	of	the	masses	of	the	protons	and	neutrons	in	a
carbon-12	atom	and	the	sum	of	the	masses	of	six	isolated	protons	and	six	isolated	neutrons
The	reasons	for	these	discrepancies	are	explored	in	detail	in	Chapter	29.
A	specific	combination	of	protons	and	neutrons	in	a	nucleus	is	called	a	nuclide.
The	nucleus	of	any	atom	can	be	represented	by	the	symbol	for	the	element	(shown	here	as	X)	along	with
the	nucleon	number	A	and	proton	number	Z:

For	example:

Element Symbol Nucleon	number	A Proton	number	Z Represented	as:
oxygen O 18 8

gold Au 197 79

uranium U 238 92

The	proton	and	nucleon	numbers	of	some	common	nuclides	are	shown	in	Table	15.2.

Element Nucleon	number
A

Proton
number	Z

Element Nucleon
number	A

Proton
number	Z

hydrogen 1 1 bromine 79 35

helium 4 2 silver 107 47

lithium 7 3 tin 120 50

beryllium 9 4 iodine 130 53

boron 11 5 caesium 133 55

12 6 138 56
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carbon barium

nitrogen 14 7 tungsten 184 74

oxygen 16 8 platinum 195 78

neon 20 10 gold 197 79

sodium 23 11 mercury 202 80

magnesium 24 12 lead 206 82

aluminium 27 13 bismuth 209 83

chlorine 35 17 radium 226 88

calcium 40 20 uranium 238 92

iron 56 26 plutonium 239 94

nickel 58 28 americium 241 95

Table	15.2:	Proton	and	nucleon	numbers	of	some	nuclides.

Questions
Table	15.2	shows	the	proton	and	nucleon	numbers	of	several	nuclei.	Determine	the	number	of
neutrons	in	the	nuclei	of	the	following	elements	shown	in	the	table:

nitrogen
bromine
silver
gold
mercury.

State	the	charge	of	each	of	the	following	in	terms	of	the	elementary	charge	e:
proton
neutron
nucleus
molecule
α-particle.

Isotopes
Although	atoms	of	the	same	element	may	be	identical	chemically,	their	nuclei	may	be	slightly	different.
The	number	of	protons	in	the	nucleus	of	an	atom	determines	what	element	it	is:	helium	always	has	two
protons,	carbon	six	protons,	oxygen	eight	protons,	neon	10	protons,	radium	88	protons,	uranium	92
protons	and	so	on.
However,	the	number	of	neutrons	in	the	nuclei	for	a	given	element	can	vary.	Take	neon	as	an	example.
Three	different	naturally	occurring	forms	of	neon	are:

The	first	has	10	neutrons	in	the	nucleus,	the	second	11	neutrons	and	the	third	12	neutrons.	These	three
types	of	neon	nuclei	are	called	isotopes	of	neon.	Each	isotope	has	the	same	number	of	protons	(for	neon
this	is	10)	but	a	different	number	of	neutrons.	The	word	‘isotope’	comes	from	the	Greek	isotopos	(same
place),	because	all	isotopes	of	the	same	element	have	the	same	place	in	the	Periodic	Table	of	elements.
Isotopes	are	nuclei	of	the	same	element	with	different	numbers	of	neutrons	but	the	same	number	of
protons.
Any	atom	is	electrically	neutral	(it	has	no	net	positive	or	negative	charge),	so	the	number	of	electrons
surrounding	the	nucleus	must	equal	the	number	of	protons	in	the	nucleus	of	the	atom.	If	an	atom	gains	or
loses	an	electron,	it	is	no	longer	electrically	neutral	and	is	called	an	ion.
For	an	atom,	the	number	of	protons	(and	hence	the	number	of	electrons)	determines	the	chemical
properties	of	the	atom.	The	number	of	protons	and	the	number	of	neutrons	determine	the	nuclear
properties.	It	is	important	to	realise	that,	since	the	number	of	protons,	and	therefore	the	number	of
electrons,	in	isotopes	of	the	same	element	are	identical,	they	will	all	have	the	same	chemical	properties
but	very	different	nuclear	properties.



Hydrogen	has	three	important	isotopes,	 	(sometimes	called	protium),	 	(deuterium)	and	 	(tritium)
(Figure	15.7).

Figure	15.7:	The	isotopes	of	hydrogen.

Protium	and	deuterium	occur	naturally,	but	tritium	has	to	be	made.	Deuterium	and	tritium	form	the	fuel	of
many	fusion	research	reactors.	Hydrogen	is	the	most	abundant	element	in	the	Universe	(Figure	15.8),
because	it	consists	of	just	one	proton	and	one	electron,	which	is	the	simplest	structure	possible	for	an
atom.

Figure	15.8:	The	Horsehead	Nebula	in	Orion.	The	large	coloured	regions	are	expanses	of	dust	and	gas,
mostly	hydrogen,	that	are	ionised	by	nearby	stars	so	that	they	emit	light.	The	dark	‘horse	head’	is	where
the	areas	of	gas	and	dust	remain	in	atomic	form	and	block	out	the	light	from	behind.

The	different	numbers	of	neutrons	in	the	isotopes	of	an	element	means	that	the	isotopes	will	have	different
relative	atomic	masses.	There	are	differences	too	in	some	of	their	physical	properties,	such	as	density	and
boiling	point.	For	example,	heavy	water,	which	is	water	containing	deuterium,	has	a	boiling	point	of	104	°C
under	normal	atmospheric	pressure.
Table	15.3	gives	details	of	some	other	commonly	occurring	isotopes.

Element Nucleon	number	A Proton	number	Z Neutron	number	N
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hydrogen 1 1 0
2 1 1

carbon 12 6 6
14 6 8

oxygen 16 8 8
18 8 10

neon 20 10 10
21 10 11

potassium 39 19 20
40 19 21

strontium 88 38 50
90 38 52

caesium 135 55 80
137 55 82

lead 206 82 124
208 82 126

radium 226 88 138
228 88 140

uranium 235 92 143
238 92 146

Table	15.3:	Some	commonly	occurring	isotopes.

Questions
Uranium	has	atomic	number	92.	Two	of	its	common	isotopes	have	nucleon	numbers	235	and	238.
Determine	the	number	of	neutrons	for	these	isotopes.
There	are	seven	naturally	occurring	isotopes	of	mercury,	with	nucleon	numbers	(and	relative
abundances)	of	196	(0.2%),	198	(10%),	199	(16.8%),	200	(23.1%),	201	(13.2%),	202	(29.8%)	and	204
(6.9%).

Determine	the	proton	and	neutron	numbers	for	each	isotope.
Determine	the	average	relative	atomic	mass	(equivalent	to	the	‘average	nucleon	number’)	of
naturally	occurring	mercury.

Eight	different	atoms	are	labelled	A	to	H.	Group	the	elements	A–H	into	isotopes	and	name	them	using
the	Periodic	Table	in	Appendix	3.

	 A B C D E F G H
Proton	number 20 23 21 22 20 22 22 23

Nucleon	number 44 50 46 46 46 48 50 51

	
	



9
a
b
c

15.5	Forces	in	the	nucleus
As	you	know	from	earlier	in	this	chapter,	there	are	two	kinds	of	particle	in	the	nucleus	of	an	atom:
protons,	which	carry	positive	charge	+e;	and	neutrons,	which	are	uncharged.	It	is	therefore	quite
surprising	that	the	nucleus	holds	together	at	all.	You	would	expect	the	electrostatic	repulsions	from	all
those	positively	charged	protons	to	blow	it	apart.	The	fact	that	this	does	not	happen	is	very	good	evidence
for	the	existence	of	an	attractive	force	between	the	nucleons.	This	is	called	the	strong	nuclear	force.	It
only	acts	over	very	short	distances	(10−14	m),	and	it	is	what	holds	the	nucleus	together.

Why	are	some	atoms	are	unstable?
In	small	nuclei,	the	strong	nuclear	force	from	all	the	nucleons	reaches	most	of	the	others	in	the	nucleus,
but	as	we	go	on	adding	protons	and	neutrons	the	balance	becomes	much	finer.	The	longer-range
electrostatic	force	affects	the	whole	nucleus,	but	the	short-range	strong	nuclear	force	of	any	particular
nucleon	only	affects	those	nucleons	around	it	–	the	rest	of	the	nucleus	is	unaffected.	In	a	large	nucleus,
the	nucleons	are	not	held	together	so	tightly	and	this	can	make	the	nucleus	unstable.	The	more	protons
there	are	in	a	nucleus,	the	greater	the	electric	forces	between	them	and	we	need	a	few	extra	neutrons	to
help	‘keep	the	protons	apart’.	This	is	why	heavy	nuclei	have	more	neutrons	than	protons.	The	strong
interaction	can	explain	α-decay,	but	not	β-decay;	we	will	look	at	this	later	in	the	chapter.
The	proton	and	neutron	numbers	for	some	common	nuclides	are	shown	in	Table	15.3.	You	can	see	that	for
light	elements	these	two	numbers	are	the	same,	but	they	become	very	different	for	heavy	elements.
Adding	more	neutrons	helps	to	keep	the	nucleus	stable,	but	when	the	number	of	protons	is	greater	than
83,	adding	more	neutrons	is	not	enough.	Elements	with	a	proton	number	greater	than	83	are	all	unstable
–	they	undergo	radioactive	decay.
Most	atoms	that	make	up	our	world	have	stable	nuclei;	that	is,	they	do	not	change	as	time	goes	by,	which
is	quite	fortunate	really!	However,	some	are	less	stable	and	give	out	radiation.	Whether	or	not	an	atom	is
unstable	depends	on	the	numbers	of	protons	and	neutrons	in	its	nucleus.	Hydrogen-1	(1p),	helium-4	(2p,
2n),	carbon-12	(6p,	6n)	and	oxygen-16	(8p,	8n)	are	all	stable	–	but	add	or	subtract	neutrons	and	the
situation	changes.
For	example,	add	a	neutron	to	helium-4	and	you	get	helium-5,	a	very	unstable	nucleus	–	it	undergoes
radioactive	emission.	(There	is	much	more	about	radioactive	decay	later	in	this	chapter.)

Question
State	which	of	the	following	forces	act	between	protons	and	neutrons	in	a	nucleus.

gravitational
electrostatic
strong	nuclear.

	
	



15.6	Discovering	radioactivity
The	French	physicist	Henri	Becquerel	(Figure	15.9)	is	credited	with	the	discovery	of	radioactivity	in	1896.
He	had	been	looking	at	the	properties	of	uranium	compounds	when	he	noticed	that	they	affected
photographic	film–he	realised	that	they	were	giving	out	radiation	all	the	time	and	he	performed	several
ingenious	experiments	to	shed	light	on	the	phenomenon.

Figure	 15.9:	 Henri	 Becquerel,	 the	 discoverer	 of	 radioactivity,	 in	 his	 laboratory.	 His	 father	 and
grandfather	had	been	professors	of	physics	in	Paris.
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15.7	Radiation	from	radioactive	substances
The	three	types	of	radiation	commonly	emitted	by	radioactive	substances	–	alpha	(α),	beta	(β)	and	gamma
(γ)–come	from	the	unstable	nuclei	of	atoms.	Nuclei	consist	of	protons	and	neutrons,	and	if	the	balance
between	these	two	types	of	particles	is	too	far	to	one	side,	or	the	nucleus	is	just	too	big	to	hold	together,
the	nucleus	may	emit	α-	or	β-radiation	as	a	way	of	achieving	greater	stability.	Gamma-radiation	is	usually
emitted	after	α	or	β	decay,	to	release	excess	energy	from	the	nuclei.
Table	15.4	shows	the	basic	characteristics	of	the	different	types	of	radiation.	The	masses	are	given
relative	to	the	mass	of	a	proton;	charge	is	measured	in	units	of	e,	the	elementary	charge.	Figure	15.10
summarises	the	penetrating	powers	of	the	different	types	of	radiation.

Radiation Symbol Mass	(relative	to
proton)

Charge Typical	speed

α-particle 4 +2e ‘slow’	(106	m	s−1)

β−-particle −e ‘fast’	(108	m	s−1)

β+-particle +e ‘fast’	(108	m	s−1)

γ-ray γ 0 0 speed	of	light	(3	×
108	m	s−1)

Table	15.4:	The	basic	characteristics	of	ionising	radiations.

Note	the	following	points:
α-	and	β-radiation	are	particles	of	matter.	A	γ-ray	is	a	photon	of	electromagnetic	radiation,	similar	to
an	 X-ray.	 (X-rays	 are	 produced	 when	 electrons	 are	 decelerated;	 γ-rays	 are	 produced	 in	 nuclear
reactions.)

An	α-particle	 consists	of	 two	protons	and	 two	neutrons;	 it	 is	 a	nucleus	of	helium-4.	A	β−-particle	 is
simply	an	electron	and	a	β+-particle	is	a	positron.
The	mass	 of	 an	 α-particle	 is	 nearly	 10	 000	 times	 that	 of	 an	 electron	 and	 it	 travels	 at	 roughly	 one-
hundredth	of	the	speed	of	a	β-particle.

Figure	 15.10:	 A	 summary	 of	 the	 penetrating	 powers	 of	 α-,	 β-	 and	 γ-radiations.	 The	 approximate
thickness	of	the	absorbing	material	is	also	shown.

Identification	and	properties	of	α-radiation
α-particles	are	relatively	slow	moving	and	large	particles.	They	were	identified	as	helium	nuclei	(He2+

ions)	by	their	deflection	in	electric	and	magnetic	fields	(see	Chapter	25).	The	helium	nucleus,	which
consists	of	two	protons	and	two	neutrons,	is	extremely	stable.	Scientists	believe	that,	within	larger	nuclei,
α	groups	are	continually	forming,	breaking	apart	and	reforming.	Occasionally,	such	a	group	will	have
enough	energy	to	break	away	from	the	strong	nuclear	forces	holding	the	mother	nucleus	together	and
will	escape	as	an	α-particle.	The	α-particles	(which	are	relatively	large	and	carry	a	charge)	interact	with
atoms	in	the	medium	through	which	they	are	travelling,	causing	ionisation	within	the	medium.	They	lose
energy	rapidly.	This	means	they	are	not	very	penetrative	(they	are	absorbed	by	a	thin	sheet	of	paper)	and

α
β β

β β



have	a	very	short	range	(only	a	few	centimetres	in	air).

Figure	15.11:	As	an	α-particle	passes	through	a	material,	it	causes	ionisation	of	atoms.

Figure	15.12:	 Alpha-particle	 tracks	 show	 up	 in	 this	 photograph	 of	 a	 cloud	 chamber.	 Notice	 that	 the
particles	all	travel	approximately	the	same	distance.	What	does	this	suggest?

Identification	and	properties	of	β-radiation
β-particles	were	identified	as	very	fast	electrons.	Like	α-particles,	β-particles	carry	a	charge.	But,	because
β-particles	are	much	smaller,	they	cause	less	ionisation	and	penetrate	further	into	matter.	They	are
absorbed	by	approximately	one	centimetre	of	aluminium	or	one	millimeter	of	lead.
β-decay	occurs	when	there	is	an	imbalance	of	protons	and	neutrons	in	the	nucleus,	usually	too	many
neutrons.	A	neutron	will	then	decay	into	a	proton	(positive)	and	an	electron	(negative).	The	proton
remains	in	the	new	nucleus	and	the	electron	is	expelled	at	a	very	high	velocity.	However,	some	isotopes
(such	as	V-48)	have	excess	protons;	because	of	this,	a	proton	decays	into	a	neutron	and	emits	a	positively
charged	electron	or	positron.	This	is	known	as	β+	(beta	plus)	decay.	The	decay	of	a	neutron	into	a
proton	and	an	electron	is	known	as	β−	(beta	minus)	decay.
The	positron	was	the	first	example	of	antimatter	to	be	identified.	It	is	now	known	that	all	particles	have
an	antiparticle,	which	has	the	same	mass	as	the	particle	but	the	opposite	charge.	The	general	term	for
antiparticles	is	antimatter.

What	happens	when	matter	meets	antimatter?
When	an	antiparticle	meets	its	particle,	such	as	a	positron	meets	an	electron,	they	annihilate	each	other
and	two	gamma	ray	photons	are	produced	and	the	two	masses	become	pure	energy!
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Figure	15.13:	Energy	is	released	in	the	annihilation	of	matter	and	antimatter.

Identification	and	properties	of	γ-radiation
γ-	radiation	was	identified	from	its	speed	in	a	vacuum,	3	×	108	m	s−1,	the	speed	of	all	electromagnetic
radiation.	It	is	very	high	frequency	electromagnetic	radiation;	as	such,	it	has	no	rest	mass	and	no	charge.
Consequently,	it	does	not	interact	with	matter	to	the	same	degree	as	alpha	or	beta	radiation.	It	produces
only	a	small	amount	of	ionisation	and	is	highly	penetrative	–	it	will	penetrate	through	several	centimetres
of	lead.
It	is	generally	emitted	following	alpha	or	beta	decay.	After	the	initial	decay,	the	nucleus	is	left	in	an
unstable	high	energy	state	–	it	will	drop	into	a	lower	energy,	more	stable	state	with	the	emission	of	a
gamma	ray.

Question
Explain	why	you	would	expect	β−-particles	to	travel	further	through	air	than	α-particles.
Explain	why	you	would	expect	β−-particles	to	travel	further	through	air	than	through	metal.

	
	



15.8	Energies	in	α	and	β	decay
Look	back	at	Figure	15.12.	You	were	asked	what	conclusion	could	be	drawn	from	the	observation	that	all
the	α-particle	tracks	were	the	same	length.	The	answer	is	quite	simple:	it	suggests	that	they	all	have	the
same	initial	kinetic	energy.	This	should	not	surprise	you,	as	they	are	all	the	result	of	the	similar	reactions
in	identical	nuclei.	However,	when	we	look	at	the	energies	of	β-particles	(both	β−	and	β+)	the	results	are
quite	different,	as	shown	by	the	graph	in	Figure	15.14.

Figure	15.14:	The	energy	spectrum	for	β−-decay	of	bismuth-210.

You	will	notice	that	the	energy	of	the	β-particles	is	measured	in	MeV	(mega	electronvolts).	Alpha	and	beta
particles	move	quickly;	gamma	photons	travel	at	the	speed	of	light.	These	types	of	radiation	all	have
energy,	but	the	energy	of	a	single	particle	or	photon	is	very	small	and	far	less	than	a	joule.	So	we	use
another,	much	smaller	unit	of	energy,	the	electronvolt,	when	considering	the	energy	of	individual	particles
or	photons.

When	an	electron	(with	a	charge	of	magnitude	1.60	×	10–19	C)	travels	through	a	potential	difference,
energy	is	transferred.	The	energy	change	W	is	given	by:

W	=	QV	=	1.60	×	10–19	×	1	=	1.60	×	10–19	J

One	electronvolt	(1	eV)	is	the	energy	transferred	when	an	electron	travels	through	a	potential	difference
of	one	volt.
Therefore:

1	eV	=	1.60	×	10–19	J

There	is	more	about	the	electronvolt	and	its	use	in	energy	calculations	in	Chapter	28.
The	graph	shows	that	the	β-particles	have	a	wide	range	of	energies.	One	of	the	great	physicists	of	the
early	20th	century,	Wolfgang	Pauli,	suggested	that	another	particle	carries	off	some	of	the	kinetic	energy.
This	particle	was	not	easy	to	detect–Pauli	hypothesised	its	existence	in	1930,	but	it	was	not	detected	until
1956.	The	particle	has	no	charge	and	virtually	no	rest	mass	(much	less	than	an	electron)	and	barely
interacts	with	matter	at	all.	We	now	know	that	there	is	a	steady	stream	of	them	given	off	by	the	Sun,
some	of	which	travel	straight	through	the	Earth	without	any	interaction	with	it	at	all	(which	is	why	it’s
difficult	to	detect	them!)	The	particle	was	named	the	antineutrino,	and	is	now	known	as	the	electron
antineutrino.	The	particle	given	off	when	a	positron	is	emitted	is	called	the	electron	neutrino.	The
symbol	used	for	the	electron	neutrino	is	the	Greek	letter	(nu),	and	the	electron	antineutrino	is	(nu	bar).
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15.9	Equations	of	radioactive	decay
In	radioactive	decay,	the	nucleus	changes.	It	is	important	to	realise	that	both	the	nucleon	number	and	the
proton	number	are	conserved	in	the	reaction.
We	have	already	established	that	an	α-particle	is	a	helium	nucleus	and	can	be	represented	as:

The	isotope	radon-222	decays	by	α-emission,	we	can	describe	this	by	the	equation:

A	quick	glance	tells	us	there	are	222	nucleons	before	the	decay	and	218	+	4	=	222	after	the	decay.
Similarly,	there	are	86	protons	before	and	84	+	2	=	86	after	the	decay.

The	isotope	Mn-56	decays	by	β−	emission:

Again,	it	is	easy	to	see	the	nucleons	are	conserved;	however,	we	need	to	recognise	that	the	electron	is
regarded	as	−1	proton.
Note	also	that	an	antineutrino	is	also	emitted;	interestingly,	this	suggests	the	number	of
particles/antiparticles	are	the	same	before	and	after	the	decay.

For	the	β+	decay	we	look	at	the	isotope	V-48:

Once	again	there	is	a	balance	of	proton	numbers,	nucleon	numbers	and	particles/antiparticles	(remember
that	the	positron	is	an	antiparticle).
There	is	another	quantity	that	is	conserved.	You	might	expect	mass	to	be	conserved,	but	this	is	not	so.	For
example,	in	the	α	decay	equation	given	previously,	the	combined	mass	of	the	polonium	nucleus	and	the
alpha	particle	is	slightly	less	than	that	of	the	original	radon	nucleus.	The	‘lost’	mass	has	become	energy	–
this	is	where	the	fast-moving	alpha	particle	gets	its	kinetic	energy.	The	relationship	between	mass	m	and
energy	E	is	given	by	Einstein’s	equation	E	=	mc2,	where	c	is	the	speed	of	light	in	free	space.	So,	instead
of	saying	that	mass	is	conserved	in	nuclear	processes,	we	have	to	say	that	mass–energy	is	conserved.
There	is	much	more	about	this	in	Chapter	29.

Questions
In	these	questions,	use	the	Periodic	Table	in	Appendix	3	to	determine	the	identity,	or	the	proton	number,
of	the	relevant	elements.

The	isotope	thorium-227	decays	by	α-emission.
Write	down	an	equation	to	describe	this	decay	and	identify	the	element	that	is	produced.
Copper-64	can	decay	by	either	β+	or	β−	emission.
Give	equations	for	both	processes	and	identify	the	resulting	elements.
Uranium	238	decays	through	a	series	of	α	and	β−	decays	to	eventually	form	the	stable	isotope	lead-
206	in	what	is	known	as	a	decay	chain.
Determine	the	number	of	each	type	of	decay	in	the	decay	chain.
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15.10	Fundamental	particles
Chemistry	is	complicated	because	there	are	billions	of	different	molecules	that	can	exist.	The	discovery	of
the	Periodic	Table	simplified	things	because	it	suggested	that	there	were	roughly	92	different	elements
whose	atoms	could	be	arranged	to	make	the	billions	of	molecules.	The	idea	that	atoms	are	made	up	of	just
three	types	of	particle	(protons,	neutrons	and	electrons)	seemed	to	simplify	things	still	more,	and
scientists	were	happy	because	it	provided	a	simple	explanation	of	a	complex	world.
Protons,	neutrons	and	electrons	were	thought	of	as	fundamental	particles,	which	could	not	be	subdivided
further.	However,	in	the	middle	decades	of	the	20th	century,	physicists	discovered	many	other	particles
that	did	not	fit	this	pattern.	They	gave	them	names	such	as	pions,	kaons,	muons	and	so	on,	using	up	most
of	the	letters	of	the	Greek	alphabet.
These	new	particles	were	found	in	two	ways:

by	looking	at	cosmic	rays,	which	are	particles	that	arrive	at	the	Earth	from	outer	space
by	looking	at	the	particles	produced	by	high-energy	collisions	in	particle	accelerators	(Figure	15.15).

Figure	15.15:	Particle	 tracks	 in	a	bubble	chamber	detector.	A	particle	has	entered	 from	 the	 left	 and
then	struck	another	particle	just	to	the	right	of	the	centre.	Four	new	particles	fly	out	from	the	point	of
impact.

The	discovery	of	dozens	of	new	particles	with	masses	different	from	those	of	protons,	neutrons	and
electrons	suggested	that	these	were	not	fundamental	particles.	Various	attempts	were	made	to	tidy	up
this	very	confusing	picture.
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15.11	Families	of	particles
Today,	sub-atomic	particles	are	divided	into	two	families:

Leptons	 such	 as	 electrons	 and	 neutrinos.	 These	 are	 particles	 that	 are	 unaffected	 by	 the	 strong
nuclear	force.
Hadrons	such	as	protons	and	neutrons.	These	are	all	particles	that	are	affected	by	the	strong	nuclear
force.

The	word	‘lepton’	comes	from	a	Greek	word	that	means	‘light’	(in	mass)	while	‘hadron’	means	‘bulky’.	It	is
certainly	true	that	protons	and	neutrons	are	bulky	compared	to	electrons.

Leptons
Leptons	are	(currently)	considered	to	be	fundamental	particles,	although,	in	principle,	we	can	never	know
for	certain	whether	a	particle,	such	as	the	electron,	is	truly	fundamental;	the	possibility	will	always
remain	that	a	physicist	will	discover	some	deeper	underlying	structure.

Hadrons
Figure	15.16	shows	the	Large	Hadron	Collider	at	the	CERN	laboratory	in	Geneva.	Physicists	are
experimenting	with	hadrons	in	the	hope	of	finding	answers	to	some	fundamental	questions	about	this
family	of	particles.	In	2013,	they	announced	the	discovery	of	the	Higgs	boson,	a	particle	that	was
predicted	50	years	earlier	and	which	is	required	to	explain	why	matter	has	mass.

Figure	15.16:	Particle	accelerators	have	become	bigger	and	bigger,	accelerating	particles	to	higher	and
higher	 energies	 as	 scientists	 have	 sought	 to	 look	 further	 and	 further	 into	 the	 fundamental	 nature	 of
matter.	This	is	one	of	the	particle	detectors	of	the	Large	Hadron	Collider	(LHC),	as	it	was	about	to	be
installed.	The	entire	collider	is	27	km	in	circumference.

Type	of
quark

up down charm strange top bottom

Symbol u d c s t b

Charge

Type	of
antiquark

antiup antidown anticharm antistrange antitop antibottom

Symbol

Charge

Table	15.5:	The	charges	on	the	different	types	of	quark	and	antiquark.

Quarks
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To	sort	out	the	complicated	picture	of	the	hadron	family	of	particles,	Murray	Gell-Mann	in	1964	proposed
a	new	model.	He	suggested	that	they	were	made	up	of	just	a	few	different	particles,	which	he	called
quarks.
There	are	many	surprising	things	about	quarks.	First,	quarks	have	charges	of	less	than	the	fundamental
charge,	e.	However,	quarks	are	never	found	outside	a	hadron.	The	quarks	combine	so	that	the	resulting
hadron	will	have	a	charge	of	e	or	a	multiple	of	e.
There	are	six	types	(or	‘flavours’)	of	quark,	each	with	an	associated	antiquark.	Table	15.5	lists	these
quarks	together	with	their	charges.
In	addition	to	the	property	of	charge,	quarks	have	other	properties	such	as	strangeness,	charm,	upness
and	downness.	We	do	not	need	to	concern	ourselves	about	these	properties;	however,	recognising	that
they	exist	should	help	you	to	understand	how	a	large	number	of	different	hadrons	can	be	made	up	from
these	half-dozen	flavours	of	quark.
There	are	two	ways	in	which	quarks	can	combine	to	produce	hadrons:

three	quarks	make	up	a	class	of	hadrons	called	baryons
a	quark	and	an	antiquark	make	up	a	class	of	hadron	called	mesons.

Baryons
Examples	of	baryon	are	the	proton	and	the	neutron.

A	proton	is	made	up	of	two	up	quarks	and	a	down	quark;	proton	=	(uud).
A	neutron	is	made	up	of	one	up	quark	and	two	down	quarks;	neutron	=	(udd).

Mesons
There	are	many	examples	of	mesons;	here	are	two	described:

A	π+	meson	is	made	up	of	an	up	quark	and	a	down	antiquark;	 .

A	ϕ	meson	is	made	up	of	a	strange	quark	and	an	antistrange	quark;	 .

Questions
Show	that	the	charges	on	the	quarks	making	up	a	proton	give	it	a	charge	of	+1e.
Show	that	the	charges	on	the	quarks	making	up	a	neutron	give	it	a	charge	of	0.

A	ρ-meson	is	made	up	of	an	up	quark	and	an	antidown	quark.	Calculate	its	charge.
Suggest	which	quarks	or	antiquarks	make	up	a	π−	meson.
Show	that	the	ϕ-meson	is	neutral.
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15.12	Another	look	at	β	decay
This	is	interesting	as	a	hadron	decays	into	another	hadron	emitting	a	lepton	and	an	antilepton.
So,	what	happens	in	β	decay?
The	neutron	is	made	up	of	an	up	quark	and	two	down	quarks	(udd),	the	proton	is	made	up	of	two	up
quarks	and	a	down	quark	(uud)

Figure	15.17:	A	visual	representation	of	the	change	within	the	neutron	as	it	decays	into	a	proton.

The	equation	representing	this	at	a	quark	level	is:

KEY	EQUATION

The	decay	of	a	down	quark	into	an	up	quark	in	β−	decay.

Question
Draw	a	diagram	similar	to	Figure	15.17	to	show	β+	decay.
Write	an	equation	to	describe	the	changes	in	β+	decay.
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15.13	Another	nuclear	force
We	have	met	and	described	the	strong	nuclear	force	in	some	detail,	as	a	short	range	force	that	holds	the
nucleons	in	a	nucleus	together.	It	is	a	force	that	is	felt	only	by	hadrons,	not	leptons.
There	is	a	second	nuclear	force,	known	as	the	weak	nuclear	force	or	weak	interaction.	It	is	felt	by	both
hadrons	and	leptons	and,	more	importantly,	it	is	the	interaction	that	causes	β-decay,	in	which	a	hadron
changes	to	a	different	hadron	with	the	emission	of	a	lepton	and	an	antilepton.

Questions
The	equation	 	represents	β+	decay.
Use	the	equation	to	explain	why	the	neutrino	ν	can	have	no	charge	and	very	little	mass.
What	are	the	differences	between	a	proton,	a	positron	and	a	photon?	You	can	describe	how	their
masses	differ,	how	their	charges	differ	or	whether	they	are	particles	or	antiparticles.
State	two	differences	between	hadrons	and	leptons.

REFLECTION
We	have	mentioned	that	quarks	have	different	properties	known	as	strangeness,	charm,	upness	and
downness.	What	is	charm?	What	is	strangeness?	And	what	is	electric	charge?
Discuss	your	ideas	in	a	group.
What	were	some	of	the	most	interesting	discoveries	you	made	while	working	through	this	chapter?

	
	

β



SUMMARY

The	α-particle	scattering	experiment	provides	evidence	for	the	existence	of	a	small,	massive	and
positively	charged	nucleus	at	the	centre	of	the	atom.

Most	of	the	mass	of	an	atom	is	concentrated	in	its	nucleus.

The	nucleus	consists	of	protons	and	neutrons,	and	is	surrounded	by	a	cloud	of	electrons.

The	number	of	protons	and	neutrons	in	the	nucleus	of	an	atom	is	called	its	nucleon	number	A.

The	number	of	protons	in	the	nucleus	of	an	atom	is	called	its	proton	number	(or	atomic	number)	Z.

Isotopes	are	nuclei	of	the	same	element	with	a	different	number	of	neutrons	but	the	same	number	of
protons.

Different	isotopes	(or	nuclides,	if	referring	to	the	nucleus	only)	can	be	represented	by	the	notation	
,	where	X	is	the	chemical	symbol	for	the	element.

There	are	three	types	of	ionising	radiation	produced	by	radioactive	substances:	α-particles,	β-particles
and	γ-rays.

In	radioactive	decay,	the	following	quantities	are	conserved:	proton	number,	nucleon	number	and
mass–energy.

The	most	strongly	ionising,	and	hence	the	least	penetrating,	is	α-radiation.	The	least	strongly	ionising
is	γ-radiation.

Because	of	their	different	charges,	masses	and	speeds,	the	different	types	of	radiation	can	be
identified	by	the	effect	of	an	electric	or	magnetic	field.

Antimatter	is	material	made	up	of	antiparticles	of	the	corresponding	particles	of	ordinary	matter.	All
particles	have	an	antiparticle,	which	has	the	same	mass	as	the	particle	but	the	opposite	charge.

Quarks	are	particles	that	make	up	hadrons.	There	are	six	flavours	of	quark:	up,	down,	strange,	charm,
top	and	bottom.	Quarks	have	charges	of	 .

The	strong	nuclear	force	is	the	force	that	acts	between	quarks	and	holds	the	nucleus	together.

Leptons	(such	as	the	electron)	are	particles	that	are	unaffected	by	the	strong	nuclear	force.

Hadrons	(such	as	the	neutron)	are	particles	that	consist	of	quarks	and	hence	are	affected	by	the
strong	nuclear	force.
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EXAM-STYLE	QUESTIONS

Which	of	the	interactions	is	not	possible? [1]

	

	

	

	

Hadrons	are	made	up	from	quarks. 	

Which	combination	of	quarks	could	make	up	a	meson? [1]

	

ssc 	

	

sc 	

Explain	why	the	most	strongly	ionising	radiation	(α-particles)	is	the	least
penetrating,	while	the	least	ionising	(γ-rays)	is	the	most	penetrating. [1]

Before	Rutherford’s	model,	scientists	believed	that	the	atom	was	made	up	of
negatively	charged	electrons	embedded	in	a	‘plum	pudding’	of	positive	charge
that	was	spread	throughout	the	atom.	Explain	how	the	α-particle	scattering
experiment	proved	that	this	old	model	of	the	atom	was	incorrect. [3]

A	nucleus	of	strontium	has	a	nucleon	number	of	90	and	a	proton	number	of	38.
Describe	the	structure	of	this	strontium	nucleus. [1]

State	the	changes	that	take	place	in	a	nucleus	when	it	emits	an	α-particle	and
then	two	β−-particles. [5]

The	nuclide	of	iodine	with	a	nucleon	number	of	131	and	a	proton	number	53
emits	a	β−-particle.	Write	a	nuclear	equation	for	this	decay. [3]

An	isotope	of	carbon	 	emits	a	β−-particle	and	changes	into	an	isotope	of
nitrogen	(N). 	

What	are	β−-particles? [1]

Write	a	nuclear	decay	equation	for	the	decay. [2]

Draw	a	graph	with	the	y-axis	representing	nucleon	numbers	between	10
and	16	and	the	x-axis	representing	proton	numbers	between	4	and	10.	On
your	graph,	mark: 	

the	isotope	 [2]

the	daughter	nucleus	produced	in	the	decay. [1]

	 [Total:	6]

The	uranium	isotopes	U-236	and	U-237	both	emit	radioactive	particles.	A
nucleus	of	uranium-237	may	be	written	as	 	and	emits	a	β−-particle.	A
nucleus	of	uranium-236	emits	an	α-particle.	The	number	of	protons	in	a	nucleus
of	uranium	is	92. 	

Describe	the	differences	between	an	α-particle	and	a	β−-particle. [4]

Explain	how	uranium	can	exist	in	a	number	of	different	isotopes. [2]

Write	down	the	nuclear	equation	for	the	decay	of	U-236. [2]

	 [Total:	8]

Approximate	values	for	the	radius	of	a	gold	atom	and	the	radius	of	a	gold
nucleus	are	10−10	m	and	10−15	m,	respectively. 	

Estimate	the	ratio	of	the	volume	of	a	gold	atom	to	the	volume	of	a	gold
nucleus. [2]

The	density	of	gold	is	19	000	kg	m−3.	Estimate	the	density	of	a	gold
nucleus,	stating	any	assumptions	that	you	make	in	your	answer. [3]

	 [Total:	5]

α
β
β
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The	nuclide	of	lead	 	decays	in	three	separate	stages	by	α	and	β−	emission
to	another	lead	nuclide,	 .

	

Describe	the	structure	of	a	nucleus	of	 . [2]

α-	and	β−-particles	are	known	as	ionising	radiations.	State	and	explain
why	such	radiations	can	be	described	as	ionising. [2]

The	two	lead	nuclides	are	shown	in	the	graph,	which	plots	nucleon	number
A	against	proton	number	Z. 	

Copy	the	graph	and,	on	your	copy,	draw	three	arrows	to	represent	one
possible	route	for	the	three	decays	between	the	two	isotopes	of	lead.	Label
each	arrow	to	show	whether	an	α-particle	or	a	β−-particle	is	emitted. [3]

Figure	15.18
	

	 [Total:	7]

Geiger	and	Marsden	carried	out	an	experiment	to	investigate	the	structure	of
the	atom.	In	this	experiment,	α-particles	were	scattered	by	a	thin	film	of	gold. 	

When	Rutherford	analysed	their	results,	what	conclusions	did	he	draw
about	the	distribution	of	mass	and	charge	in	the	atom? [2]

Describe	and	explain	the	experimental	observations	that	led	to	these
conclusions. [3]

	 [Total:	5]

Beta	decay	occurs	as	either	β+	decay	or	β−	decay.	An	isotope	of	calcium	Ca
decays	by	β+	emission	into	the	isotope	 ,	and	an	isotope	of	magnesium	

	decays	by	β	emission	into	the	isotope	 . 	

Copy	and	complete	the	following	decay	equations	for	the	calcium	and
magnesium	isotopes. 	

decay	of	calcium:	 [1]

decay	of	magnesium:	 [1]

State	what	happens	in	each	type	of	β	decay	in	terms	of	the	quark	model	of
nucleons. 	

β−	decay [1]

β+	decay. [1]

Name	the	force	responsible	for	β	decay. [1]

	 [Total:	5]

β
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A	quark	is	a	fundamental	particle	but	a	neutron	is	not.	Explain	what	this
statement	means. [1]

A	proton	and	a	neutron	each	contain	three	quarks,	either	up	or	down
quarks. 	

Copy	and	complete	the	table	to	show	the	charge	on	a	proton	and	a
neutron	and	the	quarks	that	they	contain. [2]

	 Charge Quarks

proton 	 	

neutron 	 	

Table	15.6
	

Using	information	from	your	table,	suggest	why	some	quarks	must
have	a	positive	charge	and	some	quarks	a	negative	charge. [2]

State	what	interaction	is	responsible	for	holding	the	nucleus	together. [1]

When	a	neutron	decays	it	produces	an	electron	and	two	other	particles.
Copy	and	complete	the	decay	equation	for	a	neutron.	

[2]

The	electron	and	the	neutron	belong	to	different	groups	of	particles. 	

Copy	and	complete	the	table	to	show	the	group	of	particles	to	which	the
electron	and	neutron	belong	and	state	the	name	of	another	member	of
each	group. [2]

	 Group	to	which	it	belongs Another	particle	in	the
same	group

electron 	 	

neutron 	 	

Table	15.7
	

	 [Total:	10]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

describe	the	structure	of	the	atom	and
understand	that	the	nucleus	is	made	up
of	protons	and	neutrons

15.3 	 	 	

recognise	that	the	nucleon	number	of	a
nuclide	is	the	number	of	neutrons	plus
the	number	of	protons

15.4 	 	 	

recognise	that	the	number	of	protons	is
known	as	the	proton	number

15.4 	 	 	

use	the	nuclide	notation	 	in	nuclide
equations

15.4 	 	 	

understand	and	use	the	term	isotope 15.4 	 	 	

understand	that	there	are	three	main
types	of	radiation	and	that	their
penetration	through	matter	is	inversely
related	to	their	ionising	ability

15.7 	 	 	

recognise	that	there	are	two	types	of	β-
radiation:
β−	and	β+

15.7 	 	 	

understand	that	the	positron	is	the
antiparticle	of	the	electron

15.7 	 	 	

understand	that	α-particles	emitted
from	a	single	isotope	all	have	the	same
initial	kinetic	energy

15.8 	 	 	

understand	that	β-particles	emitted
from	a	single	isotope	have	a	range	of
kinetic	energies

15.8 	 	 	

recognise	that	the	energy	spectrum	of	β
emission	led	to	the	hypothesis	that	a
neutrino	(or	antineutrino)	is	emitted	as
well	as	the	β-particle	in	β	decay

15.8 	 	 	

understand	that	leptons	are
fundamental	particles	and	are	not
affected	by	the	strong	nuclear	forces

15.11 	 	 	

understand	that	baryons	(such	as
protons	or	neutrons)	are	made	up	of
three	quarks

15.12 	 	 	

understand	that	mesons	(such	as	pions
or	muons)	are	made	up	of	a	quark	and
an	antiquark

15.12 	 	 	

understand	that	the	strong	force	holds
the	nucleus	together	and	affects
hadrons	but	not	leptons.

15.13 	 	 	
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	Chapter	P1

Practical	skills	at	AS	Level

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
recognise	random,	systematic	and	zero	errors
calculate	uncertainties	in	measurements	made	with	a	range	of	instruments
distinguish	between	precision	and	accuracy
estimate	absolute	uncertainties	and	combine	uncertainties	when	quantities	are	added,	subtracted,
multiplied	and	divided
set	up	apparatus,	follow	instructions	and	make	a	variety	of	measurements
present	data	in	an	adequate	table,	produce	best	fit	straight-line	graphs	and	obtain	the	intercept	and
gradient
use	readings	to	draw	conclusions	from	an	experiment	and	to	test	a	relationship
identify	limitations	in	an	experiment	and	identify	the	main	sources	of	uncertainty
suggest	changes	to	an	experiment	to	improve	accuracy	and	extend	an	investigation.

BEFORE	YOU	START
What	are	physical	properties	of	materials?
What	quantities	do	all	these	instruments	measure:	protractor,	30	cm	ruler,	metre	rule,	micrometer
screw	 gauge,	 calipers,	 newton-meter,	 balance,	 measuring	 cylinder,	 thermometer,	 stopwatch,
ammeter	and	voltmeter?
Can	you	suggest,	 for	each	 instrument	 in	the	 list,	what	 is	 its	range	and	 its	smallest	scale	division,
and	suggest	a	simple	experimental	problem	in	using	it?

	



	



P1.1	Practical	work	in	physics
Throughout	your	A	Level	physics	course,	you	will	develop	your	skills	in	practical	work,	and	they	will	be
assessed	at	both	AS	&	A	Level.	This	chapter	outlines	the	skills	you	will	develop	in	the	first	year	of	the
course;	it	includes	some	activities	to	test	your	understanding	as	you	go	along.
The	sciences	differ	from	most	other	subjects	in	that	they	involve	not	only	theory	but	also	practical	work.
The	very	essence	of	science	is	that	theory	can	be	tested	by	practical	experiment.	So,	the	ability	to	carry
out	practical	exercises	in	a	logical	and	scientific	manner	is	essential.
	
	



P1.2	Using	apparatus	and	following
instructions
You	need	to	familiarise	yourself	with	the	use	of	simple	measuring	instruments	such	as	metre	rules,
balances,	protractors,	stopwatches,	ammeters	and	voltmeters,	and	even	more	complicated	ones	such	as	a
micrometer	screw	gauge	and	calipers.
When	using	measuring	instruments	like	these	you	need	to	ensure	that	you	are	fully	aware	of	what	each
division	on	a	scale	represents.	If	you	look	at	Figure	P1.1	you	will	see	that	on	the	first	ruler	each	division	is
1	mm,	and	on	the	second	each	division	is	2	mm.
If	you	use	instruments	incorrectly,	you	may	introduce	errors	into	your	readings.	For	example,	when	taking
a	reading	your	line	of	sight	should	always	be	perpendicular	to	the	scale	that	you	are	using.	Otherwise,
you	will	introduce	a	parallax	error;	this	is	shown	in	Figure	P1.2.	Looking	from	point	A	the	length	of	the
rod	appears	to	be	21	mm,	from	point	C	it	appears	to	be	25	mm	and	from	point	B,	the	correct	position,	the
length	is	23	mm.

Figure	P1.1:	When	 reading	 from	 a	 scale,	make	 sure	 that	 you	 know	what	 each	 division	 on	 the	 scale
represents.

A	rule,	for	example,	a	metre	rule,	or	a	ruler,	for	example,	an	ordinary	school	ruler	of	length	30	cm,	are
simple	measuring	instruments	with	a	smallest	division	of	1	mm.	Other	instruments	have	a	greater
precision	because	their	smallest	scale	division	is	less	than	1	mm.	Here,	we	will	look	at	two	of	them.

Figure	P1.2:	Parallax	error.

Calipers
Calipers	are	designed	to	grip	an	object	with	two	jaws	and,	in	the	example	shown	in	Figure	P1.3,	to
measure	the	diameter	of	the	object.	They	can	also	be	used	to	measure	the	internal	diameter	of	a	tube,	for
example,	if	the	two	prongs	are	placed	inside	the	tube	and	the	moving	part	of	the	calipers	is	adjusted	until
the	prongs	just	grip	the	inside	of	the	tube.



Figure	P1.3:	Using	dial	calipers.

The	calipers	shown	in	Figure	P1.3	are	dial	calipers,	although	other	versions	such	as	vernier	calipers	are
still	sometimes	used.	As	the	sliding	scale	moves	along,	one	rotation	of	the	dial	moves	the	jaws	1	mm
further	apart.	Since	the	dial	shown	has	100	divisions,	each	of	these	divisions	is	 .	The
object	shown	has	a	diameter	of	12	mm	on	the	fixed	scale	and	25	divisions	or	0.25	mm	on	the	dial,	so	the
diameter	of	the	object	is	12.25	mm.

Micrometer	screw	gauge
A	micrometer	screw	gauge,	or	more	simply	a	micrometer,	is	shown	in	Figure	P1.4.	This	also	has	two
scales.	The	main	scale	is	on	the	shaft	and	the	fractional	scale	is	on	the	rotating	barrel.	One	rotation	of	the
barrel	moves	the	end	of	the	barrel	0.50	mm	along	the	shaft.	The	barrel	has	50	divisions	so	each	division
represents	 .

Figure	P1.4:	Using	a	micrometer	screw	gauge.

To	use	the	micrometer,	turn	the	barrel	until	the	jaws	just	tighten	on	the	object.	Some	micrometers	have	a
ratchet	or	slip	mechanism	to	prevent	the	user	from	tightening	too	hard	and	damaging	the	micrometer	or
object.	Read	the	main	scale	to	the	nearest	0.5	mm,	then	read	the	number	of	divisions	on	the	sleeve,	which
will	be	in	0.01	mm,	and	finally	add	the	two	readings.	You	should	realise	that	the	smallest	division	on	the
micrometer	is	0.01	mm.
Before	you	start	to	use	a	micrometer	or	dial	calipers,	it	is	usual	to	check	if	there	is	a	zero	error.	This	is
done	by	bringing	the	jaws	together	without	any	object	between	them.	Obviously,	the	reading	should	be
zero,	but	if	the	instrument	is	worn	or	has	been	used	badly	the	reading	may	not	be	zero.	When	you	have
taken	this	zero	error	reading,	it	should	be	added	to	or	subtracted	from	every	other	reading	that	you	take
with	the	instrument.	If	the	jaws	do	not	quite	close	to	the	zero	mark,	there	is	a	positive	zero	error,	and	this
zero	error	reading	should	be	subtracted.	The	zero	error	is	an	example	of	a	systematic	error,	which	is	dealt
with	later	in	this	chapter.



It	is	also	important	that	you	become	familiar	with	setting	up	apparatus.	When	instructions	are	given,	the
only	way	to	become	confident	is	through	practice.	You	may	face	a	variety	of	tasks,	from	setting	up	a
pendulum	system	to	measuring	the	angle	at	which	a	tilted	bottle	falls.
You	should	also	learn	to	set	up	simple	circuits	from	circuit	diagrams.	The	most	common	error	in	building
circuits	comes	where	components	need	to	be	connected	in	parallel.	A	good	piece	of	advice	here	is	to	build
the	main	circuit	first,	and	then	add	the	components	that	need	to	be	connected	in	parallel.
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P1.3	Gathering	evidence
When	gathering	evidence,	you	should	take	into	account	the	range	of	results	that	you	are	going	to	obtain.
If	you	are	investigating	the	extension	of	a	spring	with	load,	for	loads	of	between	0	N	and	20	N,	you	should
take	a	fair	spread	of	readings	throughout	that	range.	For	instance,	six	readings	between	12	N	and	20	N
would	not	be	sensible	because	you	are	not	investigating	what	happens	with	smaller	loads.	Equally,	taking
three	readings	below	5	N	and	three	more	between	15	N	and	20	N	does	not	test	what	happens	with
intermediate	loads.
A	sensible	set	of	readings	might	be	at	0	N,	4	N,	8	N,	12	N,	16	N	and	20	N.	This	covers	the	whole	range	in
equal	steps.

Question
You	are	investigating	how	the	current	through	a	resistor	depends	on	its	resistance	when	connected	in
a	circuit.	You	are	given	resistors	of	the	following	values:
50Ω,	100Ω,	150Ω,	200Ω,	250Ω,	300Ω,	350Ω,	400Ω,	450Ω,	500Ω
You	are	asked	to	take	measurements	with	just	six	of	these	resistors.	Which	six	resistors	would	you
choose?	Explain	your	choice.
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P1.4	Precision,	accuracy,	errors	and
uncertainties
Whenever	you	make	a	measurement,	you	are	trying	to	find	the	true	value	of	a	quantity.	This	is	the	value
you	would	find	if	your	measurement	was	perfect.	However,	no	measurement	can	ever	be	perfect;	there
will	always	be	some	uncertainty.	Your	equipment	may	be	imperfect	or	your	technique	may	be	capable	of
improvement.	So,	whenever	you	carry	out	practical	work,	you	should	think	about	two	things:

how	the	equipment	or	your	technique	could	be	improved	to	give	better	results,	with	less	uncertainty
how	to	present	the	uncertainty	in	your	findings.

As	you	will	see	later	in	this	chapter,	both	of	these	need	to	be	reflected	in	the	way	you	present	your
findings.
We	will	first	consider	the	precision	of	a	measurement.	The	level	of	precision	is	high	if	you	make	several
measurements	of	a	quantity	and	they	are	all	very	similar.	A	precise	measurement,	when	repeated,	will	be
the	same,	or	nearly	so.	However,	if	your	measurements	are	spread	widely	around	the	average,	they	are
less	precise.	This	can	arise	because	of	practical	difficulties	in	making	the	measurements.
Precision	is	reflected	in	how	the	results	are	recorded.	If	a	distance	is	quoted	as	‘15	m’	then	it	implies	that
it	was	only	measured	to	the	nearest	metre,	whereas	if	it	is	quoted	as	‘15.0	m’	then	it	suggests	that	it	was
measured	to	the	nearest	0.1	m.
Take	care	not	to	confuse	precision	with	accuracy.	A	measurement	is	described	as	‘accurate’	if	the	value
obtained	is	close	to	the	true	value.	Even	if	a	measurement	is	precise,	and	always	produces	the	same
result,	it	may	not	be	accurate	because	every	reading	may	have	the	same	error.	For	example,	you	can
make	very	precise	measurements	of	the	diameter	of	a	wire	using	a	micrometer	screw	gauge	to	the
nearest	0.01	mm,	but	every	reading	may	be	inaccurate	if	the	gauge	has	a	zero	error.
Figure	P1.5	shows	two	attempts	at	making	holes	in	the	centre	of	a	target.	Imagine	that	the	positions	of
the	holes	represent	readings,	with	the	true	value	at	the	centre.	On	the	left,	the	readings	are	close
together	so	we	can	say	that	they	are	precise.	However,	they	are	not	accurate	as	the	average	is	far	from
the	centre.	In	the	second,	the	measurement	can	be	said	to	be	accurate	as	the	average	position	of	the
holes	is	close	to	the	centre,	but	the	readings	are	not	precise	as	the	holes	are	spread	out.
Whenever	you	make	a	measurement,	you	should	be	aware	of	the	uncertainty	in	the	measurement.	It	will
often,	but	not	always,	be	determined	by	the	smallest	division	on	the	measuring	instrument.	On	a	metre
rule,	which	is	graduated	in	millimetres,	we	should	be	able	to	read	to	the	nearest	half	millimetre,	but
beware!	If	we	are	measuring	the	length	of	a	rod	there	are	two	readings	to	be	taken,	one	at	each	end	of
the	rod.	Each	of	these	readings	has	an	uncertainty	of	0.5	mm,	giving	a	total	uncertainty	of	1	mm.

Figure	P1.5:	The	 left-hand	diagram	represents	 readings	 that	are	precise	but	not	accurate;	 the	 right-
hand	diagram	represents	readings	that	are	accurate	but	without	precision.

The	uncertainty	will	depend	not	only	on	the	precision	of	the	calibrations	on	the	instrument	you	are	using,
but	also	on	your	ability	to	observe	and	on	errors	introduced	by	less	than	perfect	equipment	or	poor
technique	in	taking	the	observations.	Here	are	some	examples	of	where	uncertainties	might	arise:
Systematic	error	–	A	spring	on	a	force	meter	might,	over	time,	become	weaker	so	that	the	force	meter
reads	consistently	high.	Similarly,	the	magnet	in	an	ammeter	might,	over	the	years,	become	weaker	and
the	needle	may	not	move	quite	as	far	round	the	scale	as	might	be	expected.	Parallax	errors,	described
earlier,	may	be	another	example	of	a	systematic	error	if	one	always	looks	from	the	same	angle,	and	not
directly	from	above,	when	taking	a	measurement.	In	principle,	systematic	errors	can	be	corrected	for	by
recalibrating	the	instrument	or	by	correcting	the	technique	being	used.
Zero	error	–	The	zero	on	a	ruler	might	not	be	at	the	very	beginning	of	the	ruler.	This	will	introduce	a
fixed	error	into	any	reading	unless	it	is	allowed	for.	This	is	a	type	of	systematic	error.
Random	errors	–	When	a	judgement	has	to	be	made	by	the	observer,	a	measurement	will	sometimes	be
above	and	sometimes	below	the	true	value.	Random	errors	can	be	reduced	by	making	multiple
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measurements	and	averaging	the	results.
Good	equipment	and	good	technique	will	reduce	the	uncertainties	introduced,	but	difficulties	and
judgements	in	making	observations	will	limit	the	precision	of	your	measurements.	Here	are	two	examples
of	how	difficulties	in	observation	will	determine	the	uncertainty	in	your	measurement.

Example	1:	Using	a	stopwatch
Tambo	has	a	digital	stopwatch	that	measures	to	the	nearest	one-hundredth	of	a	second.	He	is	timing	his
sister	Nana	in	a	100	metre	race	(Figure	P1.6).	He	shows	her	the	stopwatch,	which	reads	11.87	s.	She
records	in	her	notebook	the	time	11.9	s.	She	explains	to	Tambo	that	he	cannot	possibly	measure	to	the
nearest	one-hundredth	of	a	second	as	he	has	to	judge	both	when	the	starting	pistol	was	fired	and	the
exact	moment	at	which	she	crossed	the	finishing	line.	To	do	this	to	any	closer	than	the	nearest	one-tenth
of	a	second	is	impossible.	In	addition,	sometimes	he	will	press	the	button	too	early	and	sometimes	too
late.

Figure	P1.6:	Uncertainty	in	timing	using	a	stopwatch.

Example	2:	Measuring	displacement	of	a	pendulum
Fatima	is	asked	to	measure	the	maximum	displacement	of	a	pendulum	bob	as	it	oscillates,	as	shown	in
Figure	P1.7.	She	uses	a	ruler	calibrated	in	millimetres.	She	argues	that	she	can	measure	the
displacement	to	the	nearest	millimetre.	Joanne,	however,	correctly	argues	that	she	can	only	measure	it	to
the	nearest	two	millimetres,	as	not	only	is	there	the	uncertainty	at	either	end	(0.5	mm)	but	she	also	has	to
judge	precisely	the	point	at	which	the	bob	is	at	its	greatest	displacement,	which	adds	an	extra	millimetre
to	the	uncertainty.

Figure	P1.7:	Displacement	of	a	pendulum	bob.

Questions
Look	at	Figure	P1.5.	Draw	similar	diagrams	to	represent:

a	target	where	the	holes	are	both	precise	and	accurate
a	target	where	the	holes	are	neither	precise	nor	accurate.

The	position	of	the	holes	in	Figure	P1.5	represents	attempts	at	measuring	the	position	of	the	centre	of



the	circle.	Which	one	shows	more	random	error	and	which	shows	more	systematic	error?
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P1.5	Finding	the	value	of	an	uncertainty
We	have	used	the	terms	uncertainty	and	error;	they	are	not	quite	the	same	thing.	In	general,	an	‘error’	is
just	a	problem	that	causes	the	reading	to	be	different	from	the	true	value	(although	a	zero	error	can	have
an	actual	value).	The	uncertainty,	however,	is	an	actual	range	of	values	around	a	measurement,	within
which	you	expect	the	true	value	to	lie.	The	uncertainty	is	an	actual	number	with	a	unit.
For	example,	if	you	happen	to	know	that	the	true	value	of	a	length	is	21.0	cm	and	an	‘error’	or	problem
causes	the	actual	reading	to	be	21.5	cm,	then,	since	the	true	value	is	0.5	cm	away	from	the	measurement,
the	uncertainty	is	±0.5	cm.
But	how	do	you	estimate	the	uncertainty	in	your	reading	without	knowing	the	true	value?	Obviously,	if	a
reading	is	21.5	cm	and	you	know	the	true	value	is	21.0	cm,	then	the	uncertainty	in	the	reading	is	0.5	cm.
However,	you	may	still	have	to	estimate	the	uncertainty	in	your	reading	without	knowing	the	true	value.
So	how	is	this	done?

KEY	IDEA
You	can	find	the	uncertainty	from	whichever	is	the	largest	out	of:

the	smallest	division	on	the	instrument	used,	or
half	the	range	of	a	number	of	readings	of	the	measurement.

First,	it	should	be	understood	that	the	uncertainty	is	only	an	estimate	of	the	difference	between	the	actual
reading	and	the	true	value.	We	should	not	feel	too	worried	if	the	difference	between	a	single
measurement	and	the	true	value	is	as	much	as	twice	the	uncertainty.	Because	it	is	an	estimate,	the
uncertainty	is	likely	to	be	given	to	only	one	significant	figure.	For	example,	we	write	the	uncertainty	as
0.5	cm	and	not	0.50	cm.
The	uncertainty	can	be	estimated	in	two	ways.
Using	the	division	on	the	scale	–	Look	at	the	smallest	division	on	the	scale	used	for	the	reading.	You
then	have	to	decide	whether	you	can	read	the	scale	to	better	than	this	smallest	division.	For	example,
what	is	the	uncertainty	in	the	level	of	point	B	in	Figure	P1.2?	The	smallest	division	on	the	scale	is	1	mm
but	is	it	possible	to	measure	to	better	than	1	mm?	This	will	depend	on	the	instrument	being	used	and
whether	the	scale	itself	is	accurate.	In	Figure	P1.2,	the	width	of	the	line	itself	is	quite	small	but	there	may
be	some	parallax	error	that	would	lead	you	to	think	that	0.5	mm	or	1	mm	is	a	reasonable	uncertainty.	In
general,	the	position	of	a	mark	on	a	ruler	can	generally	be	measured	to	an	uncertainty	of	±0.5	mm.	In
Figure	P1.8,	the	smallest	division	on	the	scale	is	20	g.	Can	you	read	more	accurately	than	this?	In	this
case,	it	is	doubtful	that	every	marking	on	the	scale	is	accurate	and	so	20	g	would	be	reasonable	as	the
uncertainty.

Figure	P1.8:	The	scales	on	a	lever-arm	balance.

You	need	to	think	carefully	about	the	smallest	division	you	can	read	on	any	scale.	As	another	example,
look	at	a	protractor.	The	smallest	division	is	probably	1°	but	it	is	unlikely	you	can	use	a	protractor	to
measure	an	angle	to	better	than	±0.5°	with	your	eye.
Repeating	the	readings	–	Repeat	the	reading	several	times.	The	uncertainty	can	then	be	taken	as	half
of	the	range	of	the	values	obtained;	in	other	words,	the	smallest	reading	is	subtracted	from	the	largest
and	the	result	is	halved.	This	method	deals	with	random	errors	made	in	the	readings	but	does	not	account
for	systematic	errors.	This	method	should	always	be	tried,	wherever	possible,	because	it	may	reveal
random	errors	and	gives	an	easy	way	to	estimate	the	uncertainty.	However,	if	the	repeated	readings	are
all	the	same,	do	not	think	that	the	uncertainty	is	zero.	The	uncertainty	can	never	be	less	than	the	value
you	obtained	by	looking	at	the	smallest	scale	division.
Which	method	should	you	actually	use	to	estimate	the	uncertainty?	If	possible,	readings	should	be
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repeated	and	the	second	method	used.	But	if	all	the	readings	are	the	same,	you	have	to	try	both	methods!
The	uncertainty	in	using	a	stopwatch	is	something	of	a	special	case	as	you	may	not	be	able	to	repeat	the
measurement.	Usually,	the	smallest	division	on	a	stopwatch	is	0.01	s,	so	can	you	measure	a	time	interval
with	this	uncertainty?	You	may	know	that	your	own	reaction	time	is	larger	than	this	and	is	likely	to	be	at
least	0.1	s.	The	stopwatch	is	recording	the	time	when	you	press	the	switch	but	this	is	not	pressed	at
exactly	the	correct	moment.	If	you	do	not	repeat	the	reading	then	the	uncertainty	is	likely	to	be	at	least
0.1	s,	as	shown	in	Figure	P1.7.	If	several	people	take	the	reading	at	the	same	time,	you	are	likely	to	see
that	0.01	s	is	far	too	small	to	be	the	uncertainty.
Even	using	a	digital	meter	is	not	without	difficulties.	For	example,	if	a	digital	ammeter	reads	0.35	A,	then,
without	any	more	information,	the	uncertainty	is	±0.01	A,	the	smallest	digit	on	the	meter.	But	if	you	look
at	the	handbook	for	the	ammeter,	you	may	well	find	that	the	uncertainty	is	±0.02	or	0.03	A	(although	you
cannot	be	expected	to	know	this).

WORKED	EXAMPLE

A	length	is	measured	five	times	with	a	ruler	whose	smallest	division	is	0.1	cm	and	the	readings
obtained,	in	cm,	are:	22.9,	22.7,	22.9,	23.0,	23.1.	What	is	the	reading	obtained	and	the	uncertainty?

Find	the	average	by	adding	the	values	and	dividing	by	the	number	of	values:

This	is	written	to	four	significant	figures.	At	this	stage,	you	are	not	sure	how	many	figures
to	write	in	the	answer.
The	maximum	value	is	23.1	and	the	minimum	value	is	22.7.	Use	these	values	to	find	half	the
range.

Check	that	the	uncertainty	calculated	in	Step	2	is	larger	than	the	smallest	division	you	can
read	on	the	scale.
Write	down	the	average	value,	the	uncertainty	to	a	reasonable	number	of	significant	figures
and	the	unit.	Obviously,	the	last	digit	in	22.92	is	meaningless	as	it	is	much	smaller	than	the
uncertainty;	it	should	not	be	written	down.
The	final	value	is	(22.9	±	0.2)	cm.
You	do	not	usually	write	down	the	final	value	of	the	answer	to	a	greater	number	of	decimal
places	than	the	uncertainty.	Uncertainties	are	usually	quoted	to	one	or	perhaps	two
significant	figures.

Questions
Figure	P1.8	shows	a	lever-arm	balance,	initially	with	no	mass	in	the	pan	and	then	with	a	standard	200
g	mass	in	the	pan.
Explain	what	types	of	error	might	arise	in	using	this	equipment.
Estimate	the	uncertainty	when	a	student	measures	the	length	of	a	room	using	a	steel	tape	measure
calibrated	in	millimetres.
Estimate	the	uncertainty	when	a	girl	measures	the	temperature	of	a	bath	of	water	using	the
thermometer	in	Figure	P1.9.

Figure	P1.9:	For	Question	6.

A	student	is	asked	to	measure	the	wavelength	of	waves	on	a	ripple	tank	using	a	metre	rule	that	is
graduated	in	millimetres.	Estimate	the	uncertainty	in	his	measurement.
Estimate	the	uncertainty	when	a	student	attempts	to	measure	the	time	for	a	single	swing	of	a
pendulum.
What	is	the	average	value	and	uncertainty	in	the	following	sets	of	readings?	All	are	quoted	to	be
consistent	with	the	smallest	scale	division	used.

20.6,	20.8
20,	30,	36
0.6,	1.0,	0.8,	1.2



d 20.5,	20.5.
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P1.6	Percentage	uncertainty
The	uncertainties	we	have	found	so	far	are	sometimes	called	absolute	uncertainties,	but	percentage
uncertainties	are	also	very	useful.
The	percentage	uncertainty	expresses	the	absolute	uncertainty	as	a	fraction	of	the	measured	value	and	is
found	by	dividing	the	uncertainty	by	the	measured	value	and	multiplying	by	100%.

For	example,	suppose	a	student	times	a	single	swing	of	a	pendulum.	The	measured	time	is	1.4	s	and	the
estimated	uncertainty	is	0.2	s.	Then	we	have:

This	gives	a	percentage	uncertainty	of	14%.	We	can	show	our	measurement	in	two	ways:
with	absolute	uncertainty:	time	for	a	single	swing	=	1.4	s	±	0.2	s
with	percentage	uncertainty:	time	for	a	single	swing	=	1.4	s	±	14%

(Note	that	the	absolute	uncertainty	has	a	unit	whereas	the	percentage	uncertainty	is	a	fraction,	shown
with	a	%	sign.)
A	percentage	uncertainty	of	14%	is	very	high.	This	could	be	reduced	by	measuring	the	time	for	20	swings.
In	doing	so,	the	absolute	uncertainty	remains	0.2	s	(it	is	the	uncertainty	in	starting	and	stopping	the
stopwatch	that	is	the	important	thing	here,	not	the	accuracy	of	the	stopwatch	itself),	but	the	total	time
recorded	might	now	be	28.4	s.

So	measuring	20	oscillations	rather	than	just	one	reduces	the	percentage	uncertainty	to	less	than	1%.
The	time	for	one	swing	is	now	calculated	by	dividing	the	total	time	by	20,	giving	1.42	s.	Note	that,	with	a
smaller	uncertainty,	we	can	give	the	result	to	two	decimal	places.	The	percentage	uncertainty	remains	at
0.7%:

time	for	a	single	swing	=	1.42	s	±	0.7%

Questions
The	depth	of	water	in	a	bottle	is	measured	as	24.3	cm,	with	an	uncertainty	of	0.2	cm.	(This	could	be
written	as	(24.3	±	0.2)	cm.)	Calculate	the	percentage	uncertainty	in	this	measurement.
The	angular	amplitude	of	a	pendulum	is	measured	as	(35	±	2)°.

Calculate	the	percentage	uncertainty	in	the	measurement	of	this	angle.
The	protractor	used	in	this	measurement	was	calibrated	in	degrees.	Suggest	why	the	user	only
feels	confident	to	give	the	reading	to	within	2°.

A	student	measures	the	potential	difference	across	a	battery	as	12.4	V	and	states	that	his
measurement	has	a	percentage	uncertainty	of	2%.	Calculate	the	absolute	uncertainty	in	his
measurement.
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P1.7	Recording	results
It	is	important	that	you	develop	the	skill	of	recording	results	in	a	clear	and	concise	manner.
Generally,	numerical	results	will	be	recorded	in	a	table.	The	table	should	be	neatly	drawn	using	a	ruler
and	each	heading	in	the	table	should	include	both	the	quantity	being	measured	and	the	unit	it	is
measured	in.

KEY	IDEA
Each	column	of	a	table	must	be	labelled	with	a	quantity	/	unit,	and,	if	a
reading	be	given	to	the	precision	of	the	instrument,	usually	to	the	same
number	of	decimal	places.	Calculated	quantities	may	have	one	more
significant	figure	than	the	readings	used.

Table	P1.1	shows	how	a	table	may	be	laid	out.	The	measured	quantities	are	the	length	of	the	wire	and	the
current	though	it;	both	have	their	units	included.	Similarly,	the	calculated	quantity,	 ,	is	included	and
this	too	has	a	unit,	A−1.
When	recording	your	results,	you	need	to	think	once	more	about	the	precision	to	which	the	quantities	are
measured.	In	the	example	in	Table	P1.1,	the	length	of	the	wire	might	be	measured	to	the	nearest
millimetre	and	the	current	might	be	measured	to	the	nearest	milliampere.
Note	how	‘.0’	is	included	in	the	second	result	for	the	length	of	the	wire,	to	show	that	the	measurement	is
to	the	nearest	millimetre,	not	the	nearest	centimetre.	Similarly	the	zero	after	the	0.35	shows	that	it	is
measured	to	the	nearest	milliampere	or	 	of	an	ampere.
The	third	column	is	calculated	and	should	show	the	same	number	of	significant	figures,	or	one	more	than
the	quantity	(or	quantities)	it	is	calculated	from.	In	this	example,	the	current	is	measured	to	three
significant	figures	so	the	inverse	of	the	current	is	calculated	to	three	significant	figures.

Length	of	wire	/	cm Current	/	A

10.3 0.682 1.47
19.0 0.350 2.86

Table	P1.1:	A	typical	results	table.

Question
A	ball	is	allowed	to	roll	down	a	ramp	from	different	starting	points.	Figure	P1.10	shows	the	apparatus
used.	The	ramp	is	placed	at	a	fixed	height	above	the	floor.	You	are	asked	to	measure	the	vertical
height	h	of	the	starting	point	above	the	bottom	of	the	ramp	and	the	horizontal	distance	d	the	ball
travels	after	it	leaves	the	ramp.

Figure	P1.10:	For	Question	13.

You	are	also	asked	to	find	the	square	of	the	horizontal	distance	the	ball	travels	after	it	leaves	the
ramp.
Table	P1.2	shows	the	raw	results	for	the	experiment.	Copy	and	complete	the	table.

h	/	cm d	/	cm d2	/



1.0 18.0 	
2.5 28.4 	
4.0 35.8 	
5.5 41.6 	
7.0 47.3 	
9.0 53.6 	

Table	P1.2:	For	Question	13.

	
	



P1.8	Analysing	results
When	you	have	obtained	your	results,	the	next	thing	to	do	is	to	analyse	them.	Very	often	this	will	be	done
by	plotting	a	graph.
You	may	be	asked	to	plot	a	graph	in	a	particular	way,	however,	the	general	rule	is	that	the	variable	you
control	or	alter	(the	independent	variable)	is	plotted	on	the	x-axis	and	the	variable	that	changes	as	a
result	(the	dependent	variable)	is	plotted	on	the	y-axis.
In	the	example	in	Table	P1.1,	the	length	of	the	wire	would	be	plotted	on	the	x-axis	and	the	current	(or	

)	would	be	plotted	on	the	y-axis.
You	should	label	your	axes	with	both	the	quantities	you	are	using	and	their	units.	You	should	then	choose
your	scales	to	use	as	much	of	the	graph	paper	as	possible.	However,	you	also	need	to	keep	the	scales
simple.	Never	choose	scales	that	are	multiples	of	3,	7,	11	or	13.	Try	and	stick	to	scales	that	are	simple
multiples	of	1,	2	or	5.
Plot	your	points	carefully	using	small	crosses;	dots	tend	to	disappear	into	the	page	and	larger	dots
become	blobs,	the	centre	of	which	is	difficult	to	ascertain.
Many,	but	not	all,	graphs	you	meet	will	be	straight	lines.	The	points	may	not	all	lie	exactly	on	the	straight
line	and	it	is	your	job	to	choose	the	best	fit	line.	Choosing	this	line	is	a	skill	that	you	will	develop	through
the	experience	of	doing	practical	work.
Generally,	there	should	be	equal	points	either	side	of	the	line	(but	not	three	on	one	side	at	one	end	and
three	on	the	other	at	the	other	end).	Sometimes,	all	the	points,	bar	one,	lie	on	the	line.	The	point	not	on
the	line	is	often	referred	to	as	an	anomalous	point,	and	it	should	be	checked,	if	possible.	If	it	still	appears
to	be	off	the	line	it	might	be	best	to	ignore	it	and	use	the	remaining	points	to	give	the	best	line.	It	is	best
to	mark	it	clearly	as	‘anomalous’.
In	Figure	P1.11,	the	line	chosen	on	the	first	graph	is	too	shallow.	By	swinging	it	round	so	that	it	is	steeper,
it	goes	closer	to	more	points	and	they	are	more	evenly	distributed	above	and	below	the	line.

Figure	P1.11

Deductions	from	graphs
There	are	two	major	points	of	information	that	can	be	obtained	from	straight-line	graphs:	the	gradient
and	the	intercept	with	the	y-axis.	When	measuring	the	gradient,	a	triangle	should	drawn,	as	in	Figure
P1.12,	using	at	least	half	of	the	line	that	has	been	drawn.

In	the	mathematical	equation	y	=	mx	+	c,	m	is	equal	to	the	gradient	of	the	graph	and	c	is	the	intercept
with	the	y-axis.	If	c	is	equal	to	zero,	the	graph	passes	through	the	origin,	the	equation	becomes	y	=	mx
and	we	can	say	that	y	is	proportional	to	x.
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Figure	P1.12

Question
Use	your	results	from	Question	13	to	plot	a	graph	of	the	square	of	the	horizontal	distance	d2	(on
the	y-axis)	against	the	height	h	(on	the	x-axis).	Draw	the	best	fit	line.
Determine	the	gradient	of	the	line	on	your	graph	and	the	intercept	with	the	y-axis.	Remember,
both	the	gradient	and	the	intercept	have	units;	these	should	be	included	in	your	answer.

Curves	and	tangents
You	also	need	to	develop	the	skill	of	drawing	smooth	curves	through	a	set	of	points,	and	drawing	tangents
to	those	points.	When	drawing	curves,	you	need	to	draw	a	single	smooth	curve,	without	any	jerks	or
feathering.	As	with	a	straight	line,	not	every	point	will	lie	precisely	on	the	curve,	and	there	should	be	a
balance	of	points	on	either	side.
In	the	first	graph	of	Figure	P1.13,	the	student	has	joined	each	of	the	points	using	a	series	of	straight	lines.
This	should	never	be	done.	The	second	graph	is	much	better,	although	there	is	some	feathering	at	the	left-
hand	side,	as	two	lines	can	be	seen.	The	third	graph	shows	a	well-drawn	curve.

Figure	P1.13:	For	Question	14.

	
	



•
•

•

P1.9	Testing	a	relationship
The	readings	from	an	experiment	are	often	used	to	test	a	relationship	between	two	quantities,	typically
whether	two	quantities	are	proportional	or	inversely	proportional.
You	should	know	that	if	two	quantities	y	and	x	are	directly	proportional:

the	formula	that	relates	them	is	y	=	kx,	where	k	is	a	constant
if	a	graph	is	plotted	of	y	against	x	then	the	graph	is	a	straight	line	through	the	origin	and	the	gradient
is	the	value	of	k.

If	the	two	quantities	are	inversely	proportional	then	 	and	a	graph	of	y	against	 	gives	a	straight	line
through	the	origin.
These	statements	can	be	used	as	a	basis	for	a	test.	If	a	graph	of	y	against	x	is	a	straight	line	through	the
origin,	then	y	and	x	are	directly	proportional.	If	you	know	the	values	of	y	and	x	for	two	points,	you	can
then	calculate	two	values	of	k	with	the	formula	 	and	see	whether	these	two	values	of	k	are	actually
the	same.	But	what	if	the	points	are	not	exactly	on	a	straight	line	or	the	two	values	of	k	are	not	exactly	the
same	–	is	the	relationship	actually	false	or	is	it	just	that	errors	caused	large	uncertainties	in	the	readings?
Later	in	this	chapter,	we	will	look	at	how	to	combine	the	uncertainties	in	the	values	for	y	and	x	to	find	an
uncertainty	for	k.	However,	you	can	use	a	simple	check	to	see	whether	the	difference	in	the	two	values	of
k	may	be	due	to	the	uncertainties	in	the	readings.	For	example,	if	you	found	that	the	two	values	of	k	differ
by	2%	but	the	uncertainties	in	the	readings	of	y	and	x	are	5%,	then	you	cannot	say	that	the	relationship	is
proved	false.	Indeed,	you	are	able	to	say	that	the	readings	are	consistent	with	the	relationship.
You	should	first	write	down	a	criterion	for	checking	whether	the	values	of	k	are	the	same.	This	criterion	is
just	a	simple	rule	you	can	invent	for	yourself	and	use	to	compare	the	two	values	of	k	with	the	uncertainties
in	the	readings.	If	the	criterion	is	obeyed	you	can	then	write	down	that	the	readings	are	consistent	with
the	relationship.

KEY	IDEA
Write	down	a	criterion.
Calculate	the	percentage	difference	between	two	values	of	the	constant.
Compare	the	percentage	difference	with	the	percentage	uncertainty	in
one	of	the	variables.
Write	a	conclusion	as	to	whether	the	criterion	is	obeyed	or	not.

Criterion	1
A	simple	approach	is	to	assume	that	the	percentage	uncertainty	in	the	value	of	k	is	about	equal	to	the
percentage	uncertainty	in	either	x	or	y;	choose	the	larger	percentage	uncertainty	of	x	or	y.
You	first	look	at	the	percentage	uncertainty	in	both	x	and	y	and	decide	which	is	bigger.	Let	us	assume	that
the	larger	percentage	uncertainty	is	in	x.	Your	stated	criterion	is	then	that	‘if	the	difference	in	the
percentage	uncertainty	in	the	two	values	of	k	is	less	than	the	percentage	uncertainty	in	x,	then	the
readings	are	consistent	with	the	relationship’.
If	the	percentage	difference	in	k	values	is	less	than	the	percentage	uncertainty	in	x	(or	y),	the	readings	are
consistent	with	the	relationship.

KEY	IDEA
If	the	percentage	difference	in	k	values	is	less	than	the	percentage
uncertainty	in	x	(or	y),	the	readings	are	consistent	with	the	relationship.

Criterion	2
Another	criterion	is	to	state	that	the	k	values	should	be	the	same	within	10%	or	20%,	depending	on	the
experiment	and	the	uncertainty	that	you	think	sensible.	It	is	helpful	if	the	figure	of	10%	or	20%	is	related
to	some	uncertainty	in	the	actual	experiment.
Whatever	criterion	you	use,	it	should	be	stated	clearly	and	a	clear	conclusion	given.	The	procedure	to
check	whether	two	values	of	k	are	reasonably	constant	is	as	follows:

Calculate	two	values	of	the	constant	k.	The	number	of	significant	figures	chosen	when	writing	down
these	 values	 should	be	 equal	 to	 the	 least	 number	 of	 significant	 figures	 in	 the	data	used.	 If	 you	are
asked	 to	 justify	 the	 number	 of	 significant	 figures	 you	 give	 for	 your	 value	 of	k,	 state	 the	 number	 of
significant	figures	that	x	and	y	were	measured	to	and	that	you	will	choose	the	smallest.	Do	not	quote
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your	values	of	k	to	one	significant	figure	to	make	them	look	equal	when	x	and	y	were	measured	to	two
significant	figures.
Calculate	the	percentage	difference	in	the	two	calculated	values	of	k.	It	is	worthwhile	using	one	more
significant	figure	in	each	actual	value	of	k	than	is	completely	justified	in	this	calculation.
Compare	the	percentage	difference	in	the	two	values	of	k	with	your	clearly	stated	criterion.	You	could
compare	your	percentage	difference	in	k	values	with	the	larger	of	the	percentage	differences	in	x	and
y.

WORKED	EXAMPLES

A	student	investigates	the	depth	D	of	a	crater	made	when	ball-bearings	of	different	diameters	d	are
dropped	into	sand.	He	drops	two	ball	bearings	from	the	same	height	and	measures	the	depth	of	the
craters	using	a	30	cm	ruler.	The	results	are	shown	in	Table	P1.3.

Diameter	of	ball	bearing	d	/
mm

Depth	of	the	crater	D	/	mm D/d

5.42	±	0.01 36	±	2 6.64
3.39	±	0.01 21	±	2 6.19

Table	P1.3:	For	Worked	example	2.

It	is	suggested	that	the	depth	D	of	the	crater	is	directly	proportional	to	the	diameter	d	of	the	ball-
bearing,	that	is:

Do	the	readings	support	this	hypothesis?
Calculate	the	values	of	 .	These	values	are	shown	in	the	third	column	in	Table	P1.3,
although	they	should	only	be	given	to	two	significant	figures	as	values	of	D	are	given	to	two
significant	figures	and	values	of	d	to	three	significant	figures.	The	more	precise	values	for	k
are	to	be	used	in	the	next	step.
Calculate	the	percentage	difference	in	the	k	values.	The	percentage	difference	is:	

So	the	k	values	differ	by	7%	of	the	smaller	value.
State	a	criterion	and	check	it.
‘My	criterion	is	that,	if	the	hypothesis	is	true,	then	the	percentage	difference	in	the	k	values
will	be	less	than	the	percentage	uncertainty	in	D.	I	chose	D	as	it	obviously	has	the	higher
percentage	uncertainty.’
The	uncertainty	in	the	smaller	measurement	of	D	can	be	calculated	as:
uncertainty	in	

The	percentage	difference	in	the	k	values	is	less	than	the	uncertainty	in	the	experimental
results;	therefore,	the	experiment	is	consistent	with	the	hypothesis.
Of	course,	we	cannot	say	for	sure	that	the	hypothesis	is	correct.	To	do	that,	we	would	need
to	greatly	reduce	the	percentage	uncertainties.

A	student	obtains	data	shown	in	Table	P1.4.

x	/	cm d	/	cm
2.0 3.0
3.5 8.0

Table	P1.4:	For	Worked	example	3.

The	first	reading	of	x	was	found	to	have	an	uncertainty	of	±0.1.	Do	the	results	show	that	d	is
proportional	to	x?

Calculate	the	ratio	of	 	in	both	cases:

Calculate	how	close	to	each	other	the	two	ratios	are:	2.29	−	1.50	=	0.79

So	the	two	values	of	 	are	 	different.
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Compare	the	values	and	write	a	conclusion.
The	uncertainty	in	the	first	value	of	x	is	5%	and,	since	the	percentage	difference	between
the	ratios	of	53%	is	much	greater,	the	evidence	does	not	support	the	suggested	relationship.

Questions
A	student	obtains	the	following	data	for	two	variables	T	and	m	(Table	P1.5).

T	/	s m	/	kg
4.6 0.90
6.3 1.20

Table	P1.5:	Data	for	Question	15.

The	first	value	of	T	has	an	uncertainty	of	±0.2	s.	Do	the	results	show	that	T	is	proportional	to	m?
A	student	obtains	the	following	values	of	two	variables	r	and	t	(Table	P1.6).

r	/	cm t	/	s
6.2 4.6
12.0 6.0

Table	P1.6:	Data	for	Question	16.

The	first	value	of	r	has	an	uncertainty	of	±0.2	cm,	which	is	much	greater	than	the	percentage
uncertainty	in	t.	Do	the	results	show	that	t2	is	proportional	to	r?
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P1.10	Combining	uncertainties
When	quantities	are	combined,	for	example,	multiplied	or	divided,	what	is	the	uncertainty	in	the	final
result?

KEY	IDEA
If	quantities	are	added	or	subtracted,	add	absolute	uncertainties.
If	quantities	are	multiplied	or	divided,	add	percentage	uncertainties.

Suppose	that	quantity	A	=	1.0	±	0.1	and	that	B	=	2.0	±	0.2,	so	that	the	value	of	A	+	B	is	3.0.	The
maximum	likely	value	of	A	+	B,	taking	into	account	the	uncertainties,	is	3.3	and	the	minimum	likely	value
is	2.7.	You	can	see	that	the	combined	uncertainty	is	±0.3,	so	A	+	B	=	3.0	±	0.3.	Similarly,	B	−	A	=	1.0	±
0.3.
When	quantities	are	added	or	subtracted,	their	absolute	uncertainties	are	added.	A	simple	example	is
measuring	the	length	of	a	stick	using	a	millimetre	scale.	There	is	likely	to	be	an	uncertainty	of	0.5	mm	at
both	ends,	giving	a	total	uncertainty	of	1.0	mm.
When	quantities	are	multiplied	or	divided,	combining	uncertainties	is	a	little	more	complex.	To	find	the
combined	uncertainty	in	this	case,	we	add	the	percentage	uncertainties	of	the	two	quantities	to	find	the
total	percentage	uncertainty.
Remember,	you	always	add	uncertainties;	never	subtract.
Where	quantities	are:

added	or	subtracted,	then	add	absolute	uncertainties
multiplied	or	divided,	then	add	percentage	or	fractional	uncertainties.

WORKED	EXAMPLES

The	potential	difference	across	a	resistor	is	measured	as	(6.0	±	0.2)	V,	while	the	current	is
measured	as	(2.4	±	0.1)	A.
Calculate	the	resistance	of	the	resistor	and	the	absolute	uncertainty	in	its	measurement.

Find	the	percentage	uncertainty	in	each	of	the	quantities:

Add	the	percentage	uncertainties.	Sum	of	uncertainties:
(3.3	+	4.2)%	=	7.5%
Calculate	the	resistance	value	and	find	the	absolute	uncertainty:

7.5%	of	2.5	=	0.1875	≈	0.2	Ω
The	resistance	of	the	resistor	is	2.5	±	0.2	Ω.
When	you	calculate	the	uncertainty	in	the	square	of	a	quantity,	since	this	is	an	example	of
multiplication,	you	should	double	the	percentage	uncertainty.	For	example,	if	A	=	(2.0	±
0.2)	cm,	then	A	has	a	percentage	uncertainty	of	10%	so	A2	=	4.0	cm2	±	20%;	or	giving	the
absolute	uncertainty,	A2	=	(4.0	±	0.8)	cm2.

Questions
You	measure	the	following	quantities:
A	=	(1.0	±	0.4)	m



a
b
c
d

e
f
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B	=	(2.0	±	0.2)	m
C	=	(2.0	±	0.5)	m	s−1

D	=	(0.20	±	0.01)	s
Calculate	the	result	and	its	uncertainty	for	each	of	the	following	expressions.	You	may	express	your
uncertainty	either	as	an	absolute	value	or	as	a	percentage.

A	+	B
B	−	A
C	×	D

A2

2	×	A
the	square	root	of	(A	×	B).	(Recall	that	the	square	root	of	x	can	be	written	as	x½.)

A	rifle	bullet	is	photographed	in	flight	using	two	flashes	of	light	separated	by	a	time	interval	of	(1.00
±	0.02)	ms.	The	first	image	of	the	bullet	on	the	photograph	appears	to	be	at	a	position	of	(22.5	±	0.5)
cm	on	a	scale	underneath	the	flight	path.	The	position	of	the	second	image	is	(37.5	±	0.7)	cm	on	the
same	scale.	Find	the	speed	of	the	bullet	and	its	absolute	uncertainty.
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P1.11	Identifying	limitations	in	procedures	and
suggesting	improvements
No	experiment	is	perfect	and	the	ability	to	see	weaknesses	in	the	experimental	setup	and	the	techniques
used	is	an	important	skill.	You	should	also	take	the	opportunity	to	think	of	ways	to	improve	the
experimental	technique,	thereby	reducing	the	overall	percentage	uncertainty.
In	this	topic,	we	will	look	at	five	experiments	and	discuss	problems	that	might	arise	and	the
improvements	that	might	be	made	to	overcome	them.	It	will	help	if	you	try	out	some	of	the	experiments
yourself	so	that	you	get	a	feel	for	the	methods	described.	The	table	for	each	experiment	is	a	summary	of
ideas	that	you	might	use	in	your	answer.

Experiment	1:	Ball-bearings	and	craters
In	Worked	example	2,	the	student	dropped	a	ball-bearing	of	diameter	d	into	sand	and	measured	the	depth
D	of	the	crater	produced.	He	dropped	two	ball-bearings	of	different	diameters	from	the	same	height	and
measured	the	depth	of	the	crater	using	a	30	cm	ruler.	Table	P1.7	suggests	some	of	the	problems	with	the
simple	method	used,	together	with	some	improvements.

Suggestion Problem Improvement

1 ‘Two	results	are	not	enough	to	draw	a
valid	conclusion.’

‘Take	more	results	and	plot	a	graph	of	D
against	d.’

2 ‘The	ruler	is	too	wide	to	measure	the
depth	of	the	crater.’

‘Use	a	knitting	needle	and	mark	the
sand	level	on	the	needle	and	then
measure	with	a	ruler.’

3 ‘There	may	be	a	parallax	error	when
measuring	the	top	level	of	the	crater.’

‘Keep	the	eye	parallel	to	the	horizontal
level	of	the	sand,	or	use	a	stiff	card.’

4 ‘It	is	difficult	to	release	the	ball-bearing
without	giving	it	a	sideways	velocity,
leading	to	a	distorted	crater.’

‘Use	an	electromagnet	to	release	the
ball.’

5 ‘The	crater	lip	is	of	varying	height.’ ‘Always	measure	to	the	highest	point.’

Table	P1.7:	Suggestions	for	improving	Experiment	1.

It	is	worth	making	some	points	regarding	these	suggestions.
This	is	a	simple	idea,	but	it	is	important	to	explain	how	the	extra	results	are	to	be	used.	In	this	case,	a
graph	is	suggested	–	alternatively	the	ratio	 	could	be	calculated	for	each	set	of	readings.

The	problem	is	clearly	explained.	It	is	not	enough	to	just	say	that	the	depth	is	difficult	to	measure.
It	 is	not	enough	 to	 just	 say	 ‘parallax	errors’.	We	need	 to	be	 specific	as	 to	where	 they	might	occur.
Likewise,	make	sure	you	make	it	clear	where	you	look	from	when	you	suggest	a	cure.
There	is	no	evidence	that	this	will	affect	the	crater	depth,	but	it	is	a	point	worthy	of	consideration.
An	interesting	point:	does	the	crater	depth	include	the	lip	or	is	it	just	to	the	horizontal	sand	surface?
Consistency	in	measurement	is	what	is	needed	here.

Experiment	2:	Timing	with	a	stopwatch
Many	years	ago,	Galileo	suggested	that	heavy	and	light	objects	take	the	same	time	to	fall	to	the	ground
from	the	same	height,	as	illustrated	in	Figure	P1.14.	Imagine	that	you	want	to	test	this	hypothesis.



Figure	P1.14:	 It	was	believed	that	Galileo	dropped	two	different	masses	 from	the	 top	of	 the	Leaning
Tower	of	Pisa	to	prove	his	idea.	But	people	now	think	it	probably	didn’t	happen.	He	just	did	a	‘thought
experiment’.

This	is	an	experiment	you	can	do	yourself	with	two	objects	and	a	stopwatch,	or	even	a	digital	wrist	watch
or	a	cell	phone	with	a	timing	app.	Drop	two	different	objects,	for	example	two	stones,	and	measure	the
time	they	take	to	fall	the	same	distance	to	the	ground.
Of	course,	the	times	you	obtain	are	likely	to	be	different.	Does	this	prove	Galileo	wrong?	You	can	test	the
relationship	and	establish	whether	your	readings	are	consistent	with	his	hypothesis.	However,	if	you
improve	the	experiment	and	reduce	the	uncertainties,	the	conclusion	will	be	much	more	useful.
When	you	consider	improving	an	experiment,	first	consider	any	practical	difficulties	and	possible	sources
of	inaccuracy.	Write	them	down	in	detail.	Do	not	just	write,	for	example,	‘reaction	time’	or	‘parallax	error’.
It	is	always	a	good	idea	to	start	with	the	idea	that	more	readings	need	to	be	taken,	possibly	over	a	greater
range	(for	example,	in	this	case,	if	the	masses	of	the	stones	were	almost	equal).	Table	P1.8	gives	other
possibilities.

Problem Improvement

‘Taking	readings	for	just	two
masses	was	not	enough.’

‘I	should	use	a	great	range	of	different	masses	and	plot	a	graph	of
the	average	time	to	fall	to	the	ground	against	the	mass	of	the
object.’

‘It	was	difficult	to	start	the
stopwatch	at	the	same	instant	that
I	dropped	the	stone	and	to	stop	it
exactly	as	it	hit	the	ground.	I	may
have	been	late	because	of	my
reaction	time.’

‘Film	the	fall	of	each	stone	with	a	video	camera	which	has	a	timer
in	the	background.	When	the	video	is	played	back,	frame	by	frame,
I	will	see	the	time	when	the	ball	hits	the	ground	on	the	timer.
’(Alternatively,	you	can	use	light	gates	connected	to	a	timer	to
measure	the	time	electronically.	You	should	draw	a	diagram,
explaining	that	the	timer	starts	when	the	first	light	gate	is	broken
and	stops	when	the	second	is	broken.)

‘My	hand	was	not	steady	and	so	I
may	not	have	dropped	the	stones
from	exactly	the	same	height	each
time.’

‘Use	iron	objects	which	hang	from
an	electromagnet.	When	the
current	in	the	electromagnet	is
switched	off,	the	object	falls.’	(A
diagram	would	help	–	see	Figure
P.15.)

Figure	 P1.15:	 Using	 an
electromagnet	 to	 release
iron	objects.	The	line	of	sight
is	clearly	shown.

‘The	heavier	stone	was	larger	in
size	and	it	was	important	that	the
bottom	of	each	stone	started	at	the
same	height.	There	may	have	been
parallax	error.’

‘Clamp	a	metre	rule	vertically	and
start	the	bottom	of	each	stone	at
exactly	the	top	of	the	ruler	each
time.	To	avoid	parallax	error,	I	will
make	sure	my	line	of	sight	is
horizontal,	at	right	angles	to	the
rule.’	(A	diagram	will	show	this
clearly	–	see	Figure	P1.15.)

‘The	times	that	I	measured	were
very	short	–	not	much	greater	than

‘Increase	the	distance	of	fall	so	that	the	times	are	larger.	This	will
make	the	uncertainty	in	each	time	measurement	smaller	in
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my	reaction	time	–	so	reaction	time
had	a	great	effect.’

proportion	to	the	time	being	measured.’

Table	P1.8:	Suggestions	for	improving	Experiment	2.

Question
Use	a	stopwatch	and	a	metre	rule	to	measure	the	average	speed	as	an	object	falls	from	a	table	to	the
ground.	What	are	the	difficulties	and	how	might	they	be	reduced?	Some	of	the	suggestions	will	be	the
same	as	those	in	Experiment	2,	but	you	should	also	consider	difficulties	in	measuring	the	distance	to
the	ground	and	how	they	can	be	avoided.	Remember,	rules	have	battered	ends	and	the	ends	may	not
be	at	0	and	100	cm.

Experiment	3:	Timing	oscillations
In	physics,	the	study	of	oscillations	is	of	great	importance.	Indeed,	the	observation	of	a	pendulum	led
Galileo	to	study	time	intervals	and	allowed	pendulum	clocks	to	be	developed.
One	skill	you	will	need	to	develop	is	finding	the	time	for	an	oscillation.	Figure	P1.16	shows	a	simple
pendulum	and	one	complete	oscillation.	The	pendulum	is	just	a	small	weight,	the	bob,	which	hangs	on	a
string.

Figure	P1.16:	One	complete	oscillation	is	either	from	A	to	C	and	then	back	to	A,	or	from	B	to	C	then
back	to	B,	then	to	A	and	back	to	B,	as	shown.

Figure	P1.16	shows	that	one	complete	oscillation	can	be	measured	in	two	ways.	Which	way	is	better?	In
fact,	the	second	way	is	better.	This	is	because	it	is	difficult	to	judge	exactly	when	the	pendulum	bob	is	at
the	end	of	its	swing.	It	is	easier	to	start	timing	when	the	bob	is	moving	quickly	past	a	point;	this	happens
in	the	middle	of	the	swing.	To	time	from	the	middle	of	the	swing,	you	should	use	a	fiducial	mark.	This	can
be	a	line	on	the	bench	underneath	the	bob	at	the	centre	of	the	swing,	or	it	can	be	another	object	in	the
laboratory	that	appears	to	be	in	line	with	the	bob	when	it	hangs	stationary,	as	seen	from	where	you	are
standing.	As	long	as	you	do	not	move	your	position,	every	time	the	bob	passes	this	point	it	passes	the
centre.
Another	way	to	reduce	the	uncertainty	in	the	time	for	one	oscillation	is	to	time	more	than	one	swing,	as
explained	in	the	topic	on	percentage	uncertainty.
A	simple	practical	task	is	to	test	the	hypothesis	that	the	time	for	one	oscillation	T	is	related	to	the	length	l
of	a	simple	pendulum	by	the	formula	T2	=	kl,	where	k	is	a	constant.
What	difficulties	would	you	face	and	what	are	possible	improvements?	Table	P1.9	gives	some	possibilities.

Problem Improvement

‘Taking	readings	for	just	two
lengths	was	not	enough.’

‘Use	more	than	two	lengths	and	plot	a	graph	of	the	average	time
squared	against	the	length	of	the	string.’

‘It	was	difficult	to	judge	the
end	of	the	swing.’

‘Use	a	fiducial	mark	at	the	centre	of	the	oscillation	as	the	position	to
start	and	stop	the	stopwatch.’
‘Use	an	electronic	timer	placed	at	the	centre	of	the	oscillation	to
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measure	the	time.’
‘Make	a	video	of	the	oscillation	with	a	timer	in	the	background	and	play
it	back	frame	by	frame.’

‘The	oscillations	died	away	too
quickly.’

‘Use	a	heavier	mass	which	swings	longer.’

‘The	times	were	too	small	to
measure	accurately,	as	my
reaction	time	was	a	significant
fraction	of	the	total	time.’

‘Use	longer	strings.’
‘Time	20	rather	than	10	oscillations.’

‘It	was	difficult	to	measure	the
length	to	the	centre	of	gravity
of	the	weight	accurately.’

‘Use	a	longer	string	so	any	errors	are	less	important.’
‘Measure	the	length	to	the	top	of	the	weight	and	use	a	micrometer	to
measure	the	diameter	of	the	bob	and	add	on	half	the	diameter	to	the
length	of	the	string.’

Table	P1.9:	Suggestions	for	improving	Experiment	3.

Question
Hang	a	mass	from	a	spring	or	from	a	rubber	band.	Use	a	stopwatch	to	time	the	mass	as	it	oscillates
up	and	down.	Measure	the	time	for	just	one	oscillation,	the	time	for	10	oscillations	and	the	time	for	20
oscillations.	Repeat	each	reading	several	times.	Use	your	readings	to	find	the	time	for	one	complete
oscillation	and	the	uncertainty	in	each	time.	Draw	up	a	table	to	show	the	problems	of	such
measurements	and	how	to	reduce	them.

Experiment	4:	Using	force	meters
You	need	to	be	able	to	read	instruments,	estimating	the	uncertainty,	looking	for	sources	of	error	and
trying	to	improve	their	use.	One	such	instrument	is	a	force	meter	or	newton-meter,	shown	in	Figure
P1.17.
In	this	experiment,	the	block	is	pulled	using	the	force	meter	to	find	the	force	F	needed	to	make	a	block
just	start	to	move.	An	extra	mass	is	added	on	top	of	the	block	to	see	whether	the	relationship	F	=	km	is
obeyed,	where	m	is	the	total	mass	of	the	block	and	k	is	a	constant.

Figure	 P1.17:	 A	 newton-meter,	 just	 before	 it	 pulls	 a	 block	 along	 the	 bench.	 Look	 closely	 at	 Figure
P1.17.	When	reading	the	meter,	the	uncertainty	is	the	smallest	scale	division	on	the	meter,	unless	one
can	reasonably	read	between	the	markings.	This	is	difficult	and	so	an	uncertainty	of	0.5	N,	the	smallest
scale	division,	is	reasonable.

Another	problem	in	using	the	meter	is	that	it	reads	less	than	zero	before	it	is	pulled.	It	needs	a	small
force	to	bring	the	meter	to	zero.	This	is	a	zero	error	and	all	the	actual	readings	will	be	too	large	by	the
same	amount.	This	is	probably	because	the	meter	was	adjusted	to	read	zero	when	hanging	vertically	and
it	is	now	being	used	horizontally.
Fortunately,	the	meter	can	be	adjusted	to	read	zero	before	starting	to	pull.
Table	P1.10	describes	the	problems	that	may	be	encountered	with	this	experiment,	together	with
suggested	improvements.

Problem Improvement

‘Taking	readings	for	just	two
masses	was	not	enough.’

‘Use	more	than	two	masses	and	plot	a	graph	of	the	force	against	the
mass.’

‘It	was	difficult	to	zero	the
newton-meter	used
horizontally.’

‘Use	a	force	sensor	and	computer.’
‘Use	a	pulley	and	string	to	connect	a	tray	to	the	block.	Then	tip	sand
onto	a	tray	until	the	block	starts	to	move.	The	weight	of	the	sand	and
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tray	is	then	the	force.’

‘The	reading	of	F	was	very
low	on	the	scale	and	gave	a
large	percentage	uncertainty.’

‘Use	heavier	masses	on	top	of	the	block.’

‘The	block	starts	to	move
suddenly	and	it	is	difficult	to
take	the	reading	as	this
happens.’

‘Video	the	experiment	and	play	back	frame	by	frame	to	see	the	largest
force.’
‘Use	a	force	sensor	and	computer.’

‘Different	parts	of	the	board
are	rougher	than	others.’

‘Mark	round	the	block	with	a	pencil	at	the	start	and	put	it	back	in	the
same	place	each	time.’

Table	P1.10:	Suggestions	for	improving	Experiment	4.

Question
If	you	grip	the	bulb	of	a	thermometer	gently	in	your	fingers,	the	reading	rises	to	a	new	value.	The
reading	will	be	different	depending	on	whether	you	cover	the	bulb	entirely	or	only	partially	with	your
fingers.
A	laboratory	thermometer	can	be	used	to	measure	the	increase	in	temperature.

Suggest	a	value	for	the	uncertainty	in	such	a	reading.	(You	may	need	to	look	at	some	different
thermometers.)
Describe	how	you	would	test	whether	the	temperature	rise	is	proportional	to	the	area	of	the	bulb
covered	by	your	fingers	You	can	take	the	surface	area	of	the	bulb	to	be	1	cm2	and	when	you	cover
half	of	the	bulb	the	area	covered	is	0.5	cm2.	The	exact	value	of	the	surface	area	is	not	important;
just	the	ratio	is	important.
Suggest	difficulties	with	this	experiment,	and	how	it	might	be	improved.	One	problem	with	a
thermometer	is	that	it	takes	time	for	the	reading	to	rise.	What	can	you	do	about	this?

Experiment	5:	Electrical	measurements
Electrical	experiments	have	their	own	problems.	Figure	P1.18	shows	an	apparatus	used	to	test	the
hypothesis	that	the	resistance	R	of	a	wire	is	related	to	its	length	l	by	the	formula	R	=	kl,	where	k	is	a
constant.	The	current	is	kept	constant	and	the	voltmeter	reading	is	taken	at	two	different	values	of	l,	for	l
=	0.30	m	and	0.50	m.
What	problems	are	likely	to	arise	when	using	this	apparatus?	Table	P1.11	identifies	some	possible
problems	with	this	experiment,	and	some	suggestions	for	improvement.

Figure	P1.18:	Apparatus	used	to	check	the	hypothesis	R	=	kl.

REFLECTION
Without	looking	at	your	textbook,	produce	a	list	of	the	problems	and	improvements	that	can	be
encountered	in	mechanics	experiments,	light	experiments	and	electrical	experiments.
Check	your	list	against	someone	else’s	list.



Problem Improvement

‘Taking	readings	for	just	two
lengths	was	not	enough.’

‘Use	more	than	two	lengths	and	plot	a	graph	of	the	voltmeter	reading
against	the	length.’
‘Calculate	more	than	just	two	values	of	k.’

‘Difficult	to	measure	the
length	of	the	wire	as	the	clips
have	width	and	I	don’t	know
where	inside	they	grip	the
wire.’

‘Use	narrower	clips.’
‘Solder	the	contacts	onto	the	wire.’

‘The	scale	is	not	sensitive
enough	and	can	only	measure
to	0.05	V.’

‘Use	a	voltmeter	that	reads	to	0.01	V.’
‘Use	a	digital	voltmeter.’

‘The	values	of	voltage	are
small,	particularly	at	0.30	m.’

‘Use	a	larger	current	so	that	when	l	=	0.50	m	the	voltmeter	reading	is	at
the	top	of	the	scale.’

‘The	voltmeter	reading
fluctuates	because	of	contact
resistance.’

‘Clean	the	wires	with	wire	wool	first.’

‘Other	factors	may	have
changed	the	resistance;	for
example,	the	temperature	may
have	increased	because	of	the
current.’

‘Wait	a	long	time	until	the	wire	has	reached	a	constant	temperature.’
‘Use	smaller	currents,	but	with	a	more	sensitive	voltmeter.’

Table	P1.11:	Suggestions	for	improving	Experiment	5.

	
	



SUMMARY

A	precise	reading	is	one	in	which	there	is	very	little	spread	about	the	mean	value.

The	uncertainty	in	a	reading	is	an	estimate	of	the	difference	between	the	reading	and	true	value	of
the	quantity	being	measured.

A	systematic	error	cause	readings	to	differ	from	the	true	value	by	a	consistent	amount	each	time	the
reading	is	made.

Random	errors	cause	readings	to	vary	around	the	mean	value	in	an	unpredictable	way	from	one
reading	to	another.

A	zero	error	is	caused	when	an	instrument	gives	a	non-zero	reading	when	the	true	value	of	the
quantity	is	zero.

Find	the	uncertainty	from	the	largest	of	the	smallest	division	on	the	instrument	used	or	half	the	range
of	a	number	of	readings	of	the	same	measurement.

Each	column	of	a	table	must	be	labelled	with	a	quantity	/	unit,	and,	if	a	reading	be	given	to	the
precision	of	the	instrument,	usually	to	the	same	number	of	decimal	places.	Calculated	quantities	may
have	one	more	significant	figure	than	the	readings	used.

The	independent	variable	is	the	one	that	the	experimenter	alters	or	selects.

The	dependent	variable	is	the	quantity	that	changes	as	a	result	of	the	independent	variable	being
altered	by	the	experimenter.

Use	a	large	triangle	to	show	the	values	used	in	calculating	the	gradient.

In	testing	a	relationship,	write	down	a	criterion.	Calculate	the	percentage	difference	between	two
values	of	the	constant.	Compare	the	percentage	difference	with	the	percentage	uncertainty	in	one	of
the	variables	and	write	a	conclusion	as	to	whether	the	criterion	is	obeyed	or	not

If	quantities	are	added	or	subtracted,	then	add	absolute	uncertainties.	If	quantities	are	multiplied	or
divided,	add	percentage	uncertainties.

A	problem	is	a	difficulty	you	experience	during	the	experiment.

An	improvement	is	a	suggestion	that	will	reduce	the	problem.	You	should	have	experience	of	a	range
of	these	problems	and	improvements.	For	more	details,	consult	the	Practical	Workbook.
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EXAM-STYLE	QUESTIONS

Quantity	P	has	a	fractional	uncertainty	p.	Quantity	Q	has	a	fractional
uncertainty	q. 	

What	is	the	fractional	uncertainty	in	 ? [1]

p	−	q 	

p	+	q 	

2p	−	3q 	

2p	+	3q 	

The	p.d.	V	across	a	wire	of	length	l	is	given	by	the	formula	 	where	d	is
the	diameter	of	the	wire,	ρ	is	the	resistivity	and	there	is	a	current	I	in	the	wire. 	

Which	quantity	provides	the	largest	contribution	to	the	percentage	uncertainty
in	V? [1]

	 Quantity Value	of	quantity Absolute
uncertainty

A l	/	cm 250 ±10

B d/mm 1.4 ±0.1

C ρ/Ω	m 1.5	×	10−8 ±0.2	×	10−8

D I	/	A 2.0 ±0.2

Table	P1.12
	

What	is	the	uncertainty	in	the	following	sets	of	readings?	All	of	them	are
written	down	to	the	smallest	division	on	the	instrument	used	in	their
measurement. 	

24.6,	24.9,	30.2,	23.6	cm [1]

2.66,	2.73,	3.02	s [1]

24.0,	24.0,	24.0	g [1]

	 [Total:	3]

Electrical	experiments	usually	involve	the	reading	of	meters	such	as	the
voltmeters	shown. 	

Figure	P1.19
	

What	is	the	reading	shown	by	each	voltmeter,	and	the	uncertainty	in	each
reading? [2]

The	voltmeters	show	the	readings	obtained	when	they	were	connected
across	two	wires	that	were	identical	apart	from	their	different	lengths.	The
current	in	each	wire	was	0.500	A	and	the	length	l	of	the	wire	was	30.0	cm
in	the	right	diagram	and	50.0	cm	in	the	left	diagram. 	

Use	the	scale	readings	to	test	the	hypothesis	that	the	resistance	R	of	the
wire	is	proportional	to	length	l.	Consider	the	effect	of	the	uncertainties	on
your	conclusion. [4]

	 [Total:	6]

This	apparatus	can	be	used	to	test	the	hypothesis	that	T,	the	time	taken	for	a



6

ball	to	roll	down	a	plane	from	rest,	is	related	to	the	distance	s	by	the	formula
T2	=	ks,	where	k	is	a	constant. 	

Figure	P1.20
	

The	ball	is	timed	using	a	stopwatch	over	two	different	values	of	s. 	

Suggest	problems	with	the	experiment	and	how	they	might	be	overcome.	You
should	consider	problems	in	measuring	the	distance	as	well	as	the	time.	Also
note	what	happens	to	the	ball;	it	may	not	roll	in	the	way	that	you	expect. [8]

Questions	6–8	are	designed	to	illustrate	some	aspects	of	practical	questions.
They	are	not	formal	practical	questions	as,	ideally,	you	should	perform	the
experiment	yourself	and	take	some	readings.	This	helps	you	to	see	the
problems. 	

An	experiment	explores	the	relationship	between	the	period	of	a	vibrating
spring	and	the	mass	m	in	a	pan	holder.	The	student	is	instructed	to	set	up	the
apparatus	as	shown	here,	with	a	mass	of	200	g	in	the	pan. 	

Figure	P1.21
	

The	student	is	then	told	to	move	the	pan	downwards	by	approximately	1	cm
and	to	release	it	so	that	it	vibrates	in	a	vertical	direction. 	

The	student	is	asked	to	record	the	time	taken	for	20	oscillations	of	the	spring,
and	then	to	repeat	the	procedure,	using	masses	between	20	g	and	200	g	until
She	has	six	sets	of	readings.	Columns	are	provided	in	the	table	for	 	and	T,
the	period	of	the	pendulum. 	

This	table	shows	the	readings	taken	by	a	student	with	the	different	masses. 	

Mass	/	g Time	for	20
oscillations	/	s

T

20 12.2 	 	
50 15.0 	 	
100 18.7 	 	
150 21.8 	 	
200 24.5 	 	
190 24.0 	 	
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Table	P1.13 	

Copy	the	table	and	include	values	for	 	and	T. [2]

Plot	a	graph	of	T	on	the	y-axis	against	 	on	the	x-axis.	Draw	the	straight
line	of	best	fit. [4]

Determine	the	gradient	and	y-intercept	of	this	line. [2]

The	quantities	T	and	m	are	related	by	the	equation: 	

	

where	C	and	k	are	constants. 	

Find	the	values	of	the	two	constants	C	and	k.	Give	appropriate	units. [2]

	 [Total:	10]

A	student	releases	a	toy	car	to	roll	down	a	ramp,	as	shown. 	

Figure	P1.22
	

The	student	measures	the	distance	l	from	the	middle	of	the	car	as	it	is	released
to	the	bottom	of	the	ramp	and	the	distance	s	travelled	along	the	straight
section	before	the	car	stops.	He	also	measures	the	time	t	taken	to	travel	the
distance	s.	He	then	repeats	the	experiment	using	a	different	value	of	l. 	

The	student	obtained	readings	with	l	=	40	and	60	cm,	taking	each	reading	for	s
and	t	twice.	The	readings	were: 	

l	=	40.0	cm:	values	for	s	were	124	and	130	cm;	values	for	t	were	4.6	and	4.8	s 	

l	=	60.0	cm:	values	for	s	were	186	and	194	cm;	values	for	t	were	4.9	and	5.2	s. 	

For	the	smaller	value	of	l,	obtain	a	value	for: 	

the	average	value	of	s [1]

the	absolute	and	percentage	uncertainty	in	the	value	of	s [2]

the	average	value	of	t [1]

the	absolute	and	percentage	uncertainty	in	the	value	of	t. [2]

For	both	values	of	l,	calculate	the	average	speed	v	of	the	car	along	the
straight	section	of	track	using	the	relationship	 . [1]

Justify	the	number	of	significant	figures	that	you	have	given	for	your
values	of	v. [1]

It	is	suggested	that	s	is	proportional	to	l.	Explain	whether	the	readings
support	this	relationship. [2]

(HARDER)	It	is	suggested	that	v2	is	proportional	to	l.	Explain	whether
the	readings	support	this	relationship. [2]

Describe	four	sources	of	uncertainty	or	limitations	of	the	procedure	for
this	experiment. [4]

Describe	four	improvements	that	could	be	made	to	this	experiment.	You
may	suggest	the	use	of	other	apparatus	or	different	procedures. [4]

	 [Total:	20]

This	apparatus	shows	a	resistor	in	some	water. 	
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Figure	P1.23

	

A	student	measures	the	rise	in	temperature	θ	of	the	water	in	100	s	using	two
different	values	of	voltage. 	

The	student	wrote: 	

‘When	the	voltage	was	set	at	6.0	V,	the	rise	in	temperature	of	the	water	in	100
s	was	14.5	°C.	The	voltmeter	reading	decreased	by	about	0.2	V	during	the
experiment,	and	so	the	final	voltmeter	reading	was	5.8	V. 	

‘The	reading	fluctuated	from	time	to	time	by	about	0.2	V.	The	smallest	scale
division	on	the	thermometer	was	1	°C,	but	I	could	read	it	to	0.5	°C.	I	did	not
have	time	to	repeat	the	reading. 	

‘When	the	voltage	was	set	at	12.0	V,	the	rise	in	temperature	in	100	s	was	51.0
°C	and	the	voltage	was	almost	the	same	at	the	end,	but	fluctuated	by	about	0.2
V.’ 	

Estimate	the	percentage	uncertainty	in	the	measurement	of	the	first
voltage. [1]

It	is	suggested	that	θ	is	related	to	V	according	to	the	formula	θ	=	kV2,
where	k	is	a	constant. 	

Calculate	two	values	for	k.	Include	the	units	in	your	answer. [2]

Justify	the	number	of	significant	figures	you	have	given	for	your	value
of	k. [1]

Explain	whether	the	results	support	the	suggested	relationship. [1]

Describe	four	sources	of	uncertainty	or	limitations	of	the	procedure	for
this	experiment. [4]

Describe	four	improvements	that	could	be	made	to	this	experiment.	You
may	suggest	the	use	of	other	apparatus	or	different	procedures. [4]

	 [Total:	13]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

recognise	random,	systematic	and	zero
errors

P1.2,	P1.4 	 	 	

distinguish	between	precision	and
accuracy

P1.4 	 	 	

estimate	absolute	uncertainties P1.10 	 	 	

combine	uncertainties P1.5,	P1.6 	 	 	

make	a	variety	of	measurements	and
present	data	in	an	adequate	table,
produce	best	fit	straight-line	graphs	and
obtain	the	intercept	and	gradient

P1.7 	 	 	

use	readings	to	draw	conclusions	and	to
test	a	relationship

P1.8 	 	 	

identify	limitations	in	procedure	and	the
main	sources	of	uncertainty

P1.11 	 	 	

suggest	changes	to	an	experiment	to
improve	accuracy	and	extend	the
investigation.

P1.11 	 	 	
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	Chapter	16

Circular	motion

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
express	angular	displacement	in	radians
solve	problems	using	the	concept	of	angular	speed
describe	motion	 along	 a	 circular	 path	 as	 due	 to	 a	 perpendicular	 force	 that	 causes	 a	 centripetal
acceleration
recall	and	use	equations	for	centripetal	acceleration.

BEFORE	YOU	START
Explain	to	a	friend	why	a	stationary	child’s	ball	on	the	floor	of	a	train	starts	rolling	towards	the	front	of
the	train	when	the	driver	brakes	and	the	train	slows	down.	Write	down	your	explanation	and	discuss	it
with	a	partner.

MOVING	IN	CIRCLES
The	racing	car	in	Figure	16.1	shows	two	examples	of	circular	motion.	The	car’s	wheels	spin	around	the
axles,	and	the	car	follows	a	curved	path	as	it	speeds	round	the	bend.
Part	of	the	skill	of	the	driver	is	to	judge	the	maximum	speed	at	which	the	car	can	take	the	corner
without	the	car	sliding	out	of	control.	Consider	the	path	the	car	takes	around	the	corner	as	the	car	goes
round	the	bend.	The	driver	feels	himself	thrown	towards	the	outside	of	the	curve.	This	is	caused	by	his
inertia.	His	body	‘wants’	to	go	on	in	a	straight	line	at	the	same	constant	speed,	in	the	same	way	that	the
inertia	of	the	child’s	ball	in	a	braking	train	‘wants’,	to	carry	on	in	a	straight	line	at	constant	speed	and,
therefore,	rolls	towards	the	front	of	the	train.



Figure	16.1:	Circular	motion:	the	car’s	wheels	go	round	in	circles	as	the	car	itself	follows	a	curved
path.
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16.1	Describing	circular	motion
Many	things	move	in	circles,	such	as:

the	wheels	of	a	car	or	a	bicycle
the	Earth	in	its	(approximately	circular)	orbit	round	the	Sun
the	hands	of	a	clock
a	spinning	DVD	in	a	laptop
the	drum	of	a	washing	machine.

Sometimes,	things	move	along	a	path	that	is	part	of	a	circle.	For	example,	the	car	in	Figure	16.1	is
travelling	around	a	bend	in	the	road	that	is	an	arc	of	a	circle.
Circular	motion	is	different	from	the	straight-line	motion	that	we	have	discussed	previously	in	our	study
of	kinematics	and	dynamics	in	Chapters	1	to	6.	However,	we	can	extend	these	ideas	of	dynamics	to	build
up	a	picture	of	circular	motion.

Around	the	clock
The	second	hand	of	a	clock	moves	steadily	round	the	clock	face.	It	takes	one	minute	for	it	to	travel	all	the
way	round	the	circle.	There	are	360°	in	a	complete	circle	and	60	seconds	in	a	minute.	So	the	hand	moves
6°	every	second.	If	we	know	the	angle	θ	through	which	the	hand	has	moved	from	the	vertical	(12	o’clock)
position,	we	can	predict	the	position	of	the	hand.
In	the	same	way,	we	can	describe	the	position	of	any	object	as	it	moves	around	a	circle	simply	by	stating
the	angle	θ	of	the	arc	through	which	it	has	moved	from	its	starting	position.	This	is	shown	in	Figure	16.2.

Figure	16.2:	To	know	how	far	an	object	has	moved	round	the	circle,	we	need	to	know	the	angle	θ.

The	angle	θ	through	which	the	object	has	moved	is	known	as	its	angular	displacement.	For	an	object
moving	in	a	straight	line,	its	position	is	defined	by	its	displacement	s,	the	distance	it	has	travelled	from
its	starting	position.	The	corresponding	quantity	for	circular	motion	is	angular	displacement	θ,	the	angle
of	the	arc	through	which	the	object	has	moved	from	its	starting	position.

Question
By	how	many	degrees	does	the	angular	displacement	of	the	hour	hand	of	a	clock	change	each
hour?
A	clock	is	showing	3.30.	Calculate	the	angular	displacements	in	degrees	from	the	12.00	position
of	the	clock	to:

the	minute	hand
the	hour	hand.

	
	



16.2	Angles	in	radians
When	dealing	with	circles	and	circular	motion,	it	is	more	convenient	to	measure	angles	and	angular
displacements	in	units	called	radians	rather	than	in	degrees.
If	an	object	moves	a	distance	s	around	a	circular	path	of	radius	r	(Figure	16.3a),	its	angular	displacement
θ	in	radians	is	defined	as	follows:

Since	both	s	and	r	are	distances	measured	in	metres,	it	follows	that	the	angle	θ	is	simply	a	ratio.	It	is	a
dimensionless	quantity.	If	the	object	moves	twice	as	far	around	a	circle	of	twice	the	radius	(Figure	16.3b),
its	angular	displacement	θ	will	be	the	same.

Figure	16.3:	The	size	of	an	angle	depends	on	the	radius	and	the	length	of	the	arc.	Doubling	both	leaves
the	angle	unchanged.

When	we	define	θ	in	this	way,	its	units	are	radians	rather	than	degrees.	How	are	radians	related	to
degrees?	If	an	object	moves	all	the	way	round	the	circumference	of	the	circle,	it	moves	a	distance	of	2πr.
We	can	calculate	its	angular	displacement	in	radians:

KEY	EQUATION

where	θ	is	the	angle	in	radians.

Hence	a	complete	circle	contains	2π	radians.	But	we	can	also	say	that	the	object	has	moved	through	360°.
Hence:

360°	=	2π	rad

Similarly,	we	have:

180°	=	π	rad
and	so	on

Defining	the	radian
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One	radian	is	defined	as	the	angle	subtended	at	the	centre	of	a	circle	by	an	arc	of	length	equal	to	the
radius	of	the	circle.
This	is	illustrated	in	Figure	16.4.

Figure	16.4:	The	length	of	the	arc	is	equal	to	the	radius	when	the	angle	is	1	radian.

An	angle	of	360°	is	equivalent	to	an	angle	of	2π	radians.	We	can	therefore	determine	what	1	radian	is
equivalent	to	in	degrees.

If	you	can	remember	that	there	are	2π	rad	in	a	full	circle,	you	will	be	able	to	convert	between	radians	and
degrees:

to	convert	from	degrees	to	radians,	multiply	by	 .

to	convert	from	radians	to	degrees,	multiply	by	 .

Now	look	at	Worked	example	1.

WORKED	EXAMPLE

If	θ	=	60°,	what	is	the	value	of	θ	in	radians?
The	angle	θ	is	60°.	360°	is	equivalent	to	2π	radians.	Therefore:

(Note	that	it	is	often	useful	to	express	an	angle	as	a	multiple	of	π	radians.)

Question
Convert	the	following	angles	from	degrees	into	radians:	30°,	90°,	105°.
Convert	these	angles	from	radians	to	degrees:	0.5	rad,	0.75	rad,	π	rad,	 .
Express	the	following	angles	as	multiples	of	π	radians:	30°,	120°,	270°,	720°.
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16.3	Steady	speed,	changing	velocity
If	we	are	to	use	Newton’s	laws	of	motion	to	explain	circular	motion,	we	must	consider	the	velocity	of	an
object	going	round	in	a	circle,	rather	than	its	speed.
There	is	an	important	distinction	between	speed	and	velocity:	speed	is	a	scalar	quantity	that	has
magnitude	only,	whereas	velocity	is	a	vector	quantity,	with	both	magnitude	and	direction.
We	need	to	think	about	the	direction	of	motion	of	an	orbiting	object.
Figure	16.5	shows	how	we	can	represent	the	velocity	of	an	object	at	various	points	around	its	circular
path.

Figure	16.5:	The	velocity	v	of	an	object	changes	direction	as	it	moves	along	a	circular	path.

The	arrows	are	straight	and	show	the	direction	of	motion	at	a	particular	instant.	They	are	drawn	as
tangents	to	the	circular	path.	As	the	object	travels	through	points	A,	B,	C,	etc.,	its	speed	remains	constant
but	its	direction	changes.	Since	the	direction	of	the	velocity	v	is	changing,	it	follows	that	v	itself	(a	vector
quantity)	is	changing	as	the	object	moves	in	a	circle.

Questions
Explain	why	all	the	velocity	arrows	in	Figure	16.5	are	drawn	the	same	length.
A	toy	train	travels	at	a	steady	speed	of	0.2	m	s−1	around	a	circular	track	(Figure	16.6).	A	and	B	are
two	points	opposite	to	one	another	on	the	track.

Determine	the	change	in	the	speed	of	the	train	as	it	travels	from	A	to	B.
Determine	the	change	in	the	velocity	of	the	train	as	it	travels	from	A	to	B.

Figure	16.6:	A	toy	train	travelling	around	a	circular	track.
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16.4	Angular	speed
As	the	hands	of	a	clock	travel	steadily	around	the	clock	face,	their	velocity	is	constantly	changing.	The
minute	hand	travels	round	360°	or	2p	radians	in	3600	seconds.
Although	its	velocity	is	changing,	we	can	say	that	its	angular	speed	is	constant,	because	it	moves
through	the	same	angle	each	second:

where	Δθ	is	the	change	in	angle	and	Δt	is	the	change	in	time.

We	use	the	symbol	ω	(Greek	letter	omega)	for	angular	velocity,	measured	in	radians	per	second	(rad	s−1).
For	the	minute	hand	of	a	clock,	we	have	 .

KEY	EQUATION

A	particularly	useful	example	of	the	equation	 	is	when	a	single	revolution	is	considered.	The	time
to	make	one	revolution	is	referred	to	as	the	period	(T),	the	angle	through	which	the	object	rotates	in	one
revolution	is	2π	radians.	So,	substituting	in	the	equation:

KEY	EQUATION

Questions
Show	that	the	angular	speed	of	the	second	hand	of	a	clock	is	about	0.105	rad	s−1.
In	a	washing	machine,	the	clothes	are	held	in	cylinder	called	a	drum.	The	drum	has	holes	in	it	that
allow	water	to	enter	the	drum	and	also	to	drain	out	of	the	drum.
The	drum	of	a	particular	washing	machine	spins	at	a	rate	of	1200	rpm	(revolutions	per	minute).

Determine	the	number	of	revolutions	per	second	of	the	drum.
Determine	the	angular	speed	of	the	drum.

Relating	speed	and	angular	speed
Think	again	about	the	second	hand	of	a	clock.	As	the	hand	goes	round,	each	bit	of	the	hand	has	the	same
angular	speed.	However,	different	bits	of	the	hand	have	different	velocities.	The	tip	of	the	hand	moves
fastest;	points	closer	to	the	centre	of	the	clock	face	move	more	slowly.
This	shows	that	the	speed	v	of	an	object	travelling	around	a	circle	depends	on	two	quantities:	its	angular
speed	ω	and	its	distance	from	the	centre	of	the	circle	r.	We	can	write	the	relationship	as	an	equation:

KEY	EQUATION
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Worked	example	2	shows	how	to	use	this	equation.

WORKED	EXAMPLE

A	toy	train	travels	around	a	circular	track	of	radius	2.5	m	in	a	time	of	40	s.	What	is	its	speed?
Calculate	the	train’s	angular	speed	ω.	One	circuit	of	the	track	is	equivalent	to	2π	radians.
The	rain	travels	around	in	40	s.	Therefore:

Calculate	the	train’s	speed:

Hint:	You	could	have	arrived	at	the	same	answer	by	calculating	the	distance	travelled	(the
circumference	of	the	circle)	and	dividing	by	the	time	taken.

Questions
The	angular	speed	of	the	second	hand	of	a	clock	is	0.105	rad	s−1.	If	the	length	of	the	hand	is	1.8	cm,
calculate	the	speed	of	the	tip	of	the	hand	as	it	moves	round.
A	car	travels	around	a	90°	bend	in	15	s.	The	radius	of	the	bend	is	50	m.

Determine	the	angular	speed	of	the	car.
Determine	the	speed	of	the	car.

A	spacecraft	orbits	the	Earth	in	a	circular	path	of	radius	7000	km	at	a	speed	of	7800	m	s−1.
Determine	its	angular	velocity.

	
	



•

•

16.5	Centripetal	forces
When	an	object’s	velocity	is	changing,	it	has	acceleration.	In	the	case	of	uniform	circular	motion,	the
acceleration	is	rather	unusual	because,	as	we	have	seen,	the	object’s	speed	does	not	change	but	its
velocity	does.	How	can	an	object	accelerate	and	at	the	same	time	have	a	steady	speed?
One	way	to	understand	this	is	to	think	about	what	Newton’s	laws	of	motion	can	tell	us	about	this
situation.	Newton’s	first	law	states	that	an	object	remains	at	rest	or	in	a	state	of	uniform	velocity	(at
constant	speed	in	a	straight	line)	unless	it	is	acted	on	by	an	external	force.	In	the	case	of	an	object
moving	at	steady	speed	in	a	circle,	we	have	a	body	whose	velocity	is	not	constant;	therefore,	there	must
be	a	resultant	(unbalanced)	force	acting	on	it.
Now	we	can	think	about	different	situations	where	objects	are	going	round	in	a	circle	and	try	to	find	the
force	that	is	acting	on	them.

Consider	a	rubber	bung	on	the	end	of	a	string.	Imagine	whirling	it	in	a	horizontal	circle	above	your
head	 (Figure	16.7).	To	make	 it	go	 round	 in	a	circle,	 you	have	 to	pull	 on	 the	 string.	The	pull	of	 the
string	on	the	bung	is	the	unbalanced	force,	which	is	constantly	acting	to	change	the	bung’s	velocity	as
it	orbits	your	head.	If	you	let	go	of	the	string,	suddenly	there	is	no	tension	in	the	string	and	the	bung
will	fly	off	at	a	tangent	to	the	circle.
Similarly,	 as	 the	 Earth	 orbits	 the	 Sun,	 it	 has	 a	 constantly	 changing	 velocity.	 Newton’s	 first	 law
suggests	that	there	must	be	an	unbalanced	force	acting	on	it.	That	force	 is	the	gravitational	pull	of
the	Sun.	If	the	force	disappeared,	the	Earth	would	travel	off	in	a	straight	line.

In	both	of	these	cases,	you	should	be	able	to	see	why	the	direction	of	the	force	is	as	shown	in	Figure	16.8.
The	force	on	the	object	is	directed	towards	the	centre	of	the	circle.	We	describe	each	of	these	resultant
forces	as	a	centripetal	force	–	that	is,	directed	towards	the	centre.

Figure	16.7:	Whirling	a	rubber	bung.

Figure	16.8:	The	gravitational	pull	of	the	Sun	provides	the	centripetal	force	that	keeps	the	Earth	in	its
orbit.
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It	is	important	to	note	that	the	word	centripetal	is	an	adjective.	We	use	it	to	describe	a	force	that	is
making	something	travel	along	a	circular	path.	It	does	not	tell	us	what	causes	this	force,	which	might	be
gravitational,	electrostatic,	magnetic,	frictional	or	whatever.

Questions
In	each	of	the	following	cases,	state	what	provides	the	resultant	force	causing	centripetal
acceleration:

the	Moon	orbiting	the	Earth
a	car	going	round	a	bend	on	a	flat,	rough	road
the	weight	on	the	end	of	a	swinging	pendulum.

A	car	is	travelling	along	a	flat	road	in	winter.	The	car	approaches	a	patch	of	ice	on	a	bend.	Explain
why	the	car	cannot	go	around	the	perfectly	smooth,	icy	bend.	Suggest	what	might	happen	if	the
driver	tries	turning	the	steering	wheel	when	the	car	is	on	the	ice.

Vector	diagrams
Figure	16.9a	shows	an	object	travelling	along	a	circular	path,	at	two	positions	in	its	orbit.	It	reaches
position	B	a	short	time	after	A.	How	has	its	velocity	changed	between	these	two	positions?
The	change	in	the	velocity	of	the	object	can	be	determined	using	a	vector	triangle.	The	vector	triangle	in
Figure	16.9b	shows	the	difference	between	the	final	velocity	vB	and	initial	velocity	vA.	The	change	in	the
velocity	of	the	object	between	the	points	B	and	A	is	shown	by	the	smaller	arrow	labelled	Δv.	Note	that	the
change	in	the	velocity	of	the	object	is	(more	or	less):

at	right	angles	to	the	velocity	at	A
directed	towards	the	centre	of	the	circle.

The	object	is	accelerating	because	its	velocity	changes.	Since	acceleration	is	the	rate	of	change	of
velocity,	it	follows	that	the	acceleration	of	the	object	must	be	in	the	same	direction	as	the	change	in	the
velocity	–	towards	the	centre	of	the	circle.	This	is	not	surprising	because,	according	to	F	=	ma,	the
acceleration	a	of	the	object	is	in	the	same	direction	as	the	centripetal	force	F:

Figure	16.9:	Changes	in	the	velocity	vector.

Acceleration	at	steady	speed
Now	that	we	know	that	the	centripetal	force	F	and	acceleration	are	always	at	right	angles	to	the	object’s
velocity,	we	can	explain	why	its	speed	remains	constant.	If	the	force	is	to	make	the	object	change	its
speed,	it	must	have	a	component	in	the	direction	of	the	object’s	velocity;	it	must	provide	a	push	in	the
direction	in	which	the	object	is	already	travelling.	However,	here	we	have	a	force	at	90°	to	the	velocity,	so
it	has	no	component	in	the	required	direction.	(Its	component	in	the	direction	of	the	velocity	is	F	cos	90°
=	0.)	It	acts	to	pull	the	object	around	the	circle,	without	ever	making	it	speed	up	or	slow	down.
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You	can	also	use	the	idea	of	work	done	to	show	that	the	speed	of	the	object	moving	in	a	circle	remains	the
same.	The	work	done	by	a	force	is	equal	to	the	product	of	the	force	and	the	distance	moved	by	the	object
in	the	direction	of	the	force.	The	distance	moved	by	the	object	in	the	direction	of	the	centripetal	force	is
zero;	hence	the	work	done	is	zero.	If	no	work	is	done	on	the	object,	its	kinetic	energy	must	remain	the
same	and	hence	its	speed	is	unchanged.

Question
An	object	follows	a	circular	path	at	a	steady	speed.	Describe	how	each	of	the	following	quantities
changes	as	it	follows	this	path:	speed,	velocity,	kinetic	energy,	momentum,	centripetal	force,
centripetal	acceleration.	(Refer	to	both	magnitude	and	direction,	as	appropriate.)

Understanding	circular	motion
Isaac	Newton	devised	an	ingenious	thought	experiment	that	allows	us	to	think	about	how	an	object	can
remain	in	a	circular	orbit	around	the	Earth.	Consider	a	large	cannon	on	some	high	point	on	the	Earth’s
surface,	capable	of	firing	objects	horizontally.	Figure	16.10	shows	what	will	happen	if	we	fire	them	at
different	speeds.
If	the	object	is	fired	too	slowly,	gravity	will	pull	it	down	towards	the	ground	and	it	will	land	at	some
distance	from	the	cannon.	A	faster	initial	speed	results	in	the	object	landing	further	from	the	cannon.
Now,	if	we	try	a	bit	faster	than	this,	the	object	will	travel	all	the	way	round	the	Earth.	We	have	to	get	just
the	right	speed	to	do	this.	As	the	object	is	pulled	down	towards	the	Earth,	the	curved	surface	of	the	Earth
falls	away	beneath	it.	The	object	follows	a	circular	path,	constantly	falling	under	gravity	but	never	getting
any	closer	to	the	surface.

Figure	16.10:	Newton’s	‘thought	experiment’.

If	the	object	is	fired	too	fast,	it	travels	off	into	space,	and	fails	to	get	into	a	circular	orbit.	So	we	can	see
that	there	is	just	one	correct	speed	to	achieve	a	circular	orbit	under	gravity.	(Note	that	we	have	ignored
the	effects	of	air	resistance	in	this	discussion.)
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16.6	Calculating	acceleration	and	force
If	we	spin	a	bung	around	in	a	circle	(Figure	16.7),	we	get	a	feeling	for	the	factors	that	determine	the
centripetal	force	F	required	to	keep	it	in	its	circular	orbit.	The	greater	the	mass	m	of	the	bung	and	the
greater	its	speed	v,	the	greater	is	the	force	F	that	is	required.	However,	if	the	radius	r	of	the	circle	is
increased,	F	is	smaller.
Now	we	will	deduce	an	expression	for	the	centripetal	acceleration	of	an	object	moving	around	a	circle
with	a	constant	speed.
Figure	16.11	shows	a	particle	moving	round	a	circle.	In	time	Δt	it	moves	through	an	angle	Δθ	from	A	to	B.
Its	speed	remains	constant	but	its	velocity	changes	by	Δv,	as	shown	in	the	vector	diagram.	Since	the
narrow	angle	in	this	triangle	is	also	Δθ,	we	can	say	that:

Dividing	both	sides	of	this	equation	by	Δt	and	rearranging	gives:

The	quantity	on	the	left	is	 ,	the	particle’s	acceleration.

The	quantity	on	the	right	is	 ,	the	angular	velocity.

Substituting	for	these	gives:

Using	 ,	we	can	eliminate	ω	from	this	equation:

where	a	is	the	centripetal	acceleration,	v	is	the	speed	and	r	is	the	radius	of	the	circle.

Figure	16.11:	Deducing	an	expression	for	centripetal	acceleration.

Question
Show	that	an	alternative	equation	for	the	centripetal	acceleration	is	a	=	ω2r.

KEY	EQUATION

Newton’s	second	law	of	motion
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Now	that	we	have	an	equation	for	centripetal	acceleration,	we	can	use	Newton’s	second	law	of	motion
to	deduce	an	equation	for	centripetal	force.	If	we	write	this	law	as	F	=	ma,	we	find:

Remembering	that	an	object	accelerates	in	the	direction	of	the	resultant	force	on	it,	it	follows	that	both	F
and	a	are	in	the	same	direction,	towards	the	centre	of	the	circle.

Questions
Calculate	how	long	it	would	take	a	ball	to	orbit	the	Earth	once,	just	above	the	surface,	at	a	speed	of
7920	m	s−1.	(The	radius	of	the	Earth	is	6400	km.)
A	stone	of	mass	0.20	kg	is	whirled	round	on	the	end	of	a	string	in	a	vertical	circle	of	radius	30	cm.
The	string	will	break	when	the	tension	in	it	exceeds	8.0	N.	Calculate	the	maximum	speed	at	which	the
stone	can	be	whirled	without	the	string	breaking.

Figure	16.12:	The	view	from	the	International	Space	Station,	orbiting	the	Earth	over	Australia.

The	International	Space	Station	(Figure	16.12)	has	a	mass	of	350	tonnes,	and	orbits	the	Earth	at	an
average	height	of	340	km	where	the	gravitational	acceleration	is	8.8	m	s−2.	The	radius	of	the	Earth	is
6400	km.	Calculate:

the	centripetal	force	on	the	space	station
the	speed	at	which	it	orbits
the	time	taken	for	each	orbit
the	number	of	times	it	orbits	the	Earth	each	day.

An	toy	truck	of	mass	0.40	kg	travels	round	a	horizontal	circular	track	of	radius	0.50	m.	It	makes	three
complete	revolutions	every	10	seconds.
Calculate:

its	speed
its	centripetal	acceleration
the	centripetal	force.

Mars	orbits	the	Sun	once	every	687	days	at	a	distance	of	2.3	×	1011	m.	The	mass	of	Mars	is	6.4	×
1023	kg.	Calculate:

the	average	speed	in	metres	per	second
its	centripetal	acceleration
the	gravitational	force	exerted	on	Mars	by	the	Sun.

Calculating	orbital	speed
We	can	use	the	force	equation	to	calculate	the	speed	that	an	object	must	have	to	orbit	the	Earth	under
gravity,	as	in	Newton’s	thought	experiment.	The	necessary	centripetal	force	 	is	provided	by	the	Earth’s
gravitational	pull	mg.



Hence:

where	g	=	9.81	m	s−2	is	the	acceleration	of	free	fall	close	to	the	Earth’s	surface.	The	radius	of	its	orbit	is
equal	to	the	Earth’s	radius,	approximately	6400	km.	Hence,	we	have:

Thus,	if	you	were	to	throw	or	hit	a	ball	horizontally	at	almost	8	km	s−1,	it	would	go	into	orbit	around	the
Earth.
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16.7	The	origins	of	centripetal	forces
It	is	useful	to	look	at	one	or	two	situations	where	the	physical	origin	of	the	centripetal	force	may	not	be
immediately	obvious.	In	each	case,	you	will	notice	that	the	forces	acting	on	the	moving	object	are	not
balanced	–	there	is	a	resultant	force.	An	object	moving	along	a	circular	path	is	not	in	equilibrium	and	the
resultant	force	acting	on	it	is	the	centripetal	force.

A	car	cornering	on	a	level	road	(Figure	16.13).	Here,	the	road	provides	two	forces.	The	force	N	is	the
normal	 contact	 force	 that	 balances	 the	 weight	mg	 of	 the	 car–the	 car	 has	 no	 acceleration	 in	 the
vertical	direction.

Figure	16.13:	This	car	is	moving	away	from	us	and	turning	to	the	left.	Friction	provides	the	centripetal
force.	N	and	F	are	the	total	normal	contact	and	friction	forces	(respectively)	provided	by	the	contact	of
all	four	tyres	with	the	road.

The	 second	 force	 is	 the	 force	 of	 friction	 F	 between	 the	 tyres	 and	 the	 road	 surface.	 This	 is	 the
unbalanced,	centripetal	force.	If	the	road	or	tyres	do	not	provide	enough	friction,	the	car	will	not	go
round	 the	 bend	 along	 the	 desired	 path.	 The	 friction	 between	 the	 tyres	 and	 the	 road	 provides	 the
centripetal	force	necessary	for	the	car’s	circular	motion.
A	car	cornering	on	a	banked	road	(Figure	16.14a).	Here,	the	normal	contact	force	N	has	a	horizontal
component	 that	 can	 provide	 the	 centripetal	 force.	 The	 vertical	 component	 of	N	 balances	 the	 car’s
weight.	Therefore:

where	r	is	the	radius	of	the	circular	corner	and	v	is	the	car’s	speed.

Figure	16.14:	a	On	a	banked	road,	the	horizontal	component	of	the	normal	contact	force	from	the	road
can	provide	the	centripetal	force	needed	for	cornering.	b	For	a	slow	car,	friction	acts	up	the	slope	to	stop
it	from	sliding	down.
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If	a	car	travels	around	the	bend	too	slowly,	it	will	tend	to	slide	down	the	slope	and	friction	will	act	up
the	slope	to	keep	it	on	course	(Figure	16.14b).	If	it	travels	too	fast,	it	will	tend	to	slide	up	the	slope.	If
friction	is	insufficient,	it	will	move	up	the	slope	and	come	off	the	road.
An	 aircraft	 banking	 (Figure	 16.15a).	 To	 change	 direction,	 the	 pilot	 tips	 the	 aircraft’s	 wings.	 The
vertical	component	of	the	lift	force	L	on	the	wings	balances	the	weight.	The	horizontal	component	of
L	provides	the	centripetal	force.
A	stone	being	whirled	in	a	horizontal	circle	on	the	end	of	a	string	–	this	arrangement	is	known	as	a
conical	pendulum	(Figure	16.15b).	The	vertical	component	of	the	tension	T	 is	equal	to	the	weight	of
the	 stone.	 The	 horizontal	 component	 of	 the	 tension	 provides	 the	 centripetal	 force	 for	 the	 circular
motion.
At	the	fairground	(Figure	16.15c).	As	the	cylinder	spins,	the	floor	drops	away.	Friction	balances	your
weight.	The	normal	contact	force	of	the	wall	provides	the	centripetal	force.	You	feel	as	though	you	are
being	pushed	back	against	the	wall;	what	you	are	feeling	is	the	push	of	the	wall	on	your	back.

Figure	16.15:	Three	more	ways	of	providing	a	centripetal	force.

Note	that	the	three	situations	shown	in	Figures	16.14a,	16.15a	and	16.15b	are	equivalent.	The	moving
object’s	weight	acts	downwards.	The	second	force	has	a	vertical	component,	which	balances	the	weight,
and	a	horizontal	component,	which	provides	the	centripetal	force.

Questions
Explain	why	it	is	impossible	to	whirl	a	bung	around	on	the	end	of	a	string	in	such	a	way	that	the	string
remains	perfectly	horizontal.
Explain	why	an	aircraft	will	tend	to	lose	height	when	banking,	unless	the	pilot	increases	its	speed	to
provide	more	lift.
If	you	have	ever	been	down	a	water-slide	(a	flume)	(Figure	16.16)	you	will	know	that	you	tend	to	slide
up	the	side	as	you	go	around	a	bend.	Explain	how	this	provides	the	centripetal	force	needed	to	push
you	around	the	bend.	Explain	why	you	slide	higher	if	you	are	going	faster.

Figure	16.16:	A	water-slide	is	a	good	place	to	experience	centripetal	forces.

REFLECTION



In	order	to	increase	the	proportion	of	heavy	water	(deuterium	oxide)	in	a	sample	of	water,	the	scientists
in	the	‘Manhattan	Project’	used	a	centrifuge.	Prepare	a	short	talk	on	the	aim	of	the	Manhattan	Project
and	to	explain	how	a	centrifuge	works.
Think	about	an	astronaut	far	away	from	any	planets.	Discuss	with	a	partner	whether	the	string	on	a
conical	pendulum	could	rotate	in	a	horizontal	plane,	and	what	speed	it	would	start	to	rotate	in	this
manner.	What	conclusions	did	you	each	come	to?	Did	discussing	this	question	with	a	partner	help	you
to	understand	the	concepts?

	
	



SUMMARY

Angles	can	be	measured	in	radians.	An	angle	of	2π	rad	is	equal	to	360°.

An	object	moving	at	a	steady	speed	along	a	circular	path	has	uniform	circular	motion.

The	angular	displacement	θ	is	a	measure	of	the	angle	through	which	an	object	moves	in	a	circle.

The	angular	velocity	ω	is	the	rate	at	which	the	angular	displacement	changes:

For	an	object	moving	with	uniform	circular	motion,	speed	and	angular	velocity	are	related	by	v	=	ωr.

An	object	moving	in	a	circle	is	not	in	equilibrium;	it	has	a	resultant	force	acting	on	it.

The	resultant	force	acting	on	an	object	moving	in	a	circle	is	directed	towards	the	centre	of	the	circle
and	is	at	right	angles	to	the	velocity	of	the	object.

An	object	moving	in	a	circle	has	a	centripetal	acceleration	a	given	by:

The	magnitude	of	the	force	F	acting	on	an	object	of	mass	m	moving	at	a	speed	v	in	a	circle	of	radius	r
is	given	by:
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EXAM-STYLE	QUESTIONS

Which	statement	is	correct? [1]

There	is	a	resultant	force	on	an	object	moving	along	a	circular	path	at
constant	speed	away	from	the	centre	of	the	circle	causing	it	to	be	thrown
outwards. 	

There	is	a	resultant	force	on	an	object	moving	along	a	circular	path	at
constant	speed	towards	the	centre	of	the	circle	causing	it	to	be	thrown
outwards. 	

There	is	a	resultant	force	on	an	object	moving	along	a	circular	path	at
constant	speed	towards	the	centre	of	the	circle	causing	it	to	move	in	the
circle. 	

There	is	zero	resultant	force	on	an	object	moving	along	a	circular	path	at
constant	speed	because	it	is	in	equilibrium. 	

When	ice-dancers	spin,	as	shown	in	the	diagram,	the	first	dancer’s	hand
applies	a	centripetal	force	to	the	second	dancer’s	hand. 	

Figure	16.17
	

In	which	case	is	the	centripetal	force	the	greatest? [1]

	 x	/	m Speed	of	the	female
skater’s	centre	of
mass	/	m	s−1

A 0.45 9.0

B 0.45 10.0

C 0.50 9.0

D 0.50 10.0

Table	16.1
	

Explain	what	is	meant	by	a	radian. [1]

A	body	moves	round	a	circle	at	a	constant	speed	and	completes	one
revolution	in	15	s.	Calculate	the	angular	speed	of	the	body. [2]

	 [Total:	3]

This	diagram	shows	part	of	the	track	of	a	roller-coaster	ride	in	which	a	truck
loops	the	loop.	When	the	truck	is	at	the	position	shown,	there	is	no	reaction
force	between	the	wheels	of	the	truck	and	the	track.	The	diameter	of	the	loop
in	the	track	is	8.0	m. 	
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Figure	16.18 	

Explain	what	provides	the	centripetal	force	to	keep	the	truck	moving	in	a
circle. [1]

Given	that	the	acceleration	due	to	gravity	g	is	9.8	m	s−2,	calculate	the
speed	of	the	truck. [3]

	 [Total:	4]

This	diagram	shows	a	toy	of	mass	60	g	placed	on	the	edge	of	a	rotating
turntable. [1]

Figure	16.19
	

The	radius	of	the	turntable	is	15.0	cm.	The	turntable	rotates,	making	20
revolutions	every	minute.	Calculate	the	resultant	force	acting	on	the	toy. [3]

Explain	why	the	toy	falls	off	when	the	speed	of	the	turntable	is	increased. [2]

	 [Total:	6]

One	end	of	a	string	is	secured	to	the	ceiling	and	a	metal	ball	of	mass	50	g	is
tied	to	its	other	end.	The	ball	is	initially	at	rest	in	the	vertical	position.	The	ball
is	raised	through	a	vertical	height	of	70	cm,	as	shown.	The	ball	is	then
released.	It	describes	a	circular	arc	as	it	passes	through	the	vertical	position. 	

Figure	16.20

	

The	length	of	the	string	is	1.50	m. 	

Ignoring	the	effects	of	air	resistance,	determine	the	speed	v	of	the	ball	as	it
passes	through	the	vertical	position. [2]

Calculate	the	tension	T	in	the	string	when	the	string	is	vertical. [3]

Explain	why	your	answer	to	part	b	is	not	equal	to	the	weight	of	the	ball. [2]

	 [Total:	7]

A	car	is	travelling	round	a	bend	when	it	hits	a	patch	of	oil.	The	car	slides	off
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the	road	onto	the	grass	verge.	Explain,	using	your	understanding	of	circular
motion,	why	the	car	came	off	the	road.

[2]

This	diagram	shows	an	aeroplane	banking	to	make	a	horizontal	turn.	The
aeroplane	is	travelling	at	a	speed	of	75	m	s−1	and	the	radius	of	the	turning
circle	is	800	m. 	

Figure	16.21
	

Copy	the	diagram.	On	your	copy,	draw	and	label	the	forces	acting	on	the
aeroplane. [2]

Calculate	the	angle	that	the	aeroplane	makes	with	the	horizontal. [4]

	 [Total:	6]

Explain	what	is	meant	by	the	term	angular	speed. [2]

This	diagram	shows	a	rubber	bung,	of	mass	200	g,	on	the	end	of	a	length	of
string	being	swung	in	a	horizontal	circle	of	radius	40	cm.	The	string	makes
an	angle	of	56°	with	the	vertical. 	

Figure	16.22
	

Calculate: 	

the	tension	in	the	string [2]

the	angular	speed	of	the	bung [3]

the	time	it	takes	to	make	one	complete	revolution. [1]

	 [Total:	8]

Explain	what	is	meant	by	a	centripetal	acceleration. [2]

A	teacher	swings	a	bucket	of	water,	of	total	mass	5.4	kg,	round	in	a	vertical
circle	of	diameter	1.8	m. 	

Calculate	the	minimum	speed	that	the	bucket	must	be	swung	at	so	that
the	water	remains	in	the	bucket	at	the	top	of	the	circle. [3]

Assuming	that	the	speed	remains	constant,	what	will	be	the	force	on
the	teacher’s	hand	when	the	bucket	is	at	the	bottom	of	the	circle? [2]

	 [Total:	7]

In	training,	military	pilots	are	given	various	tests.	One	test	puts	them	in	a	seat
on	the	end	of	a	large	arm	that	is	then	spun	round	at	a	high	speed,	as	shown. 	
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Figure	16.23

	

Describe	what	the	pilot	will	feel	and	relate	this	to	the	centripetal	force. [3]

At	top	speed	the	pilot	will	experience	a	centripetal	force	equivalent	to	six
times	his	own	weight	(6	mg). 	

Calculate	the	speed	of	the	pilot	in	this	test. [3]

Calculate	the	number	of	revolutions	of	the	pilot	per	minute. [2]

Suggest	why	it	is	necessary	for	pilots	to	be	able	to	be	able	to	withstand
forces	of	this	type. [2]

	 [Total:	10]

Show	that	in	one	revolution	there	are	2π	radians. [2]

This	diagram	shows	a	centrifuge	used	to	separate	solid	particles
suspended	in	a	liquid	of	lower	density.	The	container	is	spun	at	a	rate	of
540	revolutions	per	minute. 	

Figure	16.24
	

Calculate	the	angular	velocity	of	the	container. [2]

Calculate	the	centripetal	force	on	a	particle	of	mass	20	mg	at	the	end
of	the	test	tube. [2]

An	alternative	method	of	separating	the	particles	from	the	liquid	is	to	allow
them	to	settle	to	the	bottom	of	a	stationary	container	under	gravity. 	

By	comparing	the	forces	involved,	explain	why	the	centrifuge	is	a	more
effective	method	of	separating	the	mixture. [2]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	this	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	the	radian	and	use	it	as	the	unit
of	angular	displacement

16.2 	 	 	

understand	the	concept	of	angular
speed

16.4 	 	 	

recall	and	use	the	relationship	angular
speed	 	where	T	is	the	time	for
one	complete	revolution

16.4 	 	 	

recall	and	use	the	relationship	angular
speed	v	=	ωr

16.4 	 	 	

understand	that	the	force	on	an	object
rotating	round	a	circle	is	towards	the
centre	of	the	circle	and	is	called	a
centripetal	force

16.5 	 	 	

recognise	that	the	centripetal	force	is	at
right	angles	to	the	velocity	of	the	object

16.5 	 	 	

recognise	that	the	centripetal	force
causes	centripetal	acceleration

16.5 	 	 	

recognise	that	a	constant	centripetal
force	causes	circular	motion	with
constant	angular	speed

16.5 	 	 	

recall	and	use	the	formula: 16.6 	 	 	

recall	and	use	the	formula: 16.6 	 	 	
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	Chapter	17

Gravitational	fields

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
describe	a	gravitational	field	as	a	field	of	force	and	define	gravitational	field	strength	g
represent	a	gravitational	field	using	field	lines
understand	 the	 meaning	 of	 centre	 of	 mass	 and	 use	 the	 concept	 in	 problems	 involving	 uniform
spheres
recall	and	use	Newton’s	law	of	gravitation
solve	problems	involving	the	gravitational	field	strength	of	a	uniform	field	and	the	field	of	a	point
mass

understand	 how	 the	 gravitational	 potential	 energy,	 ,	 of	 two	 point	 masses	 is	 a
consequence	of	gravitational	potential
define	and	solve	problems	involving	gravitational	potential
analyse	circular	orbits	in	an	inverse	square	law	field,	including	geostationary	orbits.

BEFORE	YOU	START
We	have	all	experienced	gravity	and	the	effects	it	has	on	us	in	everyday	life.
Imagine	what	would	happen	if	gravity	was	‘switched	off’.	Discuss	the	effects	that	it	would	have,	not
only	on	everyday	life,	but	on	a	much	bigger	scale.	For	example,	what	would	happen	to	the	objects	on
your	desk?	Can	you	predict	what	would	happen	to	the	orbit	of	the	Earth?

GRAVITATIONAL	FORCES	AND	FIELDS
Gravity	is	amazing!	It	is	the	first	interaction	that	we	experience,	and	it	is	an	interaction	that	we	take	for
granted.	But	without	it,	there	would	be	no	Earth,	no	Sun,	no	galaxies,	no	us!



You	have	probably	seen	pictures	like	Figure	17.1	before	–	astronauts	can	float	in	mid-air	in	the
International	Space	Station	(ISS).	This	is	not	because	there	is	no	gravity	at	this	altitude,	but	because
the	ISS	is	effectively	in	freefall	as	it	orbits	around	the	Earth.	The	only	astronauts	who	have	experienced
zero	gravity	are	those	who	experienced	it	on	their	way	to	and	from	the	Moon.	Even	then,	there	would
be	a	small	gravitational	effect	due	to	the	pull	of	the	Earth,	the	Sun	and	the	Moon	itself.	This	is
sometimes	referred	to	as	microgravity.
All	life	on	Earth	evolved	in	the	Earth’s	gravitational	field.	The	bodies	of	all	animals	evolved	so	that	they
could	cope	with	the	strains	and	stresses	of	the	forces	inherent	in	living	in	a	gravitational	field.
Astronauts	spending	long	periods	of	time	in	microgravity,	for	example	in	the	proposed	trips	to	Mars,
would	find	their	bodies	losing	calcium	and	their	muscles,	which	are	used	to	supporting	their	weight,
getting	weaker.
One	of	the	most	amazing	things	about	gravity	is	its	role	in	the	development	of	the	Universe.	Nebulae
are	great	clouds	of	dust	and	(mostly)	hydrogen	gas	in	outer	space.	Irregularities	in	the	density	of	the
cloud	lead	to	more	material	being	attracted	to	the	higher	density	areas,	so	this	area	becomes	more	and
more	concentrated	as	more	material	is	attracted.	The	process	gathers	pace.	The	vast	quantity	of
gravitational	potential	energy	of	the	spread-out	hydrogen	becomes	kinetic	energy	of	hydrogen	atoms
that,	once	great	enough,	allows	nuclear	fusion	to	occur	…	and	a	star	is	born.
Why	is	this	so	amazing?	Gravity	is	a	very	weak	interaction;	the	electromagnetic	interaction	is	far,	far
stronger.	The	electric	repulsion	between	two	protons	in	the	nucleus	of	an	atom	is	about	1036	times
bigger	(that	is,	10	followed	by	35	zeroes!)	than	the	gravitational	attraction.

Figure	17.1:	An	astronaut	on	board	a	space	shuttle	in	Earth-orbit.

Figure	17.2:	Gaseous	star	nurseries.

Why	does	the	gravitational	interaction	rule?	The	gravitational	force	is	always	attractive,	whereas	there



are	two	types	of	charge	(positive	and	negative)	so	the	electromagnetic	interaction	can	either	be
attractive	or	repulsive.	In	general,	the	negative	and	positive	charges	tend	to	cancel	out,	making	any
large	scale	object	nearly	electrically	neutral.
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17.1	Representing	a	gravitational	field
We	can	represent	the	Earth’s	gravitational	field	by	drawing	field	lines,	as	shown	in	Figure	17.3.

Figure	17.3:	The	Earth’s	gravitational	field	is	represented	by	field	lines.

The	field	lines	show	two	things:
The	arrows	on	the	field	lines	show	us	the	direction	of	the	gravitational	force	on	a	mass	placed	in	the
field.
The	spacing	of	 the	field	 lines	 indicates	the	strength	of	 the	gravitational	 field–the	further	apart	 they
are,	the	weaker	the	field.

The	drawing	of	the	Earth’s	gravitational	field	shows	that	all	objects	are	attracted	towards	the	centre	of
the	Earth.	This	is	true	even	if	they	are	below	the	surface	of	the	Earth.	The	gravitational	force	gets	weaker
as	you	get	further	away	from	the	Earth’s	surface	–	this	is	shown	by	the	greater	separation	between	the
field	lines.	The	Earth	is	almost	a	uniform	spherical	mass,	although	it	does	bulge	a	bit	at	the	equator.	The
gravitational	field	of	the	Earth	is	as	if	its	entire	mass	was	concentrated	at	its	centre;	this	is	known	as	its
centre	of	mass.	As	far	as	any	object	beyond	the	Earth’s	surface	is	concerned,	the	Earth	behaves	as	a
point	mass.
Figure	17.4	shows	the	Earth’s	gravitational	field	closer	to	its	surface.	The	gravitational	field	in	and
around	a	building	on	the	Earth’s	surface	shows	that	the	gravitational	force	is	directed	downwards
everywhere	and	(because	the	field	lines	are	very	nearly	parallel	and	evenly	spaced)	the	strength	of	the
gravitational	field	is	virtually	the	same	at	all	points	in	and	around	the	building.	This	means	that	your
weight	is	virtually	the	same	everywhere	in	this	gravitational	field.	Your	weight	does	not	become	much	less
when	you	go	upstairs.

Figure	17.4:	The	Earth’s	gravitational	field	is	uniform	on	the	scale	of	a	building.

We	describe	the	Earth’s	gravitational	field	as	radial,	since	the	field	lines	diverge	(spread	out)	radially
from	the	centre	of	the	Earth.	However,	on	the	scale	of	a	building,	the	gravitational	field	is	uniform,	since
the	field	lines	are	equally	spaced.	Jupiter	is	a	more	massive	planet	than	the	Earth	and	so	we	would
represent	its	gravitational	field	by	showing	more	closely	spaced	field	lines.

Newton’s	law	of	gravitation



Newton	used	his	ideas	about	mass	and	gravity	to	suggest	a	law	of	gravitation	for	two	point	masses
(Figure	17.5).

Figure	18.5:	Two	point	masses	separated	by	distance	r.

Newton	considered	two	point	masses	M	and	m	separated	by	a	distance	r.	Each	point	mass	attracts	the
other	with	a	force	F.	(According	to	Newton’s	third	law	of	motion,	the	point	masses	interact	with	each
other	and	therefore	exert	equal	but	opposite	forces	on	each	other.)
Newton’s	law	of	gravitation	states	that	any	two	point	masses	attract	each	other	with	a	force	that	is
directly	proportional	to	the	product	of	their	masses	and	inversely	proportional	to	the	square	of	their
separation.
Note	that	the	law	refers	to	‘point	masses’	–	you	can	alternatively	use	the	term	‘particles’.	Things	are	more
complicated	if	we	think	about	solid	bodies	that	occupy	a	volume	of	space.	Each	particle	of	one	body
attracts	every	particle	of	the	other	body	and	we	would	have	to	add	all	these	forces	together	to	work	out
the	force	each	body	has	on	the	other.	Newton	was	able	to	show	that	two	uniform	spheres	attract	one
another	with	a	force	that	is	the	same	as	if	their	masses	were	concentrated	at	their	centres	(provided	their
centre-to-centre	distance	is	greater	than	the	sum	of	their	radii).
According	to	Newton’s	law	of	gravitation,	we	have:

force	∝	product	of	the	masses,	or	F	∝	Mm

Therefore:

To	make	this	into	an	equation,	we	introduce	the	gravitational	constant	G:

(The	force	is	attractive,	so	F	is	in	the	opposite	direction	to	r.)
The	gravitational	constant	G	is	sometimes	referred	to	as	the	universal	gravitational	constant	because	it	is
believed	to	have	the	same	value,	6.67	×	10−11	N	m2	kg−2,	throughout	the	Universe.	This	is	important	for
our	understanding	of	the	history	and	likely	long-term	future	of	the	Universe.
The	equation	can	also	be	applied	to	spherical	objects	(such	as	the	Earth	and	the	Moon)	provided	we
remember	to	measure	the	separation	r	between	the	centres	of	the	objects.	You	may	also	come	across	the
equation	in	the	form:

where	m1	and	m2	are	the	masses	of	the	two	bodies.

KEY	EQUATION
Newton’s	law	of	gravitation:

Let	us	examine	this	equation	to	see	why	it	seems	reasonable.	First,	each	of	the	two	masses	is	important.
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Your	weight	(the	gravitational	force	on	you)	depends	on	your	mass	and	on	the	mass	of	the	planet	you
happen	to	be	standing	on.
Second,	the	further	away	you	are	from	the	planet,	the	weaker	its	pull.	Twice	as	far	away	gives	one-
quarter	of	the	force.	This	can	be	seen	from	the	diagram	of	the	field	lines	in	Figure	17.6.	If	the	distance	is
doubled,	the	lines	are	spread	out	over	four	times	the	surface	area,	so	their	concentration	is	reduced	to
one-quarter.	This	is	called	an	inverse	square	law.	Inverse	square	laws	are	common	in	physics,	light	or	γ-
rays	spreading	out	uniformly	from	a	point	source	also	follow	an	inverse	square	law.

Figure	17.6:	Field	lines	are	spread	out	over	a	greater	surface	area	at	greater	distances,	so	the	strength
of	the	field	is	weaker.

We	measure	distances	from	the	centre	of	mass	of	one	body	to	the	centre	of	mass	of	the	other	(Figure
17.7).	We	treat	each	body	as	if	its	mass	were	concentrated	at	one	point.	The	two	bodies	attract	each	other
with	equal	and	opposite	forces,	as	required	by	Newton’s	third	law	of	motion.	The	Earth	pulls	on	you	with
a	force	(your	weight)	directed	towards	the	centre	of	the	Earth;	you	attract	the	Earth	with	an	equal	force,
directed	away	from	its	centre	and	towards	you.	Your	pull	on	an	object	as	massive	as	the	Earth	has	little
effect	on	it.	The	Sun’s	pull	on	the	Earth,	however,	has	a	very	significant	effect.

Figure	17.7:	A	person	and	the	Earth	exert	equal	and	opposite	attractive	forces	on	each	other.

Questions
Calculate	the	gravitational	force	of	attraction	between:

two	objects	separated	by	a	distance	of	1.0	cm	and	each	having	a	mass	of	100	g
two	asteroids	separated	by	a	distance	of	4.0	109	m	and	each	having	a	mass	of	5.0	×	1010	kg
a	satellite	of	mass	1.4	×	104	kg	orbiting	the	Earth	at	a	distance	of	6800	km	from	the	Earth’s
centre.	(The	mass	of	the	Earth	is	6.0	×	1024	kg.)

Estimate	the	gravitational	force	of	attraction	between	two	people	sitting	side	by	side	on	a	park	bench.
How	does	this	force	compare	with	the	gravitational	force	exerted	on	each	of	them	by	the	Earth	(in
other	words,	their	weight)?
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Step	1

17.2	Gravitational	field	strength	g
We	can	describe	how	strong	or	weak	a	gravitational	field	is	by	stating	its	gravitational	field	strength.
We	are	used	to	this	idea	for	objects	on	or	near	the	Earth’s	surface.	The	gravitational	field	strength	is	the
familiar	quantity	g.	Its	value	is	approximately	9.8	m	s−2.	The	weight	of	a	body	of	mass	m	is	mg.

To	make	the	meaning	of	g	clearer,	we	should	write	it	as	9.8	N	kg−1.	That	is,	each	1	kg	of	mass
experiences	a	gravitational	force	of	9.8	N.
The	gravitational	field	strength	g	at	any	point	in	a	gravitational	field	is	defined	as	follows:
The	gravitational	field	strength	at	a	point	is	the	gravitational	force	exerted	per	unit	mass	on	a	small
object	placed	at	that	point.
This	can	be	written	as	an	equation:

where	F	is	the	gravitational	force	on	the	object	and	m	is	the	mass	of	the	object.	Gravitational	field
strength	has	units	of	N	kg−1.	This	is	equivalent	to	m	s−2.
We	can	use	the	definition	to	determine	the	gravitational	field	strength	for	a	point	(or	spherical)	mass.	The
force	between	two	point	masses	is	given	by:

So,	the	gravitational	field	strength	g	due	to	the	mass	M	at	a	distance	of	r	from	its	centre	is:

KEY	EQUATION
The	gravitation	field	g	due	to	a	point	mass	is:

where	G	is	the	universal	gravitational	constant,	M	is	the	mass	and	r	is	the
distance	from	the	mass.
You	must	learn	how	to	derive	this	equation	using	Newton's	law	of
gravitation	and	your	understanding	of	a	gravitational	field.

Since	force	is	a	vector	quantity,	it	follows	that	gravitational	field	strength	is	also	a	vector.	We	need	to	give
its	direction	as	well	as	its	magnitude	in	order	to	specify	it	completely.	The	field	strength	g	is	not	a
constant;	it	decreases	as	the	distance	r	increases.	The	field	strength	obeys	an	inverse	square	law	with
distance.	The	field	strength	will	decrease	by	a	factor	of	four	when	the	distance	from	the	centre	is
doubled.	Close	to	the	Earth’s	surface,	the	magnitude	of	g	is	about	9.81	N	kg−1.	Even	if	you	climbed
Mount	Everest,	which	is	8.85	km	high,	the	field	strength	will	only	decrease	by	0.3%.
So	the	gravitational	field	strength	g	at	a	point	depends	on	the	mass	M	of	the	body	causing	the	field,	and
the	distance	r	from	its	centre	(see	Worked	example	1).

Gravitational	field	strength	g	also	has	units	m	s−2;	it	is	an	acceleration.	Another	name	for	g	is
‘acceleration	of	free	fall’.	Any	object	that	falls	freely	in	a	gravitational	field	has	this	acceleration,
approximately	9.8	m	s−2	near	the	Earth’s	surface.	In	Chapter	2,	you	learned	about	different	ways	to
determine	an	experimental	value	for	g,	the	local	gravitational	field	strength.

WORKED	EXAMPLE

The	Earth	has	radius	6400	km.	The	gravitational	field	strength	on	the	Earth’s	surface	is	9.81	N	kg
−1.	Use	this	information	to	determine	the	mass	of	the	Earth	and	its	mean	density.

Write	down	the	quantities	given:
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r	=	6.4	×	106	m	g	=	9.81	N	kg−1

Use	the	equation	 	to	determine	the	mass	of	the	Earth	M.

Use	the	equation	 	to	determine	the	density	ρ	of	the	Earth.

The	Earth	is	a	spherical	mass.	Its	volume	can	be	calculated	using	 :

We	can	now	see	in	more	detail	why	the	Earth’s	gravitational	field	may	be	considered	to	be	uniform	near	a
planet’s	surface.	Consider	a	planet	of	radius	R,	then,	at	its	surface,	the	gravitational	field	strength,	

,	where	G	is	the	universal	gravitational	constant.

If	we	move	up	from	the	surface,	a	distance	ΔR,	the	new	gravitational	field	strength,	 .

The	percentage	change	in	R	is	 	and,	using	a	similar	logic	to	that	used	when	dealing	with
uncertainties,	the	percentage	change	in	the	gravitational	field	strength	is	 .

WORKED	EXAMPLE

Calculate	the	change	in	the	gravitational	field	strength	between	the	Earth’s	equator	and	at	a	height
of	10	km	above	the	equator.
(Earth’s	radius	at	the	equator	is	6357	km,	mass	of	the	Earth	=	5.974	×	1024	kg
G	=	6.67	×	10-11	Nm2kg-2)
Gravitational	field	strength	at	the	equator	=

percentage	change	in	the	field	in	moving	10	km	from	the	surface

The	change	in	the	field	strength	=	0.167%	of	g	=	0.167%	of	9.860	=	0.01650	Nkg-1

Generally	the	field	strength	is	quoted	to	two	or	three	significant	figures	(9.8	or	9.81	Nkg-1).	10	km
is	roughly	the	height	at	which	airliners	cruise	and	even	at	this	height	there	is	no	significant	change
in	the	field	strength,	indeed	local	variation	due	to	different	densities	of	the	Earth’s	crust	and	the
fact	that	the	Earth	is	not	a	perfect	sphere	have	a	much	larger	effect.

Looking	at	this	from	a	different	viewpoint,	if	we	refer	back	to	Figure	17.6	and	the	spreading	of	the	field
lines,	as	we	go	further	from	the	centre	of	mass	we	see	that	a	change	in	height	increases	the	area
subtended	by	those	lines.	The	area	subtended	increases	by	the	square	of	the	distance	and	thus	moving	a
distance	ΔR	from	the	surface	of	the	Earth	would	give	a	percentage	increase	in	the	area	subtended	by	the
field	lines	of	 .	Following	similar	logic	to	the	worked	example,	we	can	see	that	a	10	km
vertical	movement	from	the	Earth’s	surface	leads	to	a	percentage	increase	in	area	of	0.16%,	which	shows
that	over	this	distance	the	lines	in	Figure	17.4	(a	rise	of	less	than	10	metres)	are	very	nearly	parallel	and
the	field	is	very	nearly	uniform.

Questions
You	will	need	the	data	in	Table	17.1	to	answer	these	questions.

Body Mass	/	kg Radius	/	km Distance	from	Earth	/
km
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8
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b

Earth 6.0	×	1024 6	400 –

Moon 7.4	×	1022 1	740 3.8	×	105

Sun 2.0	×	1030 700	000 1.5	×	108

Table	17.1:	Data	for	Questions	3	to	8.

Mount	Everest	is	approximately	9.0	km	high.	Estimate	how	much	less	a	mountaineer	of	mass	100	kg
(including	backpack)	would	weigh	at	its	summit,	compared	to	her	weight	at	sea	level.	Would	this
difference	be	measurable	with	bathroom	scales?
a		Calculate	the	gravitational	field	strength:

close	to	the	surface	of	the	Moon
close	to	the	surface	of	the	Sun.
Suggest	how	your	answers	help	to	explain	why	the	Moon	has	only	a	thin	atmosphere,	while	the
Sun	has	a	dense	atmosphere.

a		Calculate	the	Earth’s	gravitational	field	strength	at	the	position	of	the	Moon.
Calculate	the	force	the	Earth	exerts	on	the	Moon.	Hence,	determine	the	Moon’s	acceleration
towards	the	Earth.

Jupiter’s	mass	is	320	times	that	of	the	Earth	and	its	radius	is	11.2	times	the	Earth’s.	The	Earth’s
surface	gravitational	field	strength	is	9.81	N	kg−1.	Calculate	the	gravitational	field	strength	close	to
the	surface	of	Jupiter.
The	Moon	and	the	Sun	both	contribute	to	the	tides	on	the	Earth’s	oceans.	Which	has	a	bigger	pull	on
each	kilogram	of	seawater,	the	Sun	or	the	Moon?
Astrologers	believe	that	the	planets	exert	an	influence	on	us,	particularly	at	the	moment	of	birth.
(They	don’t	necessarily	believe	that	this	is	an	effect	of	gravity!)

Calculate	the	gravitational	force	on	a	4.0	kg	baby	caused	by	Mars	when	the	planet	is	at	its	closest
to	the	Earth	at	a	distance	of	100	000	000	km.	Mars	has	a	mass	6.4	×	1023	kg.
Calculate	the	gravitational	force	on	the	same	baby	due	to	its	50	kg	mother	at	a	distance	of	0.40	m.
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17.3	Energy	in	a	gravitational	field
As	well	as	the	force	on	a	mass	in	a	gravitational	field,	we	can	think	about	its	energy.	If	you	lift	an	object
from	the	ground,	you	increase	its	gravitational	potential	energy	(g.p.e.).	The	higher	you	lift	it,	the	more
work	you	do	on	it	and	so	the	greater	its	g.p.e.	The	object’s	change	in	g.p.e.	can	be	calculated	as	mgΔh,
where	Δh	is	the	change	in	its	height	(as	we	saw	in	Chapter	5).
This	approach	is	satisfactory	when	we	are	considering	objects	close	to	the	Earth’s	surface.	However,	we
need	a	more	general	approach	to	calculating	gravitational	energy,	for	two	reasons:

If	we	use	g.p.e.	=	mgΔh,	we	are	assuming	that	an	object’s	g.p.e.	is	zero	on	the	Earth’s	surface.	This	is
fine	for	many	practical	purposes	but	not,	for	example,	if	we	are	considering	objects	moving	through
space,	far	from	Earth.	For	these,	there	is	nothing	special	about	the	Earth’s	surface.
If	we	lift	an	object	to	a	great	height,	g	decreases	and	we	would	need	to	take	this	into	account	when
calculating	g.p.e.

For	these	reasons,	we	need	to	set	up	a	different	way	of	thinking	about	gravitational	potential	energy.	We
start	by	picturing	a	mass	at	infinity,	that	is,	at	an	infinite	distance	from	all	other	masses.	We	say	that	here
the	mass	has	zero	potential	energy.	This	is	a	more	convenient	way	of	defining	the	zero	of	g.p.e.	than	using
the	surface	of	the	Earth.
Now	we	picture	moving	the	mass	to	the	point	where	we	want	to	know	its	g.p.e.	As	with	lifting	an	object
from	the	ground,	we	determine	the	work	done	to	move	the	mass	to	the	point.	The	work	done	on	it	is	equal
to	the	energy	transferred	to	it;	that	is,	its	g.p.e.,	and	that	is	how	we	can	determine	the	g.p.e.	of	a
particular	mass.
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17.4	Gravitational	potential
In	practice,	it	is	more	useful	to	talk	about	the	gravitational	potential	at	a	point.	This	tells	us	the	g.p.e.	per
unit	mass	at	the	point	(just	as	field	strength	g	tells	us	the	force	per	unit	mass	at	a	point	in	a	field).	The
symbol	used	for	potential	is	ϕ	(Greek	letter	phi),	and	unit	mass	means	one	kilogram.	Gravitational
potential	at	a	point	is	defined	as	the	work	done	per	unit	mass	bringing	a	unit	mass	from	infinity	to	the
point.
For	a	point	mass	M,	we	can	write	an	equation	for	ϕ	at	a	distance	r	from	M:

where	G	is	the	gravitational	constant	as	before.	Notice	the	minus	sign;	gravitational	potential	is	always
negative.	This	is	because,	as	a	mass	is	brought	towards	another	mass,	its	g.p.e.	decreases.	Since	g.p.e.	is
zero	at	infinity,	it	follows	that,	anywhere	else,	g.p.e.	and	potential	are	less	than	zero;	that	is,	they	are
negative.

KEY	EQUATION
Gravitational	potential:

Imagine	a	spacecraft	coming	from	a	distant	star	to	visit	the	Solar	System.	The	variation	of	the
gravitational	potential	along	its	path	is	shown	in	Figure	17.8.	We	will	concentrate	on	three	parts	of	its
journey:

As	 the	 spacecraft	 approaches	 the	Earth,	 it	 is	 attracted	 towards	 it.	 The	 closer	 it	 gets	 to	 Earth,	 the
lower	its	g.p.e.	becomes	and	so	the	lower	its	potential.
As	the	spacecraft	moves	away	from	the	Earth,	it	has	to	work	against	the	pull	of	the	Earth’s	gravity.	Its
g.p.e.	increases	and	so	we	can	say	that	the	potential	increases.	The	Earth’s	gravitational	field	creates
a	giant	‘potential	well’	in	space.	We	live	at	the	bottom	of	that	well.
As	the	spacecraft	approaches	the	Sun,	it	is	attracted	into	a	much	deeper	well.	The	Sun’s	mass	is	much
greater	 than	 the	 Earth’s	 and	 so	 its	 pull	 is	much	 stronger	 and	 the	 potential	 at	 its	 surface	 is	more
negative	than	on	the	Earth’s	surface.

Figure	17.8:	The	gravitational	potential	is	zero	at	infinity	(far	from	any	mass),	and	decreases	as	a	mass
is	approached.

WORKED	EXAMPLE

A	planet	has	a	diameter	of	6800	km	and	a	mass	of	4.9	×	1023	kg.	A	rock	of	mass	200	kg,	initially	at
rest	and	a	long	distance	from	the	planet,	accelerates	towards	the	planet	and	hits	the	surface	of	the
planet.
Calculate	the	change	in	potential	energy	of	the	rock	and	its	speed	when	it	hits	the	surface.

Write	down	the	quantities	given.

r	=	3.4	×	106	m					M	=	4.9	×	1023	kg
The	equation	 	gives	the	potential	at	the	surface	of	the	planet,	that	is,	the
gravitational	potential	energy	per	unit	mass	at	that	point.	So	the	gravitational	potential
energy	of	the	rock	of	mass	m	at	that	point	is	given	by:
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The	g.p.e.	of	the	rock	when	it	is	far	away	is	zero,	so	the	value	we	calculate	using	this	equation	gives
the	decrease	in	the	rock’s	g.p.e.	during	its	fall	to	hit	the	planet.

In	the	absence	of	an	atmosphere,	all	of	the	g.p.e.	becomes	kinetic	energy	of	the	rock,	and
so:

Note	that	the	rock’s	final	speed	when	it	hits	the	planet	does	not	depend	on	the	mass	of	the	rock.
This	is	because,	if	you	equate	the	two	equations	for	k.e.	and	the	change	in	g.p.e.,	the	mass	m	of	the
rock	cancels.

Questions
You	will	need	the	data	for	the	mass	and	radius	of	the	Earth	and	the	Moon	from	Table	17.1	to	answer	this
question.

Gravitational	constant	G	=	6.67	×	10−11	N	m2	kg−2.
Determine	the	gravitational	potential	at	the	surface	of	the	Earth.
Determine	the	gravitational	potential	at	the	surface	of	the	Moon.
Which	has	the	shallower	‘potential	well’,	the	Earth	or	the	Moon?	Draw	a	diagram	similar	to
Figure	17.8	to	compare	the	‘potential	wells’	of	the	Earth	and	the	Moon.
Use	your	diagram	to	explain	why	a	large	rocket	is	needed	to	lift	a	spacecraft	from	the	surface	of
the	Earth	but	a	much	smaller	rocket	can	be	used	to	launch	from	the	Moon’s	surface.

Gravitational	potential	difference
Very	often,	we	consider	problems	where	it	is	useful	to	know	how	much	energy	is	needed	to	lift	a	satellite
from	the	surface	of	a	planet	or	moon	to	a	height	where	the	satellite	can	be	put	into	orbit.	The	equation	for
the	change	in	potential,	 ,	can	be	used	twice,	once	to	find	the	potential	at	the	surface	and	once	to
find	the	potential	at	the	orbital	height.	However,	it	is	much	easier	to	combine	the	two	operations	and	use
the	equation:

Question
During	the	manned	Moon	landings	in	the	1960s,	the	command	module	orbited	the	Moon	in	an	elliptic
orbit	with	a	maximum	height	of	310	km	above	the	surface	of	the	Moon,	whilst	the	lunar	module
descended	and	landed	on	the	Moon’s	surface.

Explain	why	the	potential	energy	of	the	command	module	varied	during	its	orbit.
Calculate	the	maximum	gravitational	potential	difference	between	the	lunar	surface	and	the
position	of	the	command	module.

Fields:	terminology
The	words	used	to	describe	gravitational	(and	other)	fields	can	be	confusing.	Remember:

Field	strength	tells	us	about	the	force	on	unit	mass	at	a	point;
Potential	tells	us	about	potential	energy	of	unit	mass	at	a	point.

You	will	meet	the	idea	of	electric	field	strength	in	Chapter	21,	where	it	is	the	force	on	unit	charge.
Similarly,	when	we	talk	about	the	potential	difference	between	two	points	in	electricity,	we	are	talking
about	the	difference	in	electrical	potential	energy	per	unit	charge.	In	that	chapter,	you	will	meet	repulsive
fields	as	well	as	attractive	fields	and	this	should	develop	your	understanding	as	to	why	the	choice	of
infinity	for	the	zero	of	potential	is	the	only	sensible	choice.



	
	



17.5	Orbiting	under	gravity
For	an	object	orbiting	a	planet,	such	as	an	artificial	satellite	orbiting	the	Earth,	gravity	provides	the
centripetal	force	that	keeps	it	in	orbit	(Figure	17.9).	This	is	a	simple	situation	as	there	is	only	one	force
acting	on	the	satellite–the	gravitational	attraction	of	the	Earth.	The	satellite	follows	a	circular	path
because	the	gravitational	force	is	at	right	angles	to	its	velocity.

Figure	 17.9:	 The	 gravitational	 attraction	 of	 the	 Earth	 provides	 the	 centripetal	 force	 on	 an	 orbiting
satellite.

From	Chapter	16,	you	know	that	the	centripetal	force	F	on	a	body	is	given	by:

Consider	a	satellite	of	mass	m	orbiting	the	Earth	at	a	distance	r	from	the	Earth’s	centre	at	a	constant
speed	v.	Since	it	is	the	gravitational	force	between	the	Earth	and	the	satellite	that	provides	this
centripetal	force,	we	can	write:

where	M	is	the	mass	of	the	Earth.	(There	is	no	need	for	a	minus	sign	here	as	the	gravitational	force	and
the	centripetal	force	are	both	directed	towards	the	centre	of	the	circle.)
Rearranging	gives:

This	equation	allows	us	to	calculate,	for	example,	the	speed	at	which	a	satellite	must	travel	to	stay	in	a
circular	orbit.	Notice	that	the	mass	of	the	satellite	m	has	cancelled	out.	The	implication	of	this	is	that	all
satellites,	whatever	their	masses,	will	travel	at	the	same	speed	in	a	particular	orbit.	You	would	find	this
very	reassuring	if	you	were	an	astronaut	on	a	space	walk	outside	your	spacecraft	(Figure	17.10).	You
would	travel	at	the	same	speed	as	your	craft,	despite	the	fact	that	your	mass	is	a	lot	less	than	its	mass.
The	equation	can	be	applied	to	the	planets	of	our	solar	system	–	M	becomes	the	mass	of	the	Sun.
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Figure	17.10:	During	 this	 space	walk,	both	 the	astronaut	and	 the	spacecraft	 travel	 through	space	at
over	8	km	s−1.

Now	look	at	Worked	example	3.

WORKED	EXAMPLE

The	Moon	orbits	the	Earth	at	an	average	distance	of	384	000	km	from	the	centre	of	the	Earth.
Calculate	its	orbital	speed.	(The	mass	of	the	Earth	is	6.0	×	1024	kg.)

Write	down	the	known	quantities.

r	=	3.84	×	108	m					M	=	6.0	×	1024	kg	v	=	?

Use	the	equation	 	to	determine	the	orbital	speed	v.

So,	the	Moon	travels	around	its	orbit	at	a	speed	of	roughly	1	km	s−1.

Question
Calculate	the	orbital	speed	of	an	artificial	satellite	travelling	200	km	above	the	Earth’s	surface.	(The
radius	of	Earth	is	6.4	×	106	m	and	its	mass	is	6.0	×	1024	kg.)

	
	



17.6	The	orbital	period
It	is	often	more	useful	to	consider	the	time	taken	for	a	complete	orbit,	the	orbital	period	T.
Since	the	distance	around	an	orbit	is	equal	to	the	circumference	2πr,	it	follows	that:

We	can	substitute	this	in	the	equation	for	v2.
This	gives:

and	rearranging	this	equation	gives:

This	equation	shows	that	the	orbital	period	T	is	related	to	the	radius	r	of	the	orbit.	The	square	of	the
period	is	directly	proportional	to	the	cube	of	the	radius	(T2	∝	r3).	This	is	an	important	result.	It	was	first
discovered	by	Johannes	Kepler,	who	analysed	the	available	data	for	the	planets	of	the	Solar	System.	It	was
an	empirical	law	(one	based	solely	on	experiment)	since	he	had	no	theory	to	explain	why	there	should	be
this	relationship	between	T	and	r.	It	was	not	until	Isaac	Newton	formulated	his	law	of	gravitation	that	it
was	possible	to	explain	this	fact.
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17.7	Orbiting	the	Earth
The	Earth	has	one	natural	satellite	–	the	Moon	–	and	many	thousands	of	artificial	satellites	–	some
spacecraft	and	a	lot	of	debris.	Each	of	these	satellites	uses	the	Earth’s	gravitational	field	to	provide	the
centripetal	force	that	keeps	it	in	orbit.	In	order	for	a	satellite	to	maintain	a	particular	orbit,	it	must	travel
at	the	correct	speed.	This	is	given	by	the	equation	in	topic	17.5	Orbiting	under	gravity:

It	follows	from	this	equation	that,	the	closer	the	satellite	is	to	the	Earth,	the	faster	it	must	travel.	If	it
travels	too	slowly,	it	will	fall	down	towards	the	Earth’s	surface.	If	it	travels	too	quickly,	it	will	move	out
into	a	higher	orbit.

Question
A	satellite	orbiting	a	few	hundred	kilometres	above	the	Earth’s	surface	will	experience	a	slight
frictional	drag	from	the	Earth’s	(very	thin)	atmosphere.	Draw	a	diagram	to	show	how	you	would
expect	the	satellite’s	orbit	to	change	as	a	result.	How	can	this	problem	be	overcome	if	it	is	desired	to
keep	a	satellite	at	a	particular	height	above	the	Earth?

Observing	the	Earth
Artificial	satellites	have	a	variety	of	uses.	Many	are	used	for	making	observations	of	the	Earth’s	surface
for	commercial,	environmental,	meteorological	or	military	purposes.	Others	are	used	for	astronomical
observations,	benefiting	greatly	from	being	above	the	Earth’s	atmosphere.	Still	others	are	used	for
navigation,	telecommunications	and	broadcasting.
Figure	17.11	shows	two	typical	orbits.	A	satellite	in	a	circular	orbit	close	to	the	Earth’s	surface,	and
passing	over	the	poles,	completes	about	16	orbits	in	24	hours.	As	the	Earth	turns	below	it,	the	satellite
‘sees’	a	different	strip	of	the	Earth’s	surface	during	each	orbit.	A	satellite	in	an	elliptical	orbit	has	a	more
distant	view	of	the	Earth.

Figure	17.11:	Satellites	orbiting	the	Earth.

Geostationary	orbits
A	special	type	of	orbit	is	one	in	which	a	satellite	travels	from	west	to	east	and	is	positioned	so	that,	as	it
orbits,	the	Earth	rotates	below	it	with	the	same	angular	speed.	The	satellite	remains	above	a	fixed	point
on	the	Earth’s	equator.	This	kind	of	orbit	is	called	a	geostationary	orbit.	There	are	over	300	satellites	in
such	orbits.	They	are	used	for	telecommunications	(transmitting	telephone	messages	around	the	world)
and	for	satellite	television	transmissions.	A	base	station	on	Earth	sends	the	TV	signal	up	to	the	satellite,
where	it	is	amplified	and	broadcast	back	to	the	ground.	Satellite	receiver	dishes	are	a	familiar	sight;	you
will	have	observed	how,	in	a	neighbourhood,	they	all	point	towards	the	same	point	in	the	sky.	Because	the
satellite	is	in	a	geostationary	orbit,	the	dish	can	be	fixed.	Satellites	in	any	other	orbits	move	across	the
sky	so	that	a	tracking	system	is	necessary	to	communicate	with	them.	Such	a	system	is	complex	and
expensive,	and	too	demanding	for	the	domestic	market.
Geostationary	satellites	have	a	lifetime	of	perhaps	ten	years.	They	gradually	drift	out	of	the	correct	orbit,
so	they	need	a	fuel	supply	for	the	rocket	motors	that	return	them	to	their	geostationary	position,	and	that
keep	them	pointing	correctly	towards	the	Earth.	Eventually,	they	run	out	of	fuel	and	need	to	be	replaced.
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We	can	determine	the	distance	of	a	satellite	in	a	geostationary	orbit	using	the	equation:

For	a	satellite	to	stay	above	a	fixed	point	on	the	equator,	it	must	take	exactly	24	hours	to	complete	one
orbit	(Figure	17.12).
We	know:

So,	for	a	satellite	to	occupy	a	geostationary	orbit,	it	must	be	at	a	distance	of	42	300	km	from	the	centre	of
the	Earth	and	at	a	point	directly	above	the	equator.	Note	that	the	radius	of	the	Earth	is	6400	km,	so	the
orbital	radius	is	6.6	Earth	radii	from	the	centre	of	the	Earth	(or	5.6	Earth	radii	from	its	surface).	Figure
17.12	has	been	drawn	to	give	an	impression	of	the	size	of	the	orbit.

Figure	17.12:	Geostationary	satellites	are	parked	in	the	‘Clarke	belt’,	high	above	the	equator.	This	is	a
perspective	view;	the	Clarke	belt	is	circular.

Questions
For	any	future	mission	to	Mars,	it	would	be	desirable	to	set	up	a	system	of	three	or	four	geostationary
(or	‘martostationary’)	satellites	around	Mars	to	allow	communication	between	the	planet	and	Earth.
Calculate	the	radius	of	a	suitable	orbit	around	Mars.
Mars	has	mass	6.4	×	1023	kg	and	a	rotational	period	of	24.6	hours.
Although	some	international	telephone	signals	are	sent	via	satellites	in	geostationary	orbits,	most	are
sent	along	cables	on	the	Earth’s	surface.	This	reduces	the	time	delay	between	sending	and	receiving
the	signal.	Estimate	this	time	delay	for	communication	via	a	satellite,	and	explain	why	it	is	less
significant	when	cables	are	used.
You	will	need	the	following:

radius	of	geostationary	orbit	=	42	300	km
radius	of	Earth	=	6400	km

speed	of	electromagnetic	waves	in	free	space	c	=	3.0	×	108	m	s−1

REFLECTION
In	Question	7,	we	established	that	the	gravitational	force	on	each	kilogram	of	water	on	the	Earth’s
surface	is	greater	than	that	of	the	Moon;	in	fact,	it	is	about	175	times	greater.	However,	the	Moon
affects	the	tides	more	than	the	Sun	affects	the	tides.	This	seems	contradictory.
Find	out	why	and	prepare	a	short	paper	explaining	why.



What	were	the	most	interesting	discoveries	you	made	while	working	on	this	problem?

	
	



SUMMARY

The	force	of	gravity	is	an	attractive	force	between	any	two	objects	due	to	their	masses.

The	gravitational	field	strength	g	at	a	point	is	the	gravitational	force	exerted	per	unit	mass	on	a	small
object	placed	at	that	point:

The	external	field	of	a	uniform	spherical	mass	is	the	same	as	that	of	an	equal	point	mass	at	the	centre
of	the	sphere.

Newton’s	law	of	gravitation	states	that:
Any	two	point	masses	attract	each	other	with	a	force	that	is	directly	proportional	to	the	product	of
their	masses	and	inversely	proportional	to	the	square	of	their	separation.

The	equation	for	Newton’s	law	of	gravitation	is:

The	gravitational	field	strength	at	a	point	is	the	gravitational	force	exerted	per	unit	mass	on	a	small
object	placed	at	that	point:

On	or	near	the	surface	of	the	Earth,	the	gravitational	field	is	uniform,	so	the	value	of	g	is
approximately	constant.	Its	value	is	equal	to	the	acceleration	of	free	fall.

The	gravitational	potential	at	a	point	is	the	work	done	in	bringing	unit	mass	from	infinity	to	that	point.

The	gravitational	potential	of	a	point	mass	is	given	by:

The	orbital	period	of	a	satellite	is	the	time	taken	for	one	orbit.

The	orbital	period	can	be	found	by	equating	the	gravitational	force	 	to	the	centripetal	force	 .

The	orbital	speed	of	a	planet	or	satellite	can	be	determined	using	the	equation:

Geostationary	satellites	have	an	orbital	period	of	24	hours	and	are	used	for	telecommunications
transmissions	and	for	television	broadcasting.
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EXAM-STYLE	QUESTIONS

An	astronaut	is	on	a	planet	of	mass	0.50ME	and	radius	0.75rE,	where	ME	is	the
mass	of	the	Earth	and	rE	is	the	radius	of	the	Earth. 	

What	is	the	gravitational	field	strength	at	the	surface	of	the	planet? [1]

6.5	N	kg−1 	

8.7	N	kg−1 	

11	N	kg−1 	

12	N	kg−1 	

Consider	the	dwarf	planet	Pluto	to	be	an	isolated	sphere	of	radius	1.2	×	106	m
and	mass	of	1.27	×	1022	kg. 	

What	is	the	gravitational	potential	at	the	surface	of	Pluto? [1]

−0.59	J	kg−1 	

−7.1	×	105	J	kg−1 	

0.59	J	kg-1 	

7.1	×	105	J	kg−1 	

Two	small	spheres	each	of	mass	20	g	hang	side	by	side	with	their	centres	5.00
mm	apart.	Calculate	the	gravitational	attraction	between	the	two	spheres. [3]

It	is	suggested	that	the	mass	of	a	mountain	could	be	measured	by	the
deflection	from	the	vertical	of	a	suspended	mass.	This	diagram	shows	the
principle. 	

Figure	17.13
	

Copy	the	diagram	and	draw	arrows	to	represent	the	forces	acting	on	the
mass.	Label	the	arrows. [3]

The	whole	mass	of	the	mountain,	3.8	×	1012	kg,	may	be	considered	to	act
at	its	centre	of	mass.	Calculate	the	horizontal	force	on	the	mass	due	to	the
mountain. [2]

Compare	the	force	calculated	in	part	b	with	the	Earth’s	gravitational	force
on	the	mass. [2]

	 [Total:	7]

This	diagram	shows	the	Earth’s	gravitational	field. 	



a
b

6

a
b

7

8

a
b

9

a
b
c

10
a				i

ii
b

c

d

Figure	17.14

	

Copy	the	diagram	and	add	arrows	to	show	the	direction	of	the	field. [1]

Explain	why	the	formula	for	potential	energy	gained	(mgΔh)	can	be	used	to
find	the	increase	in	potential	energy	when	an	aircraft	climbs	to	a	height	of
10	000	m,	but	cannot	be	used	to	calculate	the	increase	in	potential	energy
when	a	spacecraft	travels	from	the	Earth’s	surface	to	a	height	of	10	000
km. [2]

	 [Total:	3]

Mercury,	the	smallest	of	the	eight	recognised	planets,	has	a	diameter	of	4.88	×
106	m	and	a	mean	density	of	5.4	×	103	kg	m−3. 	

Calculate	the	gravitational	field	at	its	surface. [5]

A	man	has	a	weight	of	900	N	on	the	Earth’s	surface.	What	would	his
weight	be	on	the	surface	of	Mercury? [2]

	 [Total:	7]

Calculate	the	potential	energy	of	a	spacecraft	of	mass	250	kg	when	it	is	20	000
km	from	the	planet	Mars.	(Mass	of	Mars	=	6.4	×	1023	kg,	radius	of	Mars	=	3.4
×	106	m.) [3]

Ganymede	is	the	largest	of	Jupiter’s	moons,	with	a	mass	of	1.48	×	1023	kg.	It
orbits	Jupiter	with	an	orbital	radius	of	1.07	×	106	km	and	it	rotates	on	its	own
axis	with	a	period	of	7.15	days.	It	has	been	suggested	that	to	monitor	an
unmanned	landing	craft	on	the	surface	of	Ganymede	a	geostationary	satellite
should	be	placed	in	orbit	around	Ganymede. 	

Calculate	the	orbital	radius	of	the	proposed	geostationary	satellite. [2]

Suggest	a	difficulty	that	might	be	encountered	in	achieving	a	geostationary
orbit	for	this	moon. [1]

	 [Total:	3]

The	Earth	orbits	the	Sun	with	a	period	of	1	year	at	an	orbital	radius	of	1.50	×
1011	m.	Calculate: 	

the	orbital	speed	of	the	Earth [3]

the	centripetal	acceleration	of	the	Earth [2]

the	Sun’s	gravitational	field	strength	at	the	Earth. [1]

	 [Total:	6]

The	planet	Mars	has	a	mass	of	6.4	×	1023	kg	and	a	diameter	of	6790	km. 	

Calculate	the	acceleration	due	to	gravity	at	the	planet’s	surface. [2]

Calculate	the	gravitational	potential	at	the	surface	of	the	planet. [2]

A	rocket	is	to	return	some	samples	of	Martian	material	to	Earth.	Write
down	how	much	energy	each	kilogram	of	matter	must	be	given	to	escape
completely	from	Mars’	gravitational	field. [1]

Use	your	answer	to	part	b	to	show	that	the	minimum	speed	that	the	rocket
must	reach	to	escape	from	the	gravitational	field	is	5000	m	s−1. [2]

Suggest	why	it	has	been	proposed	that,	for	a	successful	mission	to	Mars,
the	craft	that	takes	the	astronauts	to	Mars	will	be	assembled	at	a	space
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station	in	Earth	orbit	and	launched	from	there,	rather	than	from	the
Earth’s	surface. [2]

	 [Total:	9]

Explain	what	is	meant	by	the	gravitational	potential	at	a	point. [2]

This	diagram	shows	the	gravitational	potential	near	a	planet	of	mass	M	and
radius	R. 	

Figure	17.15
	

On	a	copy	of	the	diagram,	draw	similar	curves: 	

for	a	planet	of	the	same	radius	but	of	mass	2M–label	this	i. [2]

for	a	planet	of	the	same	mass	but	of	radius	2R–label	this	ii. [2]

Use	the	graphs	to	explain	from	which	of	these	three	planets	it	would
require	the	least	energy	to	escape. [2]

Venus	has	a	diameter	of	12	100	km	and	a	mass	of	4.87	×	1024	kg. 	

Calculate	the	energy	needed	to	lift	one	kilogram	from	the	surface	of	Venus
to	a	space	station	in	orbit	900	km	from	the	surface. [4]

	 [Total:	12]

Explain	what	is	meant	by	the	gravitational	field	strength	at	a	point. [2]

This	diagram	shows	the	dwarf	planet,	Pluto,	and	its	moon,	Charon.	These
can	be	considered	to	be	a	double	planetary	system	orbiting	each	other
about	their	joint	centre	of	mass. 	

Figure	17.16

	

Calculate	the	gravitational	pull	on	Charon	due	to	Pluto. [3]
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Use	your	result	to	part	b	to	calculate	Charon’s	orbital	period. [3]

Explain	why	Pluto’s	orbital	period	must	be	the	same	as	Charon’s. [1]

	 [Total:	9]

This	diagram	shows	the	variation	of	the	Earth’s	gravitational	field	strength
with	distance	from	its	centre. 	

Figure	17.17
	

Determine	the	gravitational	field	strength	at	a	height	equal	to	2R	above	the
Earth’s	surface,	where	R	is	the	radius	of	the	Earth. [1]

A	satellite	is	put	into	an	orbit	at	this	height.	State	the	centripetal
acceleration	of	the	satellite. [1]

Calculate	the	speed	at	which	the	satellite	must	travel	to	remain	in	this
orbit. [2]

Frictional	forces	mean	that	the	satellite	gradually	slows	down	after	it
has	achieved	a	circular	orbit.	Draw	a	diagram	of	the	initial	circular
orbital	path	of	the	satellite,	and	show	the	resulting	orbit	as	frictional
forces	slow	the	satellite	down. [1]

Suggest	and	explain	why	there	is	not	a	continuous	bombardment	of	old
satellites	colliding	with	the	Earth. [2]

	 [Total:	7]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	nature	of	the
gravitational	field

17.1 	 	 	

represent	and	interpret	a	gravitational
field	using	field	lines

17.1 	 	 	

recall	and	use	Newton’s	law	of
gravitation:	

17.1 	 	 	

understand	why	g	is	approximately
constant	near	the	Earth’s	surface

17.2 	 	 	

derive	from	Newton’s	law	of	gravitation: 17.2 	 	 	

recall	and	use	the	equation:	 17.2 	 	 	

understand	that	the	gravitational
potential	at	infinity	is	zero

17.3 	 	 	

define	gravitational	potential	at	a	point,	
,	as	the	work	done	in	bringing	unit

mass	from	infinity	to	that	point

17.4 	 	 	

understand	that	the	gravitational
potential	decreases,	being	more
negative,	as	an	object	moves	closer	to	a
second	object

17.4 	 	 	

recall	and	use	the	formula	that	the
gravitational	potential	

17.4 	 	 	

use	the	formula:	
17.4 	 	 	

understand	that	the	potential	energy	of
two	point	masses	is	equal	to:	

17.1 	 	 	

solve	problems	involving	circular	orbits
of	satellites	by	relating	the	gravitational
force	to	the	centripetal	acceleration	of
the	satellite

17.5 	 	 	

understand	that	a	satellite	in	a
geostationary	satellite	remains	above
the	same	point	on	the	Earth’s	surface

17.7 	 	 	

understand	that	a	geostationary
satellite	has	an	orbital	period	of	24
hours	and	travels	from	west	to	east.

17.7 	 	 	
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	Chapter	18

Oscillations

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
give	examples	of	free	and	forced	oscillations
use	appropriate	terminology	to	describe	oscillations

use	the	equation	a	=	−ω2x	to	define	simple	harmonic	motion	(s.h.m.)
recall	and	use	equations	for	displacement	and	velocity	in	s.h.m.
draw	and	use	graphical	representations	of	s.h.m.
describe	energy	changes	during	s.h.m.

recall	and	use	 ,	where	E	is	the	total	energy	of	a	system	undergoing	simple	harmonic
motion
describe	the	effects	of	damping	on	oscillations	and	draw	graphs	showing	these	effects
understand	that	resonance	involves	a	maximum	amplitude	of	oscillation
understand	 that	 resonance	 occurs	 when	 an	 oscillating	 system	 is	 forced	 to	 oscillate	 at	 its	 natural
frequency.

BEFORE	YOU	START
Look	at	objects	that	vibrate	or	move	in	repetitive	motion,	such	as	the	pendulum	of	a	clock,	a	mass
on	the	end	of	a	spring,	a	toy	yo-yo	on	a	string,	a	branch	of	a	tree	in	a	breeze	or	an	insect’s	wings.
Write	down	three	examples	and	be	ready	to	share	these	with	the	class.
What	does	their	motion	have	in	common?	What	differences	are	there	between	them?	Discuss	with	a
partner.

OSCILLATIONS	AND	ENGINEERING



When	designing	new	products,	designers	need	to	consider	unwanted	oscillations	in	the	product,
whether	that	be	a	new	vacuum	cleaner,	a	new	bridge,	a	new	electric	toothbrush	or	a	new	aircraft.
Figure	18.1	shows	the	Millennium	Bridge	over	the	river	Thames	in	London.	The	bridge	was
revolutionary:	a	suspension	bridge	without	the	large	supporting	towers	that	are	generally	integral	to
the	design	of	suspension	bridges.	It	was	built	to	celebrate	the	new	millennium	and	it	opened	on	10	June
2000;	the	first	new	crossing	built	over	the	Thames	for	over	100	years.
Unfortunately,	it	had	to	be	closed	two	days	later	when	engineers	detected	that,	when	there	were	a	lot	of
people	walking	across	the	bridge,	it	started	to	sway	and	twist.	The	effect	was	made	worse	because
people	automatically	adjusted	their	walking	so	that	each	pace	coincided	with	the	movements	of	the
bridge.

Figure	18.1:	The	Millenium	Bridge	across	the	Thames,	London.

It	took	nearly	two	years	before	the	engineers	were	able	to	fix	the	problem	and	for	the	bridge	to	be
reopened	–	at	a	cost	of	nearly	five	million	pounds!
Why	do	you	think	a	designer,	designing	a	new	electric	toothbrush,	should	be	aware	of	the	effects	of
oscillations?
It	is	not	only	large	oscillations	that	are	dangerous;	very	small,	repeated	vibrations	will	cause	cracks	to
form	in	metals.	You	will	be	aware	that	if	you	bend	a	thin	sheet	of	metal	back	and	forth	a	few	times	it
becomes	easier	to	bend	–	a	few	more	times	and	it	will	break.	This	is	an	extreme	example	of	metal
fatigue.	Much	smaller	vibrations	repeated	often	enough	will	cause	microscopic	cracks	to	form	at	points
of	high	stress.	These	microscopic	cracks	will	widen	and,	eventually,	the	structure	will	fail.
The	first	passenger	jet	airliner,	the	de	Haviland	Comet,	suffered	from	this	problem	and	after	two	of	the
aircraft	disintegrated	in	mid-air,	all	Comets	were	grounded.	After	meticulous	investigation,	engineers
concluded	that	the	most	likely	cause	of	the	accidents	was	metal	fatigue	at	the	high	stress	points	near
the	corners	of	the	‘almost’,	square	windows.	You	may	have	noticed	that	the	windows	in	more	modern
airliners	are	more	oval	in	shape	that	avoids	the	high	stress	points	found	at	the	corners	of	a	square
shape.
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18.1	Free	and	forced	oscillations
Oscillations	and	vibrations	are	everywhere.	A	bird	in	flight	flaps	its	wings	up	and	down.	An	aircraft’s
wings	also	vibrate	up	and	down,	but	this	is	not	how	it	flies.	The	wings	are	long	and	thin,	and	they	vibrate
slightly	because	they	are	not	perfectly	rigid.	Many	other	structures	vibrate	–	bridges	when	traffic	flows
across,	buildings	in	high	winds.
A	more	specific	term	than	vibration	is	oscillation.	An	object	oscillates	when	it	moves	back	and	forth
repeatedly,	on	either	side	of	some	equilibrium	position.	If	we	stop	the	object	from	oscillating,	it	returns	to
the	equilibrium	position.
We	make	use	of	oscillations	in	many	different	ways	–	for	pleasure	(a	child	on	a	swing),	for	music	(the
vibrations	of	a	guitar	string),	for	timing	(the	movement	of	a	pendulum	or	the	vibrations	of	a	quartz
crystal).	Whenever	we	make	a	sound,	the	molecules	of	the	air	oscillate,	passing	the	sound	energy	along.
The	atoms	of	a	solid	vibrate	more	and	more	as	the	temperature	rises.
These	examples	of	oscillations	and	vibrations	may	seem	very	different	from	one	another.	In	this	chapter,
we	will	look	at	the	characteristics	that	are	shared	by	many	oscillations.

Free	or	forced?

Free
The	easiest	oscillations	to	understand	are	free	oscillations.	If	you	pluck	a	guitar	string,	it	continues	to
vibrate	for	some	time	after	you	have	released	it.	The	guitar	string	vibrates	at	a	particular	frequency	(the
number	of	vibrations	per	unit	time).	This	is	called	its	natural	frequency	of	vibration,	and	it	gives	rise	to
the	particular	note	that	you	hear.	Change	the	length	of	the	string,	and	you	change	the	natural	frequency.
Every	oscillator	has	a	natural	frequency	of	vibration,	the	frequency	with	which	it	vibrates	freely	after	an
initial	disturbance.

Forced
Many	objects	can	be	forced	to	vibrate.	If	you	sit	on	a	bus,	you	may	notice	that	the	vibrations	from	the
engine	are	transmitted	to	your	body,	causing	you	to	vibrate	with	the	same	frequency.	These	are	not	free
vibrations	of	your	body;	they	are	forced	vibrations.	Their	frequency	is	not	the	natural	frequency	of
vibration	of	your	body,	but	the	forcing	frequency	of	the	bus.
In	the	same	way,	you	can	force	a	metre	ruler	to	oscillate	by	waving	it	up	and	down;	however,	its	natural
frequency	of	vibration	will	be	much	greater	than	this,	as	you	will	discover	if	you	hold	one	end	down	on	the
bench	and	then	quickly	push	down	and	let	go	of	the	other	end	(Figure	18.2).

Figure	18.2:	A	ruler	vibrating	freely	at	its	natural	frequency.

Question
State	which	of	the	following	are	free	oscillations,	and	which	are	forced:

the	wing	beat	of	a	mosquito
the	movement	of	the	pendulum	in	a	upright	clock
the	vibrations	of	a	cymbal	after	it	has	been	struck
the	shaking	of	a	building	during	an	earthquake.

	



	



18.2	Observing	oscillations
Many	oscillations	are	too	rapid	or	too	small	for	us	to	observe.	Our	eyes	cannot	respond	rapidly	enough	if
the	frequency	of	oscillation	is	more	than	about	5	Hz	(five	oscillations	per	second);	anything	faster	than
this	appears	as	a	blur.	In	order	to	see	the	general	characteristics	of	oscillating	systems,	we	need	to	find
suitable	systems	that	oscillate	slowly.	Practical	Activity	18.1	describes	three	suitable	situations	to
investigate.

PRACTICAL	ACTIVITY	18.1

Observing	slow	oscillations

A	mass–spring	system
A	trolley,	loaded	with	extra	masses,	is	tethered	by	identical	springs	in	between	two	clamps	(Figure
18.3).	Move	the	trolley	to	one	side	and	it	will	oscillate	back	and	forth	along	the	bench.	Listen	to	the
sound	of	the	trolley	moving.	Where	is	it	moving	fastest?	What	happens	to	its	speed	as	it	reaches	the
ends	of	its	oscillation?	What	is	happening	to	the	springs	as	the	trolley	oscillates?

Figure	18.3:	A	trolley	tethered	between	springs	will	oscillate	freely	from	side	to	side.

A	long	pendulum
A	string,	at	least	2	m	long,	hangs	from	the	ceiling	with	a	large	mass	fixed	at	the	end	(Figure	18.4).	Pull
the	mass	some	distance	to	one	side,	and	let	go.	The	pendulum	will	swing	back	and	forth	at	its	natural
frequency	of	oscillation.	Try	to	note	the	characteristics	of	its	motion.	In	what	ways	is	it	similar	to	the
motion	of	the	oscillating	trolley?	In	what	ways	is	it	different?

A	loudspeaker	cone
A	signal	generator,	set	to	a	low	frequency	(say,	1	Hz),	drives	a	loudspeaker	so	that	it	vibrates	(Figure
18.5).	You	need	to	be	able	to	see	the	cone	of	the	loudspeaker.
How	does	this	motion	compare	with	that	of	the	pendulum	and	the	mass–spring	system?	Try	using	a
higher	frequency	(say,	100	Hz).	Use	an	electronic	stroboscope	flashing	at	a	similar	frequency	to	show
up	the	movement	of	the	cone.	(It	may	help	to	paint	a	white	spot	on	the	centre	of	the	cone.)	Do	you
observe	the	same	pattern	of	movement?

Figure	18.4:	A	long	pendulum	oscillates	back	and	forth.
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Figure	18.5:	A	loudspeaker	cone	forced	to	vibrate	up	and	down.

Question
If	you	could	draw	a	velocity–time	graph	for	any	of	the	oscillators	described	in	Practical	Activity	18.1,
what	would	it	look	like?	Would	it	be	a	curve	like	the	one	shown	in	Figure	18.6a,	or	triangular	(saw-
toothed)	like	the	one	shown	in	Figure	18.6b?

Figure	18.6:	Two	possible	velocity–time	graphs	for	vibrating	objects.
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18.3	Describing	oscillations
All	of	the	examples	discussed	so	far	show	the	same	pattern	of	movement.	The	trolley	accelerates	as	it
moves	towards	the	centre	of	the	oscillation.	It	is	moving	fastest	at	the	centre.	It	decelerates	as	it	moves
towards	the	end	of	the	oscillation.	At	the	extreme	position,	it	stops	momentarily,	reverses	its	direction	and
accelerates	back	towards	the	centre	again.

Amplitude,	period	and	frequency
Many	oscillating	systems	can	be	represented	by	a	displacement–time	graph	like	that	shown	in	Figure
18.7.	The	displacement	x	varies	in	a	smooth	way	on	either	side	of	the	midpoint.	The	shape	of	this	graph	is
a	sine	curve,	and	the	motion	is	described	as	sinusoidal.
Notice	that	the	displacement	changes	between	positive	and	negative	values,	as	the	object	moves	through
the	equilibrium	position.	The	maximum	displacement	from	the	equilibrium	position	is	called	the
amplitude	x0	of	the	oscillation.

Figure	18.7:	A	displacement–time	graph	to	show	the	meaning	of	amplitude	and	period.

The	displacement–time	graph	can	also	be	used	to	show	the	period	and	frequency	of	the	oscillation.	The
period	T	is	the	time	for	one	complete	oscillation.	Note	that	the	oscillating	object	must	go	from	one	side	to
the	other	and	back	again	(or	the	equivalent).	The	frequency	f	is	the	number	of	oscillations	per	unit	time,
and	so	f	is	the	reciprocal	of	T:

The	equation	can	also	be	written	as:

Question
From	the	displacement–time	graph	shown	in	Figure	18.8,	determine	the	amplitude,	period	and
frequency	of	the	oscillations	represented.

Figure	18.8:	A	displacement–time	graph	for	an	oscillator.

Phase
The	term	phase	describes	the	point	that	an	oscillating	mass	has	reached	within	the	complete	cycle	of	an
oscillation.	It	is	often	important	to	describe	the	phase	difference	between	two	oscillations.	The	graph	of
Figure	18.9a	shows	two	oscillations	that	are	identical	except	for	their	phase	difference.	They	are	out	of
step	with	one	another.	In	this	example,	they	have	a	phase	difference	of	one-quarter	of	an	oscillation.
Phase	difference	can	be	measured	as	a	fraction	of	an	oscillation,	in	degrees	or	in	radians	(see	Worked
example	1).
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Figure	18.9:	Illustrating	the	idea	of	phase	difference.

WORKED	EXAMPLE

Figure	18.10	shows	displacement–time	graphs	for	two	identical	oscillators.	Calculate	the	phase
difference	between	the	two	oscillations.	Give	your	answer	in	degrees	and	in	radians.

Figure	18.10:	The	displacement–time	graphs	of	two	oscillators	with	the	same	period.

Measure	the	time	interval	t	between	two	corresponding	points	on	the	graphs.
t	=	17	ms
Determine	the	period	T	for	one	complete	oscillation.
T	=	60	ms
Hint:	Remember	that	a	complete	oscillation	is	when	the	object	goes	from	one	side	to	the
other	and	back	again.
Now	you	can	calculate	the	phase	difference	as	a	fraction	of	an	oscillation.
phase	difference	=	fraction	of	an	oscillation
Therefore:

Convert	to	degrees	and	radians.	There	are	360°	and	2π	rad	in	one	oscillation.
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Question
Figure	18.9b	shows	two	oscillations	that	are	out	of	phase.	By	what	fraction	of	an	oscillation	are
they	out	of	phase?
Why	would	it	not	make	sense	to	ask	the	same	question	about	Figure	18.9c?
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18.4	Simple	harmonic	motion
There	are	many	situations	where	we	can	observe	the	special	kind	of	oscillations	called	simple	harmonic
motion	(s.h.m.).	Some	are	more	obvious	than	others.	For	example,	the	vibrating	strings	of	a	musical
instrument	show	s.h.m.	When	plucked	or	bowed,	the	strings	move	back	and	forth	about	the	equilibrium
position	of	their	oscillation.	The	motion	of	the	tethered	trolley	in	Figure	18.3	and	that	of	the	pendulum	in
Figure	18.4	are	also	s.h.m.	(Simple	harmonic	motion	is	defined	in	terms	of	the	acceleration	and
displacement	of	an	oscillator	–	see	topic	18.5	Representing	s.h.m.	graphically.)
Here	are	some	other,	less	obvious,	situations	where	simple	harmonic	motion	can	be	found:

When	a	pure	(single	tone)	sound	wave	travels	through	air,	the	molecules	of	the	air	vibrate	with	s.h.m.
When	an	alternating	current	flows	in	a	wire,	the	electrons	in	the	wire	vibrate	with	s.h.m.
There	is	a	small	alternating	electric	current	in	a	radio	or	television	aerial	when	it	is	tuned	to	a	signal
in	the	form	of	electrons	moving	with	s.h.m.
The	atoms	that	make	up	a	molecule	vibrate	with	s.h.m.	(see,	for	example,	the	hydrogen	molecule	in
Figure	18.11a).

Oscillations	can	be	very	complex,	with	many	different	frequencies	of	oscillation	occurring	at	the	same
time.	Examples	include	the	vibrations	of	machinery,	the	motion	of	waves	on	the	sea	and	the	vibration	of	a
solid	crystal	formed	when	atoms,	ions	or	molecules	bond	together	(Figure	18.11b).	It	is	possible	to	break
down	a	complex	oscillation	into	a	sum	of	simple	oscillations,	and	so	we	will	focus	our	attention	in	this
chapter	on	s.h.m.	with	only	one	frequency.	We	will	also	concentrate	on	large-scale	mechanical
oscillations,	but	you	should	bear	in	mind	that	this	analysis	can	be	extended	to	the	situations	already
mentioned,	and	many	more	besides.

Figure	18.11:	We	can	think	of	the	bonds	between	atoms	as	being	springy;	this	leads	to	vibrations,	a	in	a
molecule	of	hydrogen	and	b	in	a	solid	crystal.

The	requirements	for	s.h.m.
If	a	simple	pendulum	is	undisturbed,	it	is	in	equilibrium.	The	string	and	the	mass	will	hang	vertically.	To
start	the	pendulum	swinging	(Figure	18.12),	the	mass	must	be	pulled	to	one	side	of	its	equilibrium
position.	The	forces	on	the	mass	are	unbalanced	and	so	it	moves	back	towards	its	equilibrium	position.
The	mass	swings	past	this	point	and	continues	until	it	comes	to	rest	momentarily	at	the	other	side;	the
process	is	then	repeated	in	the	opposite	direction.	Note	that	a	complete	oscillation	in	Figure	18.12	is	from
right	to	left	and	back	again.
The	three	requirements	for	s.h.m.	of	a	mechanical	system	are:

a	mass	that	oscillates
a	position	where	the	mass	is	in	equilibrium
a	 restoring	 force	 that	 acts	 to	 return	 the	mass	 to	 its	 equilibrium	 position;	 the	 restoring	 force	F	 is
directly	proportional	to	the	displacement	x	of	the	mass	from	its	equilibrium	position	and	is	directed
towards	that	point.



5

6

Figure	18.12:	This	swinging	pendulum	has	positive	displacement	x	and	negative	velocity	v.

The	changes	of	velocity	in	s.h.m.
As	the	pendulum	swings	back	and	forth,	its	velocity	is	constantly	changing.	As	it	swings	from	right	to	left
(as	shown	in	Figure	18.12)	its	velocity	is	negative.	It	accelerates	towards	the	equilibrium	position	and
then	decelerates	as	it	approaches	the	other	end	of	the	oscillation.	It	has	positive	velocity	as	it	swings	back
from	left	to	right.	Again,	it	has	maximum	speed	as	it	travels	through	the	equilibrium	position	and
decelerates	as	it	swings	up	to	its	starting	position.
This	pattern	of	acceleration–deceleration–changing	direction–acceleration	again	is	characteristic	of
simple	harmonic	motion.	There	are	no	sudden	changes	of	velocity.	In	the	next	topic,	we	will	see	how	we
can	observe	these	changes	and	how	we	can	represent	them	graphically.

Questions
Identify	the	features	of	the	motion	of	the	trolley	in	Figure	18.3	that	satisfy	the	three	requirements	for
s.h.m.
Explain	why	the	motion	of	someone	jumping	up	and	down	on	a	trampoline	is	not	simple	harmonic
motion.	(Their	feet	lose	contact	with	the	trampoline	during	each	bounce.)

	
	



18.5	Representing	s.h.m.	graphically
If	you	set	up	a	trolley	tethered	between	springs	(Figure	18.13)	you	can	hear	the	characteristic	rhythm	of
s.h.m.	as	the	trolley	oscillates	back	and	forth.	By	adjusting	the	mass	carried	by	the	trolley,	you	can
achieve	oscillations	with	a	period	of	about	two	seconds.

Figure	18.13:	A	motion	sensor	can	be	used	to	investigate	s.h.m.	of	a	spring–trolley	system.

The	motion	sensor	allows	you	to	record	how	the	displacement	of	the	trolley	varies	with	time.	Ultrasonic
pulses	from	the	sensor	are	reflected	by	the	card	on	the	trolley	and	the	reflected	pulses	are	detected.	This
‘sonar’	technique	allows	the	sensor	to	determine	the	displacement	of	the	trolley.	A	typical	screen	display
is	shown	in	Figure	18.14.

Figure	18.14:	A	typical	displacement–time	graph	generated	by	a	motion	sensor.

The	computer	can	then	determine	the	velocity	of	the	trolley	by	calculating	the	rate	of	change	of
displacement.	Similarly,	it	can	calculate	the	rate	of	change	of	velocity	to	determine	the	acceleration.
Idealised	graphs	of	displacement,	velocity	and	acceleration	against	time	are	shown	in	Figure	18.15.	We
will	examine	these	graphs	in	sequence	to	see	what	they	tell	us	about	s.h.m.	and	how	the	three	graphs	are
related	to	one	another.



Figure	18.15:	Graphs	of	displacement	x,	velocity	v	and	acceleration	a	against	time	t	for	s.h.m.

Displacement–time	(x–t)	graph
The	displacement	of	the	oscillating	mass	varies	according	to	the	smooth	curve	shown	in	Figure	18.15a.
Mathematically,	this	is	a	sine	curve;	its	variation	is	described	as	sinusoidal.	Note	that	this	graph	allows	us
to	determine	the	amplitude	x0	and	the	period	T	of	the	oscillations.	In	this	graph,	the	displacement	x	of	the
oscillation	is	shown	as	zero	at	the	start,	when	t	is	zero.	We	have	chosen	to	consider	the	motion	to	start
when	the	mass	is	at	the	midpoint	of	its	oscillation	(equilibrium	position)	and	is	moving	to	the	right.	We
could	have	chosen	any	other	point	in	the	cycle	as	the	starting	point,	but	it	is	conventional	to	start	as
shown	here.

Velocity–time	(v–t)	graph
The	velocity	v	of	the	oscillator	at	any	time	can	be	determined	from	the	gradient	of	the	displacement–time
graph:

Again,	we	have	a	smooth	curve	(Figure	18.15b),	which	shows	how	the	velocity	v	depends	on	time	t.	The
shape	of	the	curve	is	the	same	as	for	the	displacement–time	graph,	but	it	starts	at	a	different	point	in	the
cycle.
When	time	t	=	0,	the	mass	is	at	the	equilibrium	position	and	this	is	where	it	is	moving	fastest.	Hence,	the
velocity	has	its	maximum	value	at	this	point.	Its	value	is	positive	because	at	time	t	=	0	it	is	moving
towards	the	right.

Acceleration–time	(a–t)	graph
Finally,	the	acceleration	a	of	the	oscillator	at	any	time	can	be	determined	from	the	gradient	of	the
velocity–time	graph:

This	gives	a	third	curve	of	the	same	general	form	(Figure	18.15c),	which	shows	how	the	acceleration	a
depends	on	time	t.	At	the	start	of	the	oscillation,	the	mass	is	at	its	equilibrium	position.	There	is	no
resultant	force	acting	on	it	so	its	acceleration	is	zero.	As	it	moves	to	the	right,	the	restoring	force	acts
towards	the	left,	giving	it	a	negative	acceleration.	The	acceleration	has	its	greatest	value	when	the	mass
is	displaced	farthest	from	the	equilibrium	position.	Notice	that	the	acceleration	graph	is	‘upside-down’
compared	with	the	displacement	graph.	This	shows	that:



acceleration	∝	−displacement

or

a	∝	−	x

In	other	words,	whenever	the	mass	has	a	positive	displacement	(to	the	right),	its	acceleration	is	to	the
left,	and	vice	versa.
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18.6	Frequency	and	angular	frequency
The	frequency	f	of	s.h.m.	is	equal	to	the	number	of	oscillations	per	unit	time.	As	we	saw	earlier,	f	is
related	to	the	period	T	by:

We	can	think	of	a	complete	oscillation	of	an	oscillator	or	a	cycle	of	s.h.m.	as	being	represented	by	2π
radians.	(This	is	similar	to	a	complete	cycle	of	circular	motion,	where	an	object	moves	round	through	2π
radians.)	The	phase	of	the	oscillation	changes	by	2π	rad	during	one	oscillation.	Hence,	if	there	are	f
oscillations	in	unit	time,	there	must	be	2πf	radians	in	unit	time.	This	quantity	is	the	angular	frequency	of
the	s.h.m.	and	it	is	represented	by	the	Greek	letter	ω	(omega).
The	angular	frequency	ω	is	related	to	frequency	f	by	the	equation:

KEY	EQUATION
Relationship	of	angular	frequency	ω	to	frequency	f:

Since	 ,	the	angular	frequency	ω	is	related	to	the	period	T	of	the	oscillator	by	the	equation:

Questions
Use	the	graphs	shown	in	Figure	18.15	to	determine	the	values	of	the	following	quantities:

amplitude
time	period
maximum	velocity
maximum	acceleration.

State	at	what	point	in	an	oscillation	the	oscillator	has	zero	velocity	but	acceleration	towards	the	right.
Look	at	the	x–t	graph	of	Figure	18.15a.	When	t	=	0.1	s,	what	is	the	gradient	of	the	graph?	State	the
velocity	at	this	instant.
Figure	18.16	shows	the	displacement–time	(x–t)	graph	for	an	oscillating	mass.	Use	the	graph	to
determine	the	following	quantities:

the	velocity	in	cm	s−1	when	t	=	0	s
the	maximum	velocity	in	cm	s−1

the	acceleration	in	cm	s−2	when	t	=	1.0	s.

Figure	18.16:	A	displacement–time	graph	for	an	oscillating	mass.	For	Question	10.

In	Figure	18.17,	a	single	cycle	of	s.h.m.	is	shown,	but	with	the	x-axis	marked	with	the	phase	of	the
motion	in	radians.
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Figure	18.17:	The	phase	of	an	oscillation	varies	from	0	to	2π	during	one	cycle.

Questions
An	object	moving	with	s.h.m.	goes	through	two	complete	cycles	in	1.0	s.	Calculate:

the	period	T
the	frequency	f
the	angular	frequency	ω.

Figure	18.18	shows	the	displacement–time	graph	for	an	oscillating	mass.	Use	the	graph	to	determine
the	following:

amplitude
period
frequency
angular	frequency
displacement	at	A
velocity	at	B
velocity	at	C.

Figure	18.18:	A	displacement–time	graph.	For	Question	12.

An	atom	in	a	crystal	vibrates	with	s.h.m.	with	a	frequency	of	1014	Hz.	The	amplitude	of	its	motion	is
2.0	×	10−12	m.

Sketch	a	graph	to	show	how	the	displacement	of	the	atom	varies	during	one	cycle.
Use	your	graph	to	estimate	the	maximum	velocity	of	the	atom.
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18.7	Equations	of	s.h.m.
The	graph	of	Figure	18.15a,	shown	earlier,	represents	how	the	displacement	of	an	oscillator	varies	during
s.h.m.	We	have	already	mentioned	that	this	is	a	sine	curve.	We	can	present	the	same	information	in	the
form	of	an	equation.	The	relationship	between	the	displacement	x	and	the	time	t	is	as	follows:

where	x0	is	the	amplitude	of	the	motion	and	ω	is	its	frequency.	Sometimes,	the	same	motion	is
represented	using	a	cosine	function,	rather	than	a	sine	function:

KEY	EQUATIONS
Equations	of	simple	harmonic	motion:

The	difference	between	these	two	equations	is	illustrated	in	Figure	18.19.	The	sine	version	starts	at	x	=
0;	that	is,	the	oscillating	mass	is	at	its	equilibrium	position	when	t	=	0.
The	cosine	version	starts	at	x	=	x0,	so	that	the	mass	is	at	its	maximum	displacement	when	t	=	0.

Note	that,	in	calculations	using	these	equations,	the	quantity	ωt	is	in	radians.	Make	sure	that	your
calculator	is	in	radian	mode	for	any	calculation	(see	Worked	example	2).	The	presence	of	the	π	in	the
equation	should	remind	you	of	this.

Figure	18.19:	These	two	graphs	represent	the	same	simple	harmonic	motion.	The	difference	in	starting
positions	is	related	to	the	sine	and	cosine	forms	of	the	equation	for	x	as	a	function	of	t.

Questions
The	vibration	of	a	component	in	a	machine	is	represented	by	the	equation:
x	=	3.0	×	10−4	sin	(240πt)
where	the	displacement	x	is	in	metres.
Determine	the:

amplitude
frequency
period

of	the	vibration.
A	trolley	is	at	rest,	tethered	between	two	springs.	It	is	pulled	0.15	m	to	one	side	and,	when	time	t	=	0,
it	is	released	so	that	it	oscillates	back	and	forth	with	s.h.m.	The	period	of	its	motion	is	2.0	s.

Write	an	equation	for	its	displacement	x	at	any	time	t	(assume	that	the	motion	is	not	damped	by
frictional	forces).
Sketch	a	displacement–time	graph	to	show	two	cycles	of	the	motion,	giving	values	where
appropriate.

Acceleration	and	displacement
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In	s.h.m.,	an	object’s	acceleration	depends	on	how	far	it	is	displaced	from	its	equilibrium	position	and	on
the	magnitude	of	the	restoring	force.	The	greater	the	displacement	x,	the	greater	the	acceleration	a.	In
fact,	a	is	proportional	to	x.	We	can	write	the	following	equation	to	represent	this:

where	a	=	the	acceleration	of	an	object	vibrating	in	s.h.m.,	ω	is	the	angular	frequency	of	the	object,	x	=
displacement

KEY	EQUATION

Acceleration	of	an	object	vibrating	in	simple	harmonic	motion.

This	equation	shows	that	a	is	proportional	to	x;	the	constant	of	proportionality	is	ω2.	The	minus	sign
shows	that,	when	the	object	is	displaced	to	the	right,	the	direction	of	its	acceleration	is	to	the	left.
The	acceleration	is	always	directed	towards	the	equilibrium	position,	in	the	opposite	direction	to	the
displacement.
It	should	not	be	surprising	that	angular	frequency	ω	appears	in	this	equation.	Imagine	a	mass	hanging	on
a	spring,	so	that	it	can	vibrate	up	and	down.	If	the	spring	is	stiff,	the	force	on	the	mass	will	be	greater;	it
will	be	accelerated	more	for	a	given	displacement	and	its	frequency	of	oscillation	will	be	higher.

The	equation	 	helps	us	to	define	simple	harmonic	motion.	The	acceleration	a	is	directly
proportional	to	displacement	x;	and	the	minus	sign	shows	that	it	is	in	the	opposite	direction.
An	object	vibrates	in	simple	harmonic	motion	if	its	acceleration	is	directly	proportional	to	its
displacement	from	its	equilibrium	position	and	is	in	the	opposite	direction	to	the	displacement.
If	a	and	x	were	in	the	same	direction	(no	minus	sign),	the	body’s	acceleration	would	increase	as	it	moved
away	from	the	fixed	point	and	it	would	move	away	faster	and	faster,	never	to	return.
Figure	18.20	shows	the	acceleration–displacement	(a	–	x)	graph	for	an	oscillator	executing	s.h.m.	Note
the	following:

The	graph	is	a	straight	line	through	the	origin	(a	∝	x).

It	has	a	negative	slope	(the	minus	sign	in	the	equation	a	=	−ω2x).	This	means	that	the	acceleration	is
always	directed	towards	the	equilibrium	position.

The	magnitude	of	the	gradient	of	the	graph	is	ω2.

Figure	18.20:	Graph	of	acceleration	a	against	displacement	x	for	an	oscillator	executing	s.h.m.

The	gradient	 is	 independent	of	the	amplitude	of	the	motion.	This	means	that	the	frequency	 f	or	 the
period	T	of	the	oscillator	is	independent	of	the	amplitude	and	so	a	simple	harmonic	oscillator	keeps
steady	time.

If	you	have	studied	calculus,	you	may	be	able	to	differentiate	the	equation	for	x	twice	with	respect	to	time
to	obtain	an	equation	for	acceleration	and	thereby	show	that	the	defining	equation	a	=	−ω2x	is	satisfied.



2

Step	1

Step	2

Step	3

Step	4

KEY	IDEA
We	say	that	the	equation	a	=	−ω2x	defines	simple	harmonic	motion–it	tells
us	what	is	required	if	a	body	is	to	perform	s.h.m.	The	equation	x	=	x0	sin
ωt	is	then	described	as	a	solution	to	the	equation,	since	it	tells	us	how
the	displacement	of	the	body	varies	with	time.

WORKED	EXAMPLE

A	pendulum	oscillates	with	frequency	1.5	Hz	and	amplitude	0.10	m.	If	it	is	passing	through	its
equilibrium	position	when	t	=	0,	write	an	equation	to	represent	its	displacement	x	in	terms	of
amplitude	x0,	angular	frequency	ω	and	time	t.	Determine	its	displacement	when	t	=	0.50	s.

Select	the	correct	equation.	In	this	case,	the	displacement	is	zero	when	t	=	0,	so	we	use	the
sine	form:

From	the	frequency	f,	calculate	the	angular	frequency	ω:

Substitute	values	in	the	equation:	x0	=	0.10	m,	so:

x	=	0.10	sin	(3.0πt)
Hint:	Remember	to	put	your	calculator	into	radian	mode.
To	find	x	when	t	=	0.50	s,	substitute	for	t	and	calculate	the	answer:

This	means	that	the	pendulum	is	at	the	extreme	end	of	its	oscillation;	the	minus	sign	means	that	it
is	at	the	negative	or	left-hand	end,	assuming	you	have	chosen	to	consider	displacements	to	the
right	as	positive.
(If	your	calculation	went	like	this:

then	your	calculator	was	incorrectly	set	to	work	in	degrees,	not	radians.)

Equations	for	velocity
The	velocity	ν	of	an	oscillator	varies	as	it	moves	back	and	forth.	It	has	its	greatest	speed	when	it	passes
through	the	equilibrium	position	in	the	middle	of	the	oscillation.	If	we	take	time	t	=	0	when	the	oscillator
passes	through	the	middle	of	the	oscillation	with	its	greatest	speed	ν0,	then	we	can	represent	the
changing	velocity	as	an	equation:

We	use	the	cosine	function	to	represent	the	velocity	since	it	has	its	maximum	value	when	t	=	0.
The	equation	ν	=	v0	cos	ωt	tells	us	how	v	depends	on	t.	We	can	write	another	equation	to	show	how	the
velocity	depends	on	the	oscillator’s	displacement	x:

This	equation	can	be	used	to	deduce	the	speed	of	an	oscillator	at	any	point	in	an	oscillation,	including	its
maximum	speed.

Maximum	speed	of	an	oscillator
If	an	oscillator	is	executing	simple	harmonic	motion,	it	has	maximum	speed	when	it	passes	through	its
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equilibrium	position.	This	is	when	its	displacement	x	is	zero.	The	maximum	speed	ν0	of	the	oscillator
depends	on	the	frequency	f	of	the	motion	and	on	the	amplitude	x0.	Substituting	x	=	0	in	the	equation:

x	=	0	when	the	speed	is	at	a	maximum:

ν0	=	ωx0

According	to	this	equation,	for	a	given	oscillation:

ν0	∝	x0

KEY	EQUATION

Speed	of	an	oscillator.

A	simple	harmonic	oscillator	has	a	period	that	is	independent	of	the	amplitude.	A	greater	amplitude
means	that	the	oscillator	has	to	travel	a	greater	distance	in	the	same	time–hence	it	has	a	greater	speed.
The	equation	also	shows	that	the	maximum	speed	is	proportional	to	the	frequency.	Increasing	the
frequency	means	a	shorter	period.	A	given	distance	is	covered	in	a	shorter	time–hence	it	has	a	greater
speed.
Have	another	look	at	Figure	18.15.	The	period	of	the	motion	is	0.40	s	and	the	amplitude	of	the	motion	is
0.02	m.	The	frequency	f	can	be	calculated	as	follows:

We	can	now	use	the	equation	ν0	=	(2πf)x0	to	determine	the	maximum	speed	ν0:

ν0	=	(2πf)x0	=	(2π	×	2.5)	×	2.0	×	10−2

ν0	≈	0.31	m	s−1

This	is	how	the	values	on	Figure	18.15b	were	calculated.

Questions
A	mass	secured	at	the	end	of	a	spring	moves	with	s.h.m.	The	frequency	of	its	motion	is	1.4	Hz.

Write	an	equation	of	the	form	a	=	−ω2x	to	show	how	the	acceleration	of	the	mass	depends	on	its
displacement.
Calculate	the	acceleration	of	the	mass	when	it	is	displaced	0.050	m	from	its	equilibrium	position.

A	short	pendulum	oscillates	with	s.h.m.	such	that	its	acceleration	a	(in	m	s−2)	is	related	to	its
displacement	x	(in	m)	by	the	equation	a	=	−300x.	Determine	the	frequency	of	the	oscillations.
The	pendulum	of	a	grandfather	clock	swings	from	one	side	to	the	other	in	1.00	s.	The	amplitude	of	the
oscillation	is	12	cm.

Calculate:
the	period	of	its	motion
the	frequency
the	angular	frequency.

Write	an	equation	of	the	form	a	=	−ω2x	to	show	how	the	acceleration	of	the	pendulum	bob
depends	on	its	displacement.
Calculate	the	maximum	speed	of	the	pendulum	bob.
Calculate	the	speed	of	the	bob	when	its	displacement	is	6	cm.

A	trolley	of	mass	m	is	fixed	to	the	end	of	a	spring.	The	spring	can	be	compressed	and	extended.	The
spring	has	a	force	constant	k.	The	other	end	of	the	spring	is	attached	to	a	vertical	wall.	The	trolley
lies	on	a	smooth	horizontal	table.	The	trolley	oscillates	when	it	is	displaced	from	its	equilibrium
position.



a
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Show	that	the	motion	of	the	oscillating	trolley	is	s.h.m.
Show	that	the	period	T	of	the	trolley	is	given	by	the	equation:
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18.8	Energy	changes	in	s.h.m.
During	simple	harmonic	motion,	there	is	a	constant	exchange	of	energy	between	two	forms:	potential	and
kinetic.	We	can	see	this	by	considering	the	mass–spring	system	shown	in	Figure	18.21.
When	the	mass	is	pulled	to	one	side	(to	start	the	oscillations),	one	spring	is	compressed	and	the	other	is
stretched.	The	springs	store	elastic	potential	energy.	When	the	mass	is	released,	it	moves	back	towards
the	equilibrium	position,	accelerating	as	it	goes.	It	has	increasing	kinetic	energy.	The	potential	energy
stored	in	the	springs	decreases	while	the	kinetic	energy	of	the	mass	increases	by	the	same	amount	(as
long	as	there	are	no	heat	losses	due	to	frictional	forces).	Once	the	mass	has	passed	the	equilibrium
position,	its	kinetic	energy	decreases	and	the	energy	is	transferred	back	to	the	springs.	Provided	the
oscillations	are	undamped,	the	total	energy	in	the	system	remains	constant.

Figure	18.21:	The	elastic	potential	energy	stored	in	the	springs	is	converted	to	kinetic	energy	when	the
mass	is	released.

Energy	graphs
We	can	represent	these	energy	changes	in	two	ways.	Figure	18.22	shows	how	the	kinetic	energy	and
elastic	potential	energy	change	with	time.	Potential	energy	is	maximum	when	displacement	is	maximum
(positive	or	negative).	Kinetic	energy	is	maximum	when	displacement	is	zero.	The	total	energy	remains
constant	throughout.	Note	that	both	kinetic	energy	and	potential	energy	go	through	two	complete	cycles
during	one	period	of	the	oscillation.	This	is	because	kinetic	energy	is	maximum	when	the	mass	is	passing
through	the	equilibrium	position	moving	to	the	left	and	again	moving	to	the	right.	The	potential	energy	is
maximum	at	both	ends	of	the	oscillation.

Figure	18.22:	The	kinetic	energy	and	potential	energy	of	an	oscillator	vary	periodically,	but	 the	 total
energy	remains	constant	if	the	system	is	undamped.

A	second	way	to	show	this	is	to	draw	a	graph	of	how	potential	energy	and	kinetic	energy	vary	with
displacement	(Figure	18.23).
The	graph	shows	that:

kinetic	energy	is	maximum	when	displacement	x	=	0
potential	energy	is	maximum	when	x	=	±x0
at	any	point	on	this	graph,	the	total	energy	(k.e.	+	p.e.)	has	the	same	value.
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Figure	18.23:	The	kinetic	energy	is	maximum	at	zero	displacement;	the	potential	energy	is	maximum	at
maximum	displacement	(x0	and	−x0).

It	follows	that	if	the	maximum	speed	is	ν0	then	maximum	kinetic	energy	 .

At	this	point	in	the	cycle,	all	the	energy	is	in	the	form	of	kinetic	energy,	so	the	total	energy	of	the	system
is:

Since:

Then:

KEY	EQUATION

Total	energy	of	a	system	undergoing	simple	harmonic	motion.

Questions
To	start	a	pendulum	swinging,	you	pull	it	slightly	to	one	side.

What	kind	of	energy	does	this	transfer	to	the	mass?
Describe	the	energy	changes	that	occur	when	the	mass	is	released.

Figure	18.23	shows	how	the	different	forms	of	energy	change	with	displacement	during	s.h.m.	Copy
the	graph,	and	show	how	the	graph	would	differ	if	the	oscillating	mass	were	given	only	half	the	initial
input	of	energy.
Figure	18.24	shows	how	the	velocity	ν	of	a	2.0	kg	mass	was	found	to	vary	with	time	t	during	an
investigation	of	the	s.h.m.	of	a	pendulum.	Use	the	graph	to	estimate	the	following	for	the	mass:

its	maximum	velocity
its	maximum	kinetic	energy
its	maximum	potential	energy
its	maximum	acceleration
the	maximum	restoring	force	that	acted	on	it.



Figure	18.24:	A	velocity–time	graph	for	a	pendulum.	For	Question	22.

	
	



18.9	Damped	oscillations
In	principle,	oscillations	can	go	on	for	ever.	In	practice,	however,	the	oscillations	we	observe	around	us	do
not.	They	die	out,	either	rapidly	or	gradually.	A	child	on	a	swing	knows	that	the	amplitude	of	her	swinging
will	decline	until	eventually	she	will	come	to	rest,	unless	she	can	put	some	more	energy	into	the	swinging
to	keep	it	going.
This	happens	because	of	friction.	On	a	swing,	there	is	friction	where	the	swing	is	attached	to	the	frame
and	there	is	friction	with	the	air.	The	amplitude	of	the	child’s	oscillations	decreases	as	the	friction
transfers	energy	away	from	her	to	the	surroundings.
We	describe	these	oscillations	as	damped.	Their	amplitude	decreases	according	to	a	particular	pattern.
This	is	shown	in	Figure	18.25.

Figure	18.25:	Damped	oscillations.

The	amplitude	of	damped	oscillations	does	not	decrease	linearly.	It	decays	exponentially	with	time.	An
exponential	decay	is	a	particular	mathematical	pattern	that	arises	as	follows.	At	first,	the	swing	moves
rapidly.	There	is	a	lot	of	air	resistance	to	overcome,	so	the	swing	loses	energy	quickly	and	its	amplitude
decreases	at	a	high	rate.	Later,	it	is	moving	more	slowly.	There	is	less	air	resistance	and	so	energy	is	lost
more	slowly–the	amplitude	decreases	at	a	lower	rate.	Hence,	we	get	the	characteristic	curved	shape,
which	is	the	‘envelope’	of	the	graph	in	Figure	18.25.
Notice	that	the	frequency	of	the	oscillations	does	not	change	as	the	amplitude	decreases.	This	is	a
characteristic	of	simple	harmonic	motion.	The	child	may,	for	example,	swing	back	and	forth	once	every
two	seconds,	and	this	stays	the	same	whether	the	amplitude	is	large	or	small.

PRACTICAL	ACTIVITY	18.2

Investigating	damping
You	can	investigate	the	exponential	decrease	in	the	amplitude	of	oscillations	using	a	simple	laboratory
arrangement	(Figure	18.26).	A	hacksaw	blade	or	other	springy	metal	strip	is	clamped	(vertically	or
horizontally)	to	the	bench.	A	mass	is	attached	to	the	free	end.	This	will	oscillate	freely	if	you	displace	it
to	one	side.
A	card	is	attached	to	the	mass	so	that	there	is	significant	air	resistance	as	the	mass	oscillates.	The
amplitude	of	the	oscillations	decreases	and	can	be	measured	every	five	oscillations	by	judging	the
position	of	the	blade	against	a	ruler	fixed	alongside.
A	graph	of	amplitude	against	time	will	show	the	characteristic	exponential	decrease.	You	can	find	the
‘half-life’	of	this	exponential	decay	graph	by	determining	the	time	it	takes	to	decrease	to	half	its	initial
amplitude	(Figure	18.27).
By	changing	the	size	of	the	card,	it	is	possible	to	change	the	degree	of	damping,	and	hence	alter	the
half-life	of	the	motion.



Figure	18.26:	Damped	oscillations	with	a	hacksaw	blade.

Figure	18.27:	A	typical	graph	of	amplitude	against	time	for	damped	oscillations.

Energy	and	damping
Damping	can	be	very	useful	if	we	want	to	get	rid	of	vibrations.	For	example,	a	car	has	springs	(Figure
18.28)	that	make	the	ride	much	more	comfortable	for	us	when	the	car	goes	over	a	bump.	However,	we
wouldn’t	want	to	spend	every	car	journey	vibrating	up	and	down	as	a	reminder	of	the	last	bump	we	went
over.	So	the	springs	are	damped	by	the	shock	absorbers,	and	we	return	rapidly	to	a	smooth	ride	after
every	bump.
Damping	is	achieved	by	introducing	the	force	of	friction	into	a	mechanical	system.	In	an	undamped
oscillation,	the	total	energy	of	the	oscillation	remains	constant.	There	is	a	regular	interchange	between
potential	and	kinetic	energy.	By	introducing	friction,	damping	has	the	effect	of	removing	energy	from	the
oscillating	system,	and	the	amplitude	and	maximum	speed	of	the	oscillation	decrease.
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Figure	18.28:	The	springs	and	shock	absorbers	in	a	car	suspension	system	form	a	damped	system.

Question
Sketch	graphs	to	show	how	each	of	the	following	quantities	changes	during	the	course	of	a	single
complete	oscillation	of	an	undamped	pendulum:	kinetic	energy,	potential	energy,	total	energy.
State	how	your	graphs	would	be	different	for	a	lightly	damped	pendulum.

	
	



18.10	Resonance
Resonance	is	an	important	physical	phenomenon	that	can	appear	in	a	great	many	different	situations.	A
dramatic	example	is	the	Millennium	Bridge	in	London,	opened	in	June	2000	(Figure	18.29).	With	up	to
2000	pedestrians	walking	on	the	bridge,	it	started	to	sway	dangerously.	The	people	also	swayed	in	time
with	the	bridge,	and	this	caused	the	amplitude	of	the	bridge’s	oscillations	to	increase–this	is	resonance.
After	three	days,	the	bridge	was	closed.	It	took	engineers	two	years	to	analyse	the	problem	and	then	add
‘dampers’	to	the	bridge	to	absorb	the	energy	of	its	oscillations.	The	bridge	was	then	reopened	and	there
have	been	no	problems	since.
You	will	have	observed	a	much	more	familiar	example	of	resonance	when	pushing	a	small	child	on	a
swing.	The	swing	plus	child	has	a	natural	frequency	of	oscillation.	A	small	push	in	each	cycle	results	in
the	amplitude	increasing	until	the	child	is	swinging	high	in	the	air.

Figure	18.29:	 The	 ‘wobbly’	Millennium	Bridge	 in	London	was	 closed	 for	 nearly	 two	 years	 to	 correct
problems	caused	by	resonance.

PRACTICAL	ACTIVITY	18.3

Observing	resonance
Resonance	can	be	observed	with	almost	any	oscillating	system.	The	system	is	forced	to	oscillate	at	a
particular	frequency.	If	the	forcing	frequency	happens	to	match	the	natural	frequency	of	oscillation	of
the	system,	the	amplitude	of	the	resulting	oscillations	can	build	up	to	become	very	large.

Barton’s	pendulums
Barton’s	pendulums	is	a	demonstration	of	this	(Figure	18.30).	Several	pendulums	of	different	lengths
hang	from	a	horizontal	string.	Each	has	its	own	natural	frequency	of	oscillation.	The	‘driver’	pendulum
at	the	end	is	different;	it	has	a	large	mass	at	the	end,	and	its	length	is	equal	to	that	of	one	of	the	others.
When	the	driver	is	set	swinging,	the	others	gradually	start	to	move.	However,	only	the	pendulum	whose
length	matches	that	of	the	driver	pendulum	builds	up	a	large	amplitude	so	that	it	is	resonating.



Figure	18.30:	Barton’s	pendulums.

What	is	going	on	here?	All	the	pendulums	are	coupled	together	by	the	suspension.	As	the	driver	swings,
it	moves	the	suspension,	which	in	turn	moves	the	other	pendulums.	The	frequency	of	the	matching
pendulum	is	the	same	as	that	of	the	driver,	and	so	it	gains	energy	and	its	amplitude	gradually	builds	up.
The	other	pendulums	have	different	natural	frequencies,	so	the	driver	has	little	effect.
In	a	similar	way,	if	you	were	to	push	the	child	on	the	swing	once	every	three-quarters	of	an	oscillation,
you	would	soon	find	that	the	swing	was	moving	backwards	as	you	tried	to	push	it	forwards,	so	that	your
push	would	slow	it	down.

A	mass–spring	system
You	can	observe	resonance	for	yourself	with	a	simple	mass–spring	system.	You	need	a	mass	on	the	end
of	a	spring	(Figure	18.31),	chosen	so	that	the	mass	oscillates	up	and	down	with	a	natural	frequency	of
about	1	Hz.	Now	hold	the	top	end	of	the	spring	and	move	your	hand	up	and	down	rapidly,	with	an
amplitude	of	a	centimetre	or	two.	Very	little	happens.	Now	move	your	hand	up	and	down	more	slowly,
close	to	1	Hz.
You	should	see	the	mass	oscillating	with	gradually	increasing	amplitude.	Adjust	your	movements	to	the
exact	frequency	of	the	natural	vibrations	of	the	mass	and	you	will	see	the	greatest	effect.

Figure	18.31:	Resonance	with	a	mass	on	a	spring.
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Defining	resonance
For	resonance	to	occur,	we	must	have	a	system	that	is	capable	of	oscillating	freely.	We	must	also	have
some	way	in	which	the	system	is	forced	to	oscillate.	When	the	forcing	frequency	matches	the	natural
frequency	of	the	system,	the	amplitude	of	the	oscillations	grows	dramatically.
If	the	driving	frequency	does	not	quite	match	the	natural	frequency,	the	amplitude	of	the	oscillations	will
increase,	but	not	to	the	same	extent	as	when	resonance	is	achieved.	Figure	18.32	shows	how	the
amplitude	of	oscillations	depends	on	the	driving	frequency	in	the	region	close	to	resonance.
In	resonance,	energy	is	transferred	from	the	driver	to	the	resonating	system	more	efficiently	than	when
resonance	does	not	occur.	For	example,	in	the	case	of	the	Millennium	Bridge,	energy	was	transferred
from	the	pedestrians	to	the	bridge,	causing	large-amplitude	oscillations.

Figure	 18.32:	 Maximum	 amplitude	 is	 achieved	 when	 the	 driving	 frequency	 matches	 the	 natural
frequency	of	oscillation.

The	following	statements	apply	to	any	system	in	resonance:
Its	natural	frequency	is	equal	to	the	frequency	of	the	driver.
Its	amplitude	is	maximum.
It	absorbs	the	greatest	possible	energy	from	the	driver.

Resonance	and	damping
During	earthquakes,	buildings	are	forced	to	oscillate	by	the	vibrations	of	the	Earth.	Resonance	can	occur,
resulting	in	serious	damage	(Figure	18.33).	In	regions	of	the	world	where	earthquakes	happen	regularly,
buildings	may	be	built	on	foundations	that	absorb	the	energy	of	the	shock	waves.	In	this	way,	the
vibrations	are	‘damped’	so	that	the	amplitude	of	the	oscillations	cannot	reach	dangerous	levels.	This	is	an
expensive	business,	and	so	far	is	restricted	to	the	wealthier	parts	of	the	world.

Figure	 18.33:	 Resonance	 during	 the	 Christchurch,	 New	 Zealand,	 earthquake	 of	 22	 February	 2011
caused	 the	 collapse	 of	 many	 buildings.	 The	 earthquake,	 whose	 epicentre	 was	 in	 Lyttelton,	 just	 10



kilometres	south-east	of	Christchurch’s	central	business	district,	measured	6.3.	Nearly	200	 lives	were
lost.

Damping	is	useful	if	we	want	to	reduce	the	damaging	effects	of	resonance.	Figure	18.34	shows	how
damping	alters	the	resonance	response	curve	of	Figure	18.32.	Notice	that,	as	the	degree	of	damping	is
increased,	the	amplitude	of	the	resonant	vibrations	decreases.	The	resonance	peak	becomes	broader.
There	is	also	an	effect	on	the	frequency	at	which	resonance	occurs,	which	becomes	lower	as	the	damping
increases.

Figure	18.34:	Damping	reduces	the	amplitude	of	resonant	vibrations.

An	everyday	example	of	damping	can	be	seen	on	some	doors.	For	example,	a	restaurant	may	have	a	door
leading	to	the	kitchen;	this	door	can	swing	open	in	either	direction.	Such	a	door	is	designed	to	close	by
itself	after	someone	has	passed	through	it.	Ideally,	the	door	should	swing	back	quickly	without
overshooting	its	closed	position.	To	achieve	this,	the	door	hinges	(or	the	closing	mechanism)	must	be
correctly	damped.	If	the	hinges	are	damped	too	lightly,	the	door	will	swing	back	and	forth	several	times
as	it	closes.	If	the	damping	is	too	heavy,	it	will	take	too	long	to	close.	With	critical	damping,	the	door
will	swing	closed	quickly	without	oscillating.
Critical	damping	is	the	minimum	amount	of	damping	required	to	return	an	oscillator	to	its	equilibrium
position	without	oscillating.	Under-damping	results	in	unwanted	oscillations;	over-damping	results	in	a
slower	return	to	equilibrium	(see	Figure	18.35).	A	car’s	suspension	system	uses	springs	to	smooth	out
bumps	in	the	road.	It	is	usually	critically	damped	so	that	passengers	do	not	experience	nasty	vibrations
every	time	the	car	goes	over	a	bump.

Figure	18.35:	Critical	damping	is	 just	enough	to	ensure	that	a	damped	system	returns	to	equilibrium
without	oscillating.

Using	resonance
As	we	have	seen,	resonance	can	be	a	problem	in	mechanical	systems.	However,	it	can	also	be	useful.	For
example,	many	musical	instruments	rely	on	resonance.
Resonance	is	not	confined	to	mechanical	systems.	It	is	made	use	of	in,	for	example,	microwave	cooking.
The	microwaves	used	have	a	frequency	that	matches	the	natural	frequency	of	vibration	of	water
molecules	(the	microwave	is	the	‘driver’	and	the	molecule	is	the	‘resonating	system’).	The	water
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molecules	in	the	food	are	forced	to	vibrate	and	they	absorb	the	energy	of	the	microwave	radiation.	The
water	gets	hotter	and	the	absorbed	energy	spreads	through	the	food	and	cooks	or	heats	it.
Magnetic	resonance	imaging	(MRI)	is	used	in	medicine	to	produce	images	such	as	Figure	18.36,	showing
aspects	of	a	patient’s	internal	organs.	Radio	waves	having	a	range	of	frequencies	are	used,	and	particular
frequencies	are	absorbed	by	particular	atomic	nuclei.	The	frequency	absorbed	depends	on	the	type	of
nucleus	and	on	its	surroundings.	By	analysing	the	absorption	of	the	radio	waves,	a	computer-generated
image	can	be	produced.
A	radio	or	television	also	depends	on	resonance	for	its	tuning	circuitry.	The	aerial	picks	up	signals	of
many	different	frequencies	from	many	transmitters.	The	tuner	can	be	adjusted	to	resonate	at	the
frequency	of	the	transmitting	station	you	are	interested	in,	and	the	circuit	produces	a	large-amplitude
signal	for	this	frequency	only.

Figure	18.36:	This	magnetic	resonance	imaging	(MRI)	picture	shows	a	man,	a	woman	and	a	nine-year-
old	child.	The	image	has	been	coloured	to	show	up	the	bones	(white),	lungs	(dark)	and	other	organs.

Big	ideas	in	physics
This	study	of	simple	harmonic	motion	illustrates	some	important	aspects	of	physics:

Physicists	often	take	a	complex	problem	(such	as	how	the	atoms	in	a	solid	vibrate)	and	reduce	it	to	a
simpler,	 more	 manageable	 problem	 (such	 as	 how	 a	 mass–spring	 system	 vibrates).	 This	 is	 simpler
because	we	know	that	the	spring	obeys	Hooke’s	law,	so	that	force	is	proportional	to	displacement.
Physicists	 generally	 feel	 happier	 if	 they	 can	write	mathematical	 equations	 that	will	 give	 numerical
answers	to	problems.	The	equation	a	=	−ω2x,	which	describes	s.h.m.,	can	be	solved	to	give	the	sine
and	cosine	equations	we	have	considered	earlier.
Once	physicists	have	solved	one	problem	like	this,	they	look	around	for	other	situations	where	they
can	use	the	same	ideas	all	over	again.	So	the	mass–spring	theory	also	works	well	for	vibrating	atoms
and	molecules,	for	objects	bobbing	up	and	down	in	water,	and	in	many	other	situations.
Physicists	 also	 seek	 to	 modify	 the	 theory	 to	 fit	 a	 greater	 range	 of	 situations.	 For	 example,	 what
happens	 if	 the	 vibrating	 mass	 experiences	 a	 frictional	 force	 as	 it	 oscillates?	 (This	 is	 damping,	 as
discussed	earlier.)	What	happens	if	the	spring	doesn’t	obey	Hooke’s	law?	(This	is	a	harder	question	to
answer.)

Your	A	Level	physics	course	will	help	you	to	build	up	your	appreciation	of	some	of	these	big	ideas–fields
(magnetic,	electric,	gravitational),	energy	and	so	on.

Question
Give	an	example	of	a	situation	where	resonance	is	a	problem,	and	a	second	example	where	resonance
is	useful.	In	each	example,	state	what	the	oscillating	system	is	and	what	forces	it	to	resonate.



REFLECTION
You	might	have	observed	some	of	the	terms	and	the	mathematical	equations	in	this	chapter	share	many
characteristics	with	those	used	in	circular	motion.
Make	a	list	of	the	similarities	and	differences	between	the	terms	used	in	the	two	examples.
Make	a	list	of	equations	used	in	the	two	examples.	How	are	they	related?
Can	you	use	these	similarities	to	help	you	understand	simple	harmonic	motion	further?
What	things	might	you	need	help	with	to	understand	the	chapter	even	better?

	
	



SUMMARY

Many	systems,	mechanical	and	otherwise,	will	oscillate	freely	when	disturbed	from	their	equilibrium
position.

Some	oscillators	have	motion	described	as	simple	harmonic	motion	(s.h.m.).	For	these	systems,
graphs	of	displacement,	velocity	and	acceleration	against	time	are	sinusoidal	curves–see	Figure	18.37.

Figure	18.37:	Graphs	for	s.h.m.

During	a	single	cycle	of	s.h.m.,	the	phase	changes	by	2π	radians.	The	angular	frequency	ω	of	the
motion	is	related	to	its	period	T	and	frequency	f:

In	s.h.m.,	displacement	x	and	velocity	ν	and	acceleration	can	be	represented	as	functions	of	time	t	by
equations	of	the	form:

x	=	x0	sin	ωt					and					v	=	v0	cos	ωt	and	a	=	−a0	sin	ωt

A	body	executes	simple	harmonic	motion	if	its	acceleration	is	directly	proportional	to	its	displacement
from	its	equilibrium	position,	and	is	always	directed	towards	the	equilibrium	position.

Acceleration	a	in	s.h.m.	is	related	to	displacement	x	by	the	equation:

a	=	−ω2x

The	maximum	speed	ν0	in	s.h.m.	is	given	by	the	equation:

v0	=	ωx0

The	frequency	or	period	of	a	simple	harmonic	oscillator	is	independent	of	its	amplitude.

In	s.h.m.,	there	is	a	regular	interchange	between	kinetic	energy	and	potential	energy.

Resistive	forces	remove	energy	from	an	oscillating	system.	This	is	known	as	damping.	Damping	causes
the	amplitude	to	decay	with	time.

Critical	damping	is	the	minimum	amount	of	damping	required	to	return	an	oscillator	to	its	equilibrium
position	without	oscillating.



When	an	oscillating	system	is	forced	to	vibrate	close	to	its	natural	frequency,	the	amplitude	of
vibration	increases	rapidly.	The	amplitude	is	maximum	when	the	forcing	frequency	matches	the
natural	frequency	of	the	system;	this	is	resonance.

Resonance	can	be	a	problem,	but	it	can	also	be	very	useful.
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EXAM-STYLE	QUESTIONS

A	mass,	hung	from	a	spring,	oscillates	with	simple	harmonic	motion. 	

Which	statement	is	correct? [1]

The	force	on	the	mass	is	directly	proportional	to	the	angular	frequency	of
the	oscillation. 	

The	force	on	the	mass	is	greatest	when	the	displacement	of	the	bob	is
greatest. 	

The	force	on	the	mass	is	greatest	when	the	speed	of	the	bob	is	greatest. 	

The	force	on	the	mass	is	inversely	proportional	to	the	time	period	of	the
oscillation. 	

The	bob	of	a	simple	pendulum	has	a	mass	of	0.40	kg.	The	pendulum	oscillates
with	a	period	of	2.0	s	and	an	amplitude	of	0.15	m. 	

At	one	point	in	its	cycle	it	has	a	potential	energy	of	0.020	J. 	

What	is	the	kinetic	energy	of	the	pendulum	bob	at	this	point? [1]

0.024	J 	

0.044	J 	

0.14	J 	

0.18	J 	

State	and	justify	whether	the	following	oscillators	show	simple	harmonic
motion: 	

a	basketball	being	bounced	repeatedly	on	the	ground. [2]

a	guitar	string	vibrating [2]

a	conducting	sphere	vibrating	between	two	parallel,	oppositely	charged
metal	plates [1]

the	pendulum	of	a	grandfather	clock. [2]

	 [Total:	7]

The	pendulum	of	a	clock	is	displaced	by	a	distance	of	4.0	cm	and	it	oscillates	in
s.h.m.	with	a	period	of	1.0	s. 	

Write	down	an	equation	to	describe	the	displacement	x	of	the	pendulum
bob	with	time	t. [2]

Calculate: 	

the	maximum	velocity	of	the	pendulum	bob [2]

its	velocity	when	its	displacement	is	2.0	cm. [1]

	 [Total:	5]

A	50	g	mass	is	attached	to	a	securely	clamped	spring.	The	mass	is	pulled
downwards	by	16	mm	and	released,	which	causes	it	to	oscillate	with	s.h.m.	of
time	period	of	0.84	s. 	

Calculate	the	frequency	of	the	oscillation. [1]

Calculate	the	maximum	velocity	of	the	mass. [1]

Calculate	the	maximum	kinetic	energy	of	the	mass	and	state	at	which	point
in	the	oscillation	it	will	have	this	velocity. [2]

Write	down	the	maximum	gravitational	potential	energy	of	the	mass
(relative	to	its	equilibrium	position).	You	may	assume	that	the	damping	is
negligible. [1]

	 [Total:	5]

In	each	of	the	three	graphs,	a,	b	and	c	in	Figure	18.38,	give	the	phase
difference	between	the	two	curves: 	

as	a	fraction	of	an	oscillation [1]

in	degrees [1]

in	radians. [1]

	 [Total:	3]
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Figure	18.38
	

Determine	the	frequency	and	the	period	of	the	oscillation	described	by	this
graph. [2]

Figure	18.39
	

Use	a	copy	of	the	graph	and	on	the	same	axes	sketch: 	

the	velocity	of	the	particle [1]

the	acceleration	of	the	particle. [2]

	 [Total:	5]

These	graphs	show	the	displacement	of	a	body	as	it	vibrates	between	two
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points. 	

Figure	18.40

	

State	and	explain	whether	the	body	is	moving	with	simple	harmonic
motion. [1]

Make	a	copy	of	the	three	graphs. 	

On	the	second	set	of	axes	on	your	copy	show	the	velocity	of	the	body	as
it	vibrates. [1]

On	the	third	set	of	axes	on	your	copy,	show	the	acceleration	of	the
body. [2]

	 [Total:	4]

This	diagram	shows	the	piston	of	a	small	car	engine	that	oscillates	in	the
cylinder	with	a	motion	that	approximates	simple	harmonic	motion	at	4200	revs
per	minute	(1	rev	=	1	cycle).	The	mass	of	the	piston	is	0.24	kg. 	

Figure	18.41
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Explain	what	is	meant	by	simple	harmonic	motion. [2]

Calculate	the	frequency	of	the	oscillation. [1]

The	amplitude	of	the	oscillation	is	12.5	cm.	Calculate: 	

the	maximum	speed	at	which	the	piston	moves [2]

the	maximum	acceleration	of	the	piston [2]

the	force	required	on	the	piston	to	produce	the	maximum	acceleration. [1]

	 [Total:	8]

This	diagram	shows	a	turntable	with	a	rod	attached	to	it	a	distance	15	cm	from
the	centre.	The	turntable	is	illuminated	from	the	side	so	that	a	shadow	is	cast
on	a	screen. 	

Figure	18.42
	

A	simple	pendulum	is	placed	behind	the	turntable	and	is	set	oscillating	so	that
it	has	an	amplitude	equal	to	the	distance	of	the	rod	from	the	centre	of	the
turntable. 	

The	speed	of	rotation	of	the	turntable	is	adjusted.	When	it	is	rotating	at	1.5
revolutions	per	second	the	shadow	of	the	pendulum	and	the	rod	are	found	to
move	back	and	forth	across	the	screen	exactly	in	phase. 	

Explain	what	is	meant	by	the	term	in	phase. [1]

Write	down	an	equation	to	describe	the	displacement	x	of	the	pendulum
from	its	equilibrium	position	and	the	angular	frequency	of	the	oscillation	of
the	pendulum. [1]

The	turntable	rotates	through	60°	from	the	position	of	maximum
displacement	shown	in	the	diagram. 	

Calculate	the	displacement	(from	its	equilibrium	position)	of	the
pendulum	at	this	point. [3]

Calculate	its	speed	at	this	point. [2]

Through	what	further	angle	must	the	turntable	rotate	before	it	has	this
speed	again? [1]

	 [Total:	8]

When	a	cricket	ball	hits	a	cricket	bat	at	high	speed	it	can	cause	a	standing
wave	to	form	on	the	bat.	In	one	such	example,	the	handle	of	the	bat	moved
with	a	frequency	of	60	Hz	with	an	amplitude	of	2.8	mm. 	

The	vibrational	movement	of	the	bat	handle	can	be	modelled	on	simple
harmonic	motion. 	

State	the	conditions	for	simple	harmonic	motion. [2]

Calculate	the	maximum	acceleration	of	the	bat	handle. [2]

Given	that	the	part	of	the	bat	handle	held	by	the	cricketer	has	a	mass	of
0.48	kg,	calculate	the	maximum	force	produced	on	his	hands. [1]

The	oscillations	are	damped	and	die	away	after	about	five	complete	cycles.
Sketch	a	displacement–time	graph	to	show	the	oscillations. [2]

	 [Total:	7]

Seismometers	are	used	to	detect	and	measure	the	shock	waves	that	travel
through	the	Earth	due	to	earthquakes. 	



a

b
c

This	diagram	shows	the	structure	of	a	simple	seismometer.	The	shock	wave	will
cause	the	mass	to	vibrate,	causing	a	trace	to	be	drawn	on	the	paper	scroll. 	

Figure	18.43
	

The	frequency	of	a	typical	shock	wave	is	between	30	and	40	Hz.	Explain
why	the	natural	frequency	of	the	spring–mass	system	in	the	seismometer
should	be	very	much	less	than	this	range	of	frequencies. [3]

This	graph	shows	the	acceleration	of	the	mass	against	its	displacement
when	the	seismometer	is	recording	an	earthquake. 	

Figure	18.44
	

What	evidence	does	the	graph	give	that	the	motion	is	simple	harmonic? [2]

Use	information	from	the	graph	to	calculate	the	frequency	of	the
oscillation. [4]

	 [Total:	9]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	terms	displacement,
amplitude,	period,	frequency,	angular
frequency	and	phase	difference

18.3 	 	 	

express	the	period	in	terms	of	both
frequency	and	angular	frequency

18.3,	18.6 	 	 	

understand	that	in	simple	harmonic
motion	there	is	a	varying	force	on	the
oscillator,	which	is	proportional	to	the
displacement	of	the	oscillator	from	a
point	and	it	is	always	directed	towards
that	point

18.4 	 	 	

recall,	use	and	understand	the
importance	of	the	equation:

a	=	−ω2x

18.7 	 	 	

understand	that	the	solution	to	the
equation	a	=	−ω2x	is	x	=	x0	sin	ωt

18.7 	 	 	

use	the	equation:	ν	=	ν0	cos	ωt 18.7 	 	 	

use	the	equation:	ν	=	±ω√(x02	−	x2) 18.7 	 	 	

understand	the	interchange	between
potential	and	kinetic	energy	in	simple
harmonic	motion

18.8 	 	 	

understand	that	the	total	energy	of	a
simple	harmonic	oscillator	remains
constant	and	is	determined	by	the
amplitude	of	the	oscillator,	its	mass	and
its	frequency

18.8 	 	 	

recall	and	use	the	equation	
	for	the	total	energy	of	an

oscillator

18.8 	 	 	

understand	that	a	resistive	force	acting
on	an	oscillator	causes	damping

18.9 	 	 	

understand	the	term	critical	damping 18.10 	 	 	

sketch	displacement	graphs	showing
the	different	types	of	damping

18.5 	 	 	

understand	the	concept	of	resonance 18.10 	 	 	

understand	that	resonance	occurs	when
the	driving	frequency	equals	the	natural
frequency	of	the	oscillating	system.

18.10 	 	 	
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	Chapter	19

Thermal	physics

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
relate	a	rise	in	temperature	of	an	object	to	internal	energy,	the	sum	of	the	random	distribution	of
kinetic	and	potential	energies	of	the	molecules	in	a	system
recall	and	use	the	first	law	of	thermodynamics
calculate	the	work	done	when	the	volume	of	a	gas	changes	at	constant	pressure
measure	temperature	using	a	physical	property	and	state	examples	of	such	properties
use	the	thermodynamic	scale	of	temperature,	and	understand	that	the	lowest	possible	temperature
is	zero	kelvin	and	that	this	is	known	as	absolute	zero
relate	 transfer	 of	 (thermal)	 energy	 as	 being	 due	 to	 a	 difference	 in	 temperature	 and	 understand
thermal	equilibrium
define	and	use	specific	heat	capacity	and	specific	latent	heat,	and	outline	how	these	quantities	can
be	measured.

BEFORE	YOU	START
Write	down	the	boiling	point	and	melting	point	of	water,	and	the	names	scientists	use	to	describe
changes	of	state	(from	solid	to	liquid,	and	from	liquid	to	solid,	and	so	on).
List	some	difference	between	atoms	and	molecules.	You	can	treat	 them	both	as	simply	 ‘particles’
and	not	worry	about	how	many	atoms	a	molecule	contains.

FROM	WATER	TO	STEAM
When	water	boils,	it	changes	state	–	it	turns	to	water	vapour.	A	liquid	has	become	a	gas.	This	is	a
familiar	process,	but	Figure	19.1	shows	a	dramatic	example	of	such	a	change	of	state.	This	is	a	geyser
in	New	Zealand,	formed	when	water	is	trapped	underground	where	it	is	in	contact	with	hot	rocks.	The



temperature	and	pressure	of	the	water	build	up	until	it	suddenly	erupts	above	the	surface	to	form	a	tall
plume	of	scalding	water	and	water	vapour.	What	happens	underground	to	cause	this	effect?	Would	this
be	a	useful	effect	to	have	happen	near	where	you	live?

Figure	 19.1:	 At	 regular	 intervals	 of	 time,	 the	 White	 Lady	 Geyser,	 near	 Rotorua	 in	 New	 Zealand,
throws	up	a	plume	of	water	(liquid)	and	water	vapour	(gas).
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19.1	Changes	of	state
The	kinetic	model	of	matter	can	be	used	to	describe	the	structure	of	solids,	liquids	and	gases.	You	should
recall	that	the	kinetic	model	describes	the	behaviour	of	matter	in	terms	of	moving	particles	(atoms,
molecules,	and	so	on).	Figure	19.2	should	remind	you	of	how	we	picture	the	three	states	of	matter	at	the
atomic	scale:

In	 a	 solid,	 the	particles	 are	 close	 together,	 tightly	bonded	 to	 their	neighbours,	 and	 vibrating	about
fixed	positions.
In	a	gas,	the	particles	have	broken	free	from	their	neighbours;	they	are	widely	separated	and	are	free
to	move	around	within	their	container.

Figure	19.2:	Typical	arrangements	of	atoms	in	a	a	solid,	b	a	liquid	and	c	a	gas.

Question
Describe	a	liquid	in	terms	of	the	arrangement	of	its	particles,	the	bonding	between	them	and	their
motion.

In	this	chapter,	we	will	extend	these	ideas	to	look	at	the	energy	changes	involved	when	materials	are
heated	and	cooled.
	
	



19.2	Energy	changes
Energy	must	be	supplied	to	raise	the	temperature	of	a	solid,	to	melt	it,	to	heat	the	liquid	and	to	boil	it.
Where	does	this	energy	go?	It	is	worth	taking	a	close	look	at	a	single	change	of	state	and	thinking	about
what	is	happening	on	the	atomic	scale.	Figure	19.3a	shows	a	suitable	arrangement.	A	test	tube	containing
octadecanoic	acid	(a	white,	waxy	substance	at	room	temperature)	is	warmed	in	a	water	bath.	At	80	°C,
the	substance	is	a	clear	liquid.	The	tube	is	then	placed	in	a	rack	and	allowed	to	cool.	Its	temperature	is
monitored,	either	with	a	thermometer	or	with	a	temperature	probe	and	datalogger.	Figure	19.3b	shows
typical	results.

Figure	19.3:	a	Apparatus	for	obtaining	a	cooling	curve,	and	b	typical	results.

The	temperature	drops	rapidly	at	first,	then	more	slowly	as	it	approaches	room	temperature.	The
important	section	of	the	graph	is	the	region	BC.	The	temperature	remains	steady	for	some	time.	The	clear
liquid	is	gradually	returning	to	its	white,	waxy	solid	state.	It	is	essential	to	note	that	energy	is	still	being
lost	even	though	the	temperature	is	not	decreasing.	When	no	liquid	remains,	the	temperature	starts	to
drop	again.
From	the	graph,	we	can	deduce	the	melting	point	of	octadecanoic	acid.	This	is	a	technique	used	to	help
identify	substances	by	finding	their	melting	points.

Heating	ice
In	some	ways,	it	is	easier	to	think	of	the	experiment	in	reverse.	What	happens	when	we	heat	a	substance?
Imagine	taking	some	ice	from	the	deep	freeze.	Put	the	ice	in	a	well-insulated	container	and	heat	it	at	a
steady	rate.	Its	temperature	will	rise;	eventually,	we	will	have	a	container	of	water	vapour.
Water	vapour	and	steam	mean	the	same	thing–an	invisible	gas.	The	‘steam’	that	you	see	when	a	kettle
boils	is	not	a	gas;	it	is	‘wet	steam’	–	a	cloud	of	tiny	droplets	of	liquid	water.
Figure	19.4	shows	the	results	we	might	expect	if	we	could	carry	out	this	idealised	experiment.	Energy	is
supplied	to	the	ice	at	a	constant	rate.	We	will	consider	the	different	sections	of	this	graph	in	some	detail,
in	order	to	describe	where	the	energy	is	going	at	each	stage.

Figure	19.4:	A	graph	of	temperature	against	time	for	water,	heated	at	a	steady	rate.

We	need	to	think	about	the	kinetic	and	potential	energies	of	the	molecules.	If	they	move	around	more
freely	and	faster,	their	kinetic	energy	has	increased.	If	they	break	free	of	their	neighbours	and	become
more	disordered,	their	electrical	potential	energy	has	increased.
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Figure	 19.5:	 The	 electrical	 potential	 energy	 of	 atoms	 is	 negative	 and	 increases	 as	 they	 get	 further
apart.

You	know	that	the	kinetic	energy	of	a	particle	is	the	energy	it	has	due	to	its	motion.	Figure	19.5	shows
how	the	electrical	potential	energy	of	two	isolated	atoms	depends	on	their	separation.	Work	must	be	done
(energy	must	be	put	in)	to	separate	neighbouring	atoms–think	about	the	work	you	must	do	to	snap	a	piece
of	plastic	or	to	tear	a	sheet	of	paper.	The	graph	shows	that:

The	electrical	potential	energy	of	two	atoms	very	close	together	is	large	and	negative.
As	the	separation	of	the	atoms	increases,	their	potential	energy	also	increases.
When	the	atoms	are	completely	separated,	their	potential	energy	is	maximum	and	has	a	value	of	zero.

It	may	seem	strange	that	the	potential	energy	is	negative	and	you	will	see	in	Chapter	21	why	this	is	so.	At
the	moment,	just	notice	that,	as	atoms	or	molecules	become	further	apart,	their	potential	energy	becomes
less	negative	and	so	they	have	more	potential	energy.
Now	look	back	at	the	graph	shown	in	Figure	19.4.

Section	AB
The	ice	starts	below	0	°C;	its	temperature	rises.	The	molecules	gain	energy	and	vibrate	more	and	more.
Their	vibrational	kinetic	energy	is	increasing.	There	is	very	little	change	in	the	mean	separation	between
the	molecules	and	hence	very	little	change	in	their	electrical	potential	energy.

Section	BC
The	ice	melts	at	0	°C.	The	molecules	become	more	disordered.	There	is	a	modest	increase	in	their
electrical	potential	energy.

Section	CD
The	ice	has	become	water.	Its	temperature	rises	towards	100	°C.	The	molecules	move	increasingly
rapidly.	Their	kinetic	energy	is	increasing.	There	is	very	little	change	in	the	mean	separation	between	the
molecules	and	therefore	very	little	change	in	their	electrical	potential	energy.

Section	DE
The	water	is	boiling.	The	molecules	are	becoming	completely	separate	from	one	another.	There	is	a	large
increase	in	the	separation	between	the	molecules	and	hence	their	electrical	potential	energy	has
increased	greatly.	Their	movement	becomes	very	disorderly.

Section	EF
The	steam	is	being	heated	above	100	°C.	The	molecules	move	even	faster.	Their	kinetic	energy	is
increasing.	The	molecules	have	maximum	electrical	potential	energy	of	zero.
You	should	see	that,	when	water	is	heated,	each	change	of	state	(melting,	boiling)	involves	the	following:

there	must	be	an	input	of	energy
the	temperature	does	not	change
the	molecules	are	breaking	free	of	one	another
their	potential	energy	is	increasing.

In	between	the	changes	of	state:
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the	input	of	energy	raises	the	temperature	of	the	substance
the	molecules	move	faster
their	kinetic	energy	is	increasing.

The	hardest	point	to	appreciate	is	that	you	can	put	energy	into	the	system	without	its	temperature	rising.
This	happens	during	any	change	of	state;	the	energy	goes	to	breaking	the	bonds	between	neighbouring
molecules.	The	energy	that	must	be	supplied	to	cause	a	change	of	state	is	sometimes	called	‘latent	heat’.
The	word	‘latent’	means	‘hidden’	and	refers	to	the	fact	that,	when	you	melt	something,	its	temperature
does	not	rise	and	the	energy	that	you	have	put	in	seems	to	have	disappeared.
It	may	help	to	think	of	temperature	as	a	measure	of	the	average	kinetic	energy	of	the	molecules.	When
you	put	a	thermometer	in	some	water	to	measure	its	temperature,	the	water	molecules	collide	with	the
thermometer	and	share	their	kinetic	energy	with	it.	At	a	change	of	state,	there	is	no	change	in	kinetic
energy,	so	there	is	no	change	in	temperature.
Notice	that	melting	the	ice	(section	BC)	takes	much	less	energy	than	boiling	the	same	amount	of	water
(section	DE).	This	is	because,	when	a	solid	melts,	the	molecules	are	still	bonded	to	most	of	their
immediate	neighbours.	When	a	liquid	boils,	each	molecule	breaks	free	of	all	of	its	neighbours.	Melting
may	involve	the	breaking	of	one	or	two	bonds	per	molecule,	whereas	boiling	involves	breaking	eight	or
nine.

Evaporation
A	liquid	does	not	have	to	boil	to	change	into	a	gas.	A	puddle	of	rain-water	dries	up	without	having	to	be
heated	to	100	°C.	When	a	liquid	changes	to	a	gas	without	boiling,	we	call	this	evaporation.
Any	liquid	has	some	vapour	associated	with	it.	If	we	think	about	the	microscopic	picture	of	this,	we	can
see	why	(Figure	19.6).	Within	the	liquid,	molecules	are	moving	about.	Some	move	faster	than	others,	and
can	break	free	from	the	bulk	of	the	liquid.	They	form	the	vapour	above	the	liquid.	Some	molecules	from
the	vapour	may	come	back	into	contact	with	the	surface	of	the	liquid,	and	return	to	the	liquid.	However,
there	is	a	net	outflow	of	energetic	molecules	from	the	liquid,	and	eventually	it	will	evaporate	away
completely.
You	may	have	had	your	skin	swabbed	with	alcohol	or	ether	before	an	injection.	You	will	have	noticed	how
cold	your	skin	becomes	as	the	volatile	liquid	evaporates.	Similarly,	you	can	become	very	cold	if	you	get
wet	and	stand	around	in	a	windy	place.	This	cooling	of	a	liquid	is	a	very	important	aspect	of	evaporation.

Figure	19.6:	Fast-moving	molecules	leave	the	surface	of	a	liquid	–	this	is	evaporation.

When	a	liquid	evaporates,	it	is	the	most	energetic	molecules	that	are	most	likely	to	escape.	This	leaves
molecules	with	a	below-average	kinetic	energy.	Since	temperature	is	a	measure	of	the	average	kinetic
energy	of	the	molecules,	it	follows	that	the	temperature	of	the	evaporating	liquid	must	fall.

Question
Use	the	kinetic	model	of	matter	to	explain	the	following:

If	you	leave	a	pan	of	water	on	the	hob	for	a	long	time,	it	does	not	all	boil	away	as	soon	as	the
temperature	reaches	100	°C.
It	takes	less	energy	to	melt	a	1.0	kg	block	of	ice	at	0	°C	than	to	boil	away	1.0	kg	of	water	at	100



°C.
	
	



19.3	Internal	energy
All	matter	is	made	up	of	particles,	which	we	will	refer	to	here	as	‘molecules’.	Matter	can	have	energy.	For
example,	if	we	lift	up	a	stone,	it	has	gravitational	potential	energy.	If	we	throw	it,	it	has	kinetic	energy.
Kinetic	and	potential	energies	are	the	two	general	forms	of	energy.	We	consider	the	stone’s	potential	and
kinetic	energies	to	be	properties	or	attributes	of	the	stone	itself;	we	calculate	their	values	(mgh	and
½mv2)	using	the	mass	and	speed	of	the	stone.
Now	think	about	another	way	in	which	we	could	increase	the	energy	of	the	stone:	we	could	heat	it	(Figure
19.7).	Now	where	does	the	energy	from	the	heater	go?	The	stone’s	gravitational	potential	and	kinetic
energies	do	not	increase;	it	is	not	higher	or	faster	than	before.	The	energy	seems	to	have	disappeared
into	the	stone.

Figure	19.7:	Increasing	the	internal	energy	of	a	stone.

Of	course,	you	already	know	the	answer	to	this.	The	stone	gets	hotter,	and	that	means	that	the	molecules
that	make	up	the	stone	have	more	energy,	both	kinetic	and	electrical	potential.	They	vibrate	more	and
faster,	and	they	move	a	little	further	apart.	This	energy	of	the	molecules	is	known	as	the	internal	energy
of	the	stone.	The	internal	energy	of	a	system	(such	as	the	heated	stone)	is	defined	as	the	sum	of	the
random	distribution	of	kinetic	and	potential	energies	of	its	atoms	or	molecules.

Molecular	energy
Earlier	in	this	chapter,	where	we	studied	the	phases	of	matter,	we	saw	how	solids,	liquids	and	gases	could
be	characterised	by	differences	in	the	arrangement,	order	and	motion	of	their	molecules.	We	could
equally	have	said	that,	in	the	three	phases,	the	molecules	have	different	amounts	of	kinetic	and	potential
energy.
Now,	it	is	a	simple	problem	to	find	the	internal	energy	of	an	amount	of	matter.	We	add	up	the	kinetic	and
potential	energies	associated	with	all	the	molecules	in	that	matter.	For	example,	consider	the	gas	shown
in	Figure	19.8.	There	are	ten	molecules	in	the	box,	each	having	kinetic	and	potential	energy.	We	can	work
out	what	all	of	these	are	and	add	them	together,	to	get	the	total	internal	energy	of	the	gas	in	the	box.



Figure	19.8:	The	molecules	of	a	gas	have	both	kinetic	and	potential	energy.

Changing	internal	energy
There	are	two	obvious	ways	in	which	we	can	increase	the	internal	energy	of	some	gas:	we	can	heat	it
(Figure	19.9a),	or	we	can	do	work	on	it	by	compressing	it	(Figure	19.9b).

Heating	a	gas
The	walls	of	the	container	become	hot	and	so	its	molecules	vibrate	more	vigorously.	The	molecules	of	the
cool	gas	strike	the	walls	and	bounce	off	faster.	They	have	gained	kinetic	energy,	and	we	say	the
temperature	has	risen.

Doing	work	on	a	gas
In	this	case,	a	wall	of	the	container	is	being	pushed	inwards.	The	molecules	of	the	cool	gas	strike	a
moving	wall	and	bounce	off	faster.	They	have	gained	kinetic	energy	and	again	the	temperature	has	risen.
This	explains	why	a	gas	gets	hotter	when	it	is	compressed.

Figure	19.9:	Two	ways	to	increase	the	internal	energy	of	a	gas:	a	by	heating	it,	and	b	by	compressing
it.

There	are	other	ways	in	which	the	internal	energy	of	a	system	can	be	increased:	by	passing	an	electric
current	through	it,	for	example.	However,	doing	work	and	heating	are	all	we	need	to	consider	here.
The	internal	energy	of	a	gas	can	also	decrease;	for	example,	if	it	loses	heat	to	its	surroundings,	or	if	it
expands	so	that	it	does	work	on	its	surroundings.

First	law	of	thermodynamics
You	will	be	familiar	with	the	idea	that	energy	is	conserved;	that	is,	energy	cannot	simply	disappear,	or
appear	from	nowhere.	This	means	that,	for	example,	all	the	energy	put	into	a	gas	by	heating	it	and	by
doing	work	on	it	must	end	up	in	the	gas;	it	increases	the	internal	energy	of	the	gas.	We	can	write	this	as
an	equation:



increase	in	internal	energy	=	energy	supplied	by	heating	+	work	done	on	the	system
In	symbols:

ΔU	=	q	+	W

where	ΔU	is	the	increase	in	internal	energy,	q	is	the	energy	supplied	to	the	system	by	heating	and	W	is
the	work	done	on	the	system
This	is	known	as	the	first	law	of	thermodynamics	and	is	a	formal	statement	of	the	principle	of
conservation	of	energy.	(It	applies	to	all	situations,	not	simply	to	a	mass	of	gas.)	Since	you	have	learned
previously	that	energy	is	conserved,	it	may	seem	to	be	a	simple	idea,	but	it	took	scientists	a	good	many
decades	to	understand	the	nature	of	energy	and	to	appreciate	that	it	is	conserved.
You	should	note	the	sign	convention	that	is	used	in	the	first	law.	A	positive	value	of	ΔU	means	that	the
internal	energy	increases,	a	positive	value	of	q	means	that	heat	is	added	to	the	system,	and	a	positive
value	of	W	means	that	work	is	done	on	the	system.	Negative	values	mean	that	internal	energy
decreases,	heat	is	taken	away	from	the	system	or	work	is	done	by	the	system.
Imagine	a	gas	heated	from	the	outside	in	a	sealed	container	of	constant	volume.	In	this	case,	no	work	is
done	on	the	gas	as	the	heat	is	added,	so	W	is	0	and	the	first	law	equation	ΔU	=	q	+	W	becomes	ΔU	=	q.
All	the	heat	added	becomes	internal	energy	of	the	gas.	If	the	container	was	able	to	expand	a	little	as	the
heat	is	added	then	the	situation	needs	some	careful	thought.	Compressing	a	gas	means	work	is	done	on
the	gas	(W	is	positive);	expanding	a	gas	means	work	is	done	by	the	gas	(W	is	negative	as	it	pushes	back
and	does	work	on	the	atmosphere).	If	the	container	expands	then	W	is	slightly	negative	and	ΔU	is	slightly
less	than	if	the	volume	was	constant.

A	gas	doing	work
Gases	exert	pressure	on	the	walls	of	their	container.	If	a	gas	expands,	the	walls	are	pushed	outwards	–	the
gas	has	done	work	on	its	surroundings	(W	is	negative,	if	the	gas	is	the	system).	In	a	steam	engine,
expanding	steam	pushes	a	piston	to	turn	the	engine,	and	in	a	car	engine,	the	exploding	mixture	of	fuel
and	air	does	the	same	thing,	so	this	is	an	important	situation.

Figure	19.10:	When	a	gas	expands,	it	does	work	on	its	surroundings.

Figure	19.10	shows	a	gas	at	pressure	p	inside	a	cylinder	of	cross-sectional	area	A.	The	cylinder	is	closed
by	a	moveable	piston.	The	gas	pushes	the	piston	a	distance	s.	If	we	know	the	force	F	exerted	by	the	gas
on	the	piston,	we	can	deduce	an	expression	for	the	amount	of	work	done	by	the	gas.

From	the	definition	of	pressure	 ,	the	force	exerted	by	the	gas	on	the	piston	is	given	by:

force	=	pressure	×	area

F	=	p	×	A

and	the	work	done	is	force	×	displacement:

W	=	p	×	A	×	s

But	the	quantity	A	×	s	is	the	increase	in	volume	of	the	gas;	that	is,	the	shaded	volume	in	Figure	19.10.
We	call	this	ΔV,	where	the	Δ	indicates	that	it	is	a	change	in	V.	Hence,	the	work	done	by	the	gas	in
expanding	is:

W	=	pΔV

KEY	EQUATION
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W	=	pΔV

Work	done	when	the	volume	of	a	gas	changes	at	constant	pressure.

Notice	that	we	are	assuming	that	the	pressure	p	does	not	change	as	the	gas	expands.	This	will	be	true	if
the	gas	is	expanding	against	the	pressure	of	the	atmosphere,	which	changes	only	very	slowly.
How	does	the	first	law	of	thermodynamics	apply	if	you	compress	a	gas?	This	can	be	done	in	different
ways	but	we	can	consider	two	limiting	ways.

Not	allowing	heat	to	enter	or	leave	the	system
This	can	be	done	by	pushing	the	piston	into	the	syringe	very	fast	or	by	insulating	the	syringe.	In	this	case,
q	is	zero	and	ΔU	=	W.	All	the	work	done	by	pushing	in	the	piston	increases	the	internal	energy	of	the
molecules.	In	this	case,	the	kinetic	energy	of	the	molecules	increases	and	the	temperature	increases,
unless	there	is	a	change	of	state.

At	constant	temperature
Imagine	pushing	the	piston	very	slowly	into	a	syringe	containing	gas;	so	slowly	that	the	temperature	stays
constant	at	room	temperature.	This	change	is	known	as	an	isothermal	change.	The	kinetic	energy	of	the
molecules	remains	constant.
The	molecules	become	slightly	closer	together	and	this	may	mean	that	their	internal	energy	U	becomes
slightly	less	but	the	change	is	very	small	(unless	the	gas	becomes	a	liquid).	If	U	is	constant,	then	ΔU	is
zero	and	0	=	q	+	W.	This	means	that,	if	you	push	the	piston	in	and	do	positive	work	W,	then	q	is	negative,
and	heat	is	lost	from	the	syringe.	You	can	think	of	this	as	doing	positive	work	on	the	system	and,	with	no
extra	internal	energy,	the	system	must	lose	some	heat	to	the	surroundings,	perhaps	by	conduction	of	heat
through	the	walls	of	the	syringe.	Similarly,	if	you	pull	the	piston	out	very	slowly,	W	is	negative	and	q	is
positive	and	heat	enters	the	system.

Questions
Use	the	first	law	of	thermodynamics	to	answer	the	following.

A	gas	is	heated	by	supplying	it	with	250	kJ	of	thermal	energy;	at	the	same	time,	it	is	compressed
so	that	500	kJ	of	work	is	done	on	the	gas.	Calculate	the	change	in	the	internal	energy	of	the	gas.
The	same	gas	is	heated	as	before	with	250	kJ	of	energy.	This	time	the	gas	is	allowed	to	expand	so
that	it	does	200	kJ	of	work	on	its	surroundings.	Calculate	the	change	in	the	internal	energy	of	the
gas.

When	you	blow	up	a	balloon,	the	expanding	balloon	pushes	aside	the	atmosphere.	How	much	work	is
done	against	the	atmosphere	in	blowing	up	a	balloon	from	a	very	small	volume	to	a	volume	of	2	litres
(0.002	m3)?	(Atmospheric	pressure	=	1.0	×	105	N	m−2.)
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19.4	The	meaning	of	temperature
Picture	a	beaker	of	boiling	water.	You	want	to	measure	its	temperature,	so	you	pick	up	a	thermometer
that	is	lying	on	the	bench.	The	thermometer	reads	20	°C.	You	place	the	thermometer	in	the	water	and	the
reading	goes	up	…	30	°C,	40	°C,	50	°C.	This	tells	you	that	the	thermometer	is	getting	hotter;	energy	is
being	transferred	from	the	water	to	the	thermometer.

KEY	IDEA
Thermal	energy	is	transferred	from	a	region	of	higher	temperature	to	a
region	of	lower	temperature.

Eventually,	the	thermometer	reading	reaches	100	°C	and	it	stops	rising.	Because	the	reading	is	steady,
you	can	deduce	that	energy	is	no	longer	being	transferred	to	the	thermometer	and	so	its	scale	tells	you
the	temperature	of	the	water.
This	simple,	everyday	activity	illustrates	several	points:

We	are	used	to	the	idea	that	a	thermometer	shows	the	temperature	of	something	with	which	it	is	in
contact.	In	fact,	it	tells	you	its	own	temperature.
As	the	reading	on	the	scale	was	rising,	it	wasn’t	showing	the	temperature	of	the	water.	It	was	showing
that	the	temperature	of	the	thermometer	was	rising.
Energy	is	transferred	from	a	hotter	object	to	a	cooler	one.	The	temperature	of	the	water	was	greater
than	the	temperature	of	the	thermometer,	so	energy	transferred	from	one	to	the	other.
When	two	objects	are	at	the	same	temperature,	there	is	no	transfer	of	energy	between	them.	That	is
what	happened	when	the	thermometer	reached	the	same	temperature	as	the	water,	so	it	was	safe	to
say	that	the	reading	on	the	thermometer	was	the	same	as	the	temperature	of	the	water.

From	this,	you	can	see	that	temperature	tells	us	about	the	direction	in	which	energy	flows.	If	two	objects
are	placed	in	contact	(so	that	energy	can	flow	between	them),	it	will	flow	from	the	hotter	to	the	cooler.
Energy	flowing	from	a	region	of	higher	temperature	to	a	region	of	lower	temperature	is	called	thermal
energy.	(Here,	we	are	not	concerned	with	the	mechanism	by	which	the	energy	is	transferred.	It	may	be
by	conduction,	convection	or	radiation.)
When	two	objects	are	at	the	same	temperature,	they	are	in	thermal	equilibrium	with	each	other.	There
will	be	no	net	transfer	of	thermal	energy	between	them	when	they	are	in	contact	with	each	other	–	see
Figure	19.11.

Figure	19.11:	a	Thermal	energy	is	transferred	from	the	hot	water	to	the	cooler	thermometer	because	of
the	 temperature	 difference	 between	 them.	 b	 When	 they	 are	 at	 the	 same	 temperature,	 there	 is	 no
transfer	of	thermal	energy	and	they	are	in	thermal	equilibrium.

The	thermodynamic	(Kelvin)	scale
The	Celsius	scale	of	temperature	is	a	familiar,	everyday	scale	of	temperature.	It	was	originally	based	on
the	properties	of	water	with	the	melting	point	of	pure	ice	as	0°C	and	the	boiling	point	of	pure	water	as
100°C.



There	is	nothing	special	about	these	two	temperatures.	In	fact,	both	the	melting	point	and	boiling	point
change	if	the	pressure	changes	or	if	the	water	is	impure.	The	thermodynamic	scale,	also	known	as	the
Kelvin	scale,	is	a	better	scale	in	that	one	of	its	fixed	points,	absolute	zero,	is	very	important.
It	is	not	possible	to	have	a	temperature	lower	than	0	K.	Sometimes	it	is	suggested	that,	at	this
temperature,	matter	has	no	energy	left	in	it.	This	is	not	strictly	true;	it	is	more	correct	to	say	that,	for	any
matter	at	absolute	zero,	it	is	impossible	to	remove	any	more	energy	from	it.	Hence,	absolute	zero	is	the
temperature	at	which	all	substances	have	the	minimum	internal	energy.	(The	kinetic	energy	of	the	atoms
or	molecules	is	zero	and	their	electrical	potential	energy	is	minimum.)
We	use	different	symbols	to	represent	temperatures	on	these	two	scales:	θ	for	the	Celsius	scale,	and	T	for
the	thermodynamic	(Kelvin)	scale.	To	convert	between	the	two	scales,	we	use	these	relationships:

For	most	practical	purposes,	we	round	off	the	conversion	factor	to	273	as	shown	in	the	conversion	chart
(Figure	19.12).

KEY	EQUATIONS

To	convert	temperatures	between	degrees	Celsius	and	Kelvin.

Figure	 19.12:	 A	 conversion	 chart	 relating	 temperatures	 on	 the	 thermodynamic	 (Kelvin)	 and	 Celsius
scales.

The	thermodynamic	scale	of	temperature	is	designed	to	overcome	a	problem	with	scales	of	temperature,
such	as	the	Celsius	scale,	which	depends	on	the	melting	point	and	boiling	point	of	pure	water.	To	measure
a	temperature	on	this	scale,	you	might	use	a	liquid-in-glass	thermometer.	However,	the	expansion	of	a
liquid	may	be	non-linear.	This	means	that	if	you	compare	the	readings	from	two	different	types	of	liquid-
in-glass	thermometer,	for	example	a	mercury	thermometer	and	an	alcohol	thermometer,	you	can	only	be
sure	that	they	will	agree	at	the	two	fixed	points	on	the	Celsius	scale.	At	other	temperatures,	their
readings	may	differ.

KEY	IDEA
Thermodynamic	temperatures	do	not	depend	on	the	property	of	any
particular	substance.
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The	thermodynamic	scale	is	said	to	be	an	absolute	scale	as	it	is	not	defined	in	terms	of	a	property	of	any
particular	substance.	It	is	based	on	the	idea	that	the	average	kinetic	energy	of	the	particles	of	a
substance	increases	with	temperature.	The	average	kinetic	energy	is	the	same	for	all	substances	at	a
particular	thermodynamic	temperature;	it	does	not	depend	on	the	material	itself.	In	fact,	as	you	will	see	in
Chapter	20,	the	average	kinetic	energy	of	a	gas	molecule	is	proportional	to	the	thermodynamic
temperature.	So,	if	we	can	measure	the	average	kinetic	energy	of	the	particles	of	a	substance,	we	can
deduce	the	temperature	of	that	substance.
The	thermodynamic	scale	has	two	fixed	points:

absolute	zero,	which	is	defined	as	0	K
the	triple	point	of	water;	the	temperature	at	which	ice,	water	and	water	vapour	can	co-exist,	which	is
defined	as	273.16	K	(equal	to	0.01	°C).

So	the	gap	between	absolute	zero	and	the	triple	point	of	water	is	divided	into	273.16	equal	divisions.
Each	division	is	1	K.	The	scale	is	defined	in	this	slightly	odd	way	so	that	the	scale	divisions	on	the
thermodynamic	scale	are	equal	in	size	to	the	divisions	on	the	Celsius	scale,	making	conversions	between
the	two	scales	relatively	easy.
A	change	in	temperature	of	1	K	is	thus	equal	to	a	change	in	temperature	of	1	°C.
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19.5	Thermometers
A	thermometer	is	any	device	that	can	be	used	to	measure	temperature.	Each	type	of	thermometer	makes
use	of	some	physical	property	of	a	material	that	changes	with	temperature.	The	most	familiar	is	the	length
of	a	column	of	liquid	in	a	tube,	which	gets	longer	as	the	temperature	increases	because	the	liquid	expands.
This	is	how	a	liquid-in-glass	thermometer	works;	it	depends	on	a	change	in	density	of	a	liquid.	Other
physical	properties	that	can	be	used	as	the	basis	of	thermometers	include:

the	resistance	of	an	electrical	resistor	or	thermistor
the	e.m.f.	(voltage)	produced	by	a	thermocouple
the	colour	of	an	electrically	heated	wire
the	volume	of	a	fixed	mass	of	gas	at	constant	pressure.

In	each	case,	the	thermometer	must	be	calibrated	at	two	or	more	known	temperatures	(such	as	the	melting
and	boiling	points	of	water,	which	correspond	to	0	°C	and	100	°C),	and	the	scale	between	divided	into
equal	divisions.	There	is	no	guarantee	that	two	thermometers	will	agree	with	each	other	except	at	these
fixed	points.

Questions
Convert	each	of	the	following	temperatures	from	the	Celsius	scale	to	the	thermodynamic	scale:	0
°C,	20	°C,	120	°C,	500	°C,	−23	°C,	−200	°C.
Convert	each	of	the	following	temperatures	from	the	thermodynamic	scale	to	the	Celsius	scale:	0
K,	20	K,	100	K,	300	K,	373	K,	500	K.

The	electrical	resistance	of	a	pure	copper	wire	is	mostly	due	to	the	vibrations	of	the	copper	atoms.
Table	19.1	shows	how	the	resistance	of	a	length	of	copper	wire	is	found	to	change	as	it	is	heated.	Copy
the	table	and	add	a	column	showing	the	temperatures	in	K.	Draw	a	graph	to	show	these	data.	(Start
the	temperature	scale	of	your	graph	at	0	K.)	Explain	why	you	might	expect	the	resistance	of	copper	to
be	zero	at	this	temperature.

Temperature	/	°C Resistance	/	Ω
		10 3120
		50 3600
		75 3900
100 4200
150 4800
220 5640
260 6120

Table	19.1:	The	variation	of	resistance	with	temperature	for	a	length	of	copper	wire.

In	Chapter	10,	we	saw	that	electrical	resistance	changes	with	temperature.	For	metals,	resistance
increases	with	temperature	at	a	fairly	steady	rate.	However,	for	a	thermistor,	the	resistance	changes
rapidly	over	a	relatively	narrow	range	of	temperatures.	A	small	change	in	temperature	results	in	a	large
change	in	resistance,	so	a	thermometer	based	on	a	thermistor	will	be	sensitive	over	that	range	of
temperatures.
A	thermocouple	is	another	electrical	device	which	can	be	used	as	the	sensor	of	a	thermometer.	Figure
19.13	shows	the	principle.	Wires	of	two	different	metals,	X	and	Y,	are	required.	A	length	of	metal	X	has	a
length	of	metal	Y	soldered	to	it	at	each	end.	This	produces	two	junctions,	which	are	the	important	parts	of
the	thermocouple.	If	the	two	junctions	are	at	different	temperatures,	an	e.m.f.	will	be	produced	between
the	two	free	ends	of	the	thermocouple,	and	can	be	measured	using	a	voltmeter.	The	greater	the	difference
in	temperatures,	the	greater	the	voltage	produced;	however,	this	e.m.f.	may	not	vary	linearly	with
temperature,	i.e.,	a	graph	of	e.m.f.	against	temperature	is	not	usually	a	straight	line.
Electrical	thermometers	can	measure	across	a	great	range	of	temperatures,	from	0	K	to	hundreds	or	even
thousands	of	kelvin.
Table	19.2	compares	resistance	and	thermocouple	thermometers.



7
a
b
c
d

Figure	19.13:	The	construction	of	a	 thermocouple	 thermometer;	 the	voltage	produced	depends	on	 the
temperature	(as	shown	in	the	calibration	graph)	and	on	the	metals	chosen.

Feature Resistance	thermometer Thermocouple	thermometer

robustness very	robust robust

range thermistor:	narrow	range

resistance	wire:	wide	range

can	be	very	wide

size larger	than	thermocouple;	has	greater
thermal	capacity	therefore	slower	acting

smaller	than	resistance	thermometers;
has	smaller	thermal	capacity	so	quicker
acting	and	can	measure	temperature	at	a
point

sensitivity thermistor:	high	sensitivity	over	narrow
range

resistance	wire:	less	sensitive

can	be	sensitive	if	appropriate	metals
chosen

linearity thermistor:	fairly	linear	over	narrow
range

resistance	wire:	good	linearity

non-linear	so	requires	calibration

remote	operation long	conducting	wires	allow	the	operator
to	be	at	a	distance	from	the	thermometer

long	conducting	wires	allow	the	operator
to	be	at	a	distance	from	the	thermometer

Table	19.2:	Comparing	resistance	and	thermocouple	thermometers.

Question
Give	one	word	for	each	of	the	following:

adding	a	scale	to	a	thermometer
all	the	temperatures,	from	lowest	to	highest,	which	a	thermometer	can	measure
the	extent	to	which	equal	rises	in	temperature	give	equal	changes	in	the	thermometer’s	output
how	big	a	change	in	output	is	produced	by	a	given	change	in	temperature.
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19.6	Calculating	energy	changes
So	far,	we	have	considered	the	effects	of	heating	a	substance	in	qualitative	terms,	and	we	have	given	an
explanation	in	terms	of	a	kinetic	model	of	matter.	Now	we	will	look	at	the	amount	of	energy	needed	to	change
the	temperature	of	something,	and	to	produce	a	change	of	state.

Specific	heat	capacity
If	we	heat	some	material	so	that	its	temperature	rises,	the	amount	of	energy	we	must	supply	depends	on
three	things,	the:

mass	m	of	the	material	we	are	heating
temperature	change	Δq	we	wish	to	achieve
material	itself.

Some	materials	are	easier	to	heat	than	others.	It	takes	more	energy	to	raise	the	temperature	of	1	kg	of	water
by	1	°C	than	to	raise	the	temperature	of	1	kg	of	alcohol	by	the	same	amount.
We	can	represent	this	in	an	equation.	The	amount	of	energy	E	that	must	be	supplied	is	given	by:

where	c	is	the	specific	heat	capacity	of	the	material.
Rearranging	this	equation	gives:

The	specific	heat	capacity	of	a	material	can	be	defined	as	a	word	equation	as	follows:

Alternatively,	specific	heat	capacity	can	be	defined	in	words	as	follows:
The	numerical	value	of	the	specific	heat	capacity	of	a	substance	is	the	energy	required	per	unit	mass	of	the
substance	to	raise	the	temperature	by	1	K	(or	1	°C).
The	word	‘specific’	here	means	‘per	unit	mass’;	that	is,	per	kg.	From	this	form	of	the	equation,	you	should	be
able	to	see	that	the	units	of	c	are	J	kg−1	K−1	(or	J	kg−1	°C−1).	Table	19.3	shows	some	values	of	specific	heat
capacity	measured	at	0	°C.
Specific	heat	capacity	is	related	to	the	gradient	of	the	sloping	sections	of	the	graph	shown	earlier	in	Figure
19.4.	The	steeper	the	gradient,	the	faster	the	substance	heats	up	and	hence	the	lower	its	specific	heat
capacity	must	be.	Worked	example	1	shows	how	to	calculate	the	specific	heat	capacity	of	a	substance.

WORKED	EXAMPLE

When	26	400	J	of	energy	is	supplied	to	a	2.0	kg	block	of	aluminium,	its	temperature	rises	from	20	°C	to
35	°C.	The	block	is	well	insulated	so	that	there	is	no	energy	loss	to	the	surroundings.	Determine	the
specific	heat	capacity	of	aluminium.

We	are	going	to	use	the	equation:

We	need	to	write	down	the	quantities	that	we	know:
E	=	26	400	J					m	=	2.0	kg
Δθ	=	(35	−	20)	°C	=	15	°C					(or	15	K)
Now	substitute	these	values	and	solve	the	equation:

Substance c	/	J	kg−1	K−1

aluminium 880

copper 380
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copper 380

lead 126

glass 500–680

ice 2100

water 4180

seawater 3950

ethanol 2500

mercury 140

Table	19.3:	Values	of	specific	heat	capacity.

Questions
You	will	need	to	use	data	from	Table	19.3	to	answer	these	questions.

Calculate	the	energy	that	must	be	supplied	to	raise	the	temperature	of	5.0	kg	of	water	from	20	°C	to	100
°C.
Which	requires	more	energy	–	heating	a	2.0	kg	block	of	lead	by	30	K	or	heating	a	4.0	kg	block	of	copper
by	5.0	K?
A	well-insulated	1.2	kg	block	of	iron	is	heated	using	a	50	W	heater	for	4.0	min.	The	temperature	of	the
block	rises	from	22	°C	to	45	°C.	Find	the	experimental	value	for	the	specific	heat	capacity	of	iron.

PRACTICAL	ACTIVITY	19.1

Determining	specific	heat	capacity	c
How	can	we	determine	the	specific	heat	capacity	of	a	material?	The	principle	is	simple:	supply	a	known
amount	of	energy	to	a	known	mass	of	the	material	and	measure	the	rise	in	its	temperature.	Figure	19.14
shows	one	practical	way	of	doing	this	for	a	metal.
The	metal	is	in	the	form	of	a	cylindrical	block	of	mass	1.00	kg.	An	electrical	heater	is	used	to	supply	the
energy.	This	type	of	heater	is	used	because	we	can	easily	determine	the	amount	of	energy	supplied	–	more
easily	than	if	we	heated	the	metal	with	a	Bunsen	flame,	for	example.	An	ammeter	and	voltmeter	are	used	to
make	the	necessary	measurements.

Figure	19.14:	A	practical	arrangement	for	determining	the	specific	heat	capacity	of	a	metal.

A	thermometer	or	temperature	sensor	is	used	to	monitor	the	block’s	temperature	as	it	is	heated.	The	block
must	not	be	heated	too	quickly;	we	want	to	be	sure	that	the	energy	has	time	to	spread	throughout	the
metal.
The	block	should	be	insulated	by	wrapping	it	in	a	suitable	material	–	this	is	not	shown	in	the	illustration.	It
would	be	possible,	in	principle,	to	determine	c	by	making	just	one	measurement	of	temperature	change,
but	it	is	better	to	record	values	of	the	temperature	as	it	rises	and	plot	a	graph	of	temperature	θ	against
time	t.	The	method	of	calculating	c	is	illustrated	in	Worked	example	2.
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Sources	of	error
This	experiment	can	give	reasonably	good	measurements	of	specific	heat	capacities.	As	noted	earlier,	it	is
desirable	to	have	a	relatively	low	rate	of	heating,	so	that	energy	spreads	throughout	the	block.	If	the	block
is	heated	rapidly,	different	parts	may	be	at	different	temperatures.
Thermal	insulation	of	the	material	is	also	vital.	Inevitably,	some	energy	will	escape	to	the	surroundings.
This	means	that	more	energy	must	be	supplied	to	the	block	for	each	degree	rise	in	temperature	and	so	the
experimental	value	for	the	specific	heat	capacity	will	be	too	high.	One	way	around	this	is	to	cool	the	block
below	room	temperature	before	beginning	to	heat	it.	Then,	as	its	temperature	rises	past	room	temperature,
heat	losses	will	be	zero	in	principle,	because	there	is	no	temperature	difference	between	the	block	and	its
surroundings.

WORKED	EXAMPLE

An	experiment	to	determine	the	specific	heat	capacity	c	of	a	1.00	kg	aluminium	block	is	carried	out;	the
block	is	heated	using	an	electrical	heater.	The	current	in	the	heater	is	4.17	A	and	the	p.d.	across	it	is	12
V.	Measurements	of	the	rising	temperature	of	the	block	are	represented	by	the	graph	shown	in	Figure
19.15.	Determine	a	value	for	the	specific	heat	capacity	c	of	aluminium.

Write	down	the	equation	that	relates	energy	change	to	specific	heat	capacity:

Figure	19.15:	Graph	of	temperature	against	time	for	an	aluminium	block	as	it	is	heated.

Divide	both	sides	by	a	time	interval	Δt:

The	quantity	 	is	the	rate	at	which	energy	is	supplied;	that	is,	the	power	P	of	the	heater.

The	quantity	 	is	the	rise	of	temperature	of	the	block;	that	is,	the	gradient	of	the	graph	of	θ
against	t.
Hence:	P	=	m	×	c	×	gradient
Calculate	the	power	of	the	heater	and	the	gradient	of	the	graph.
power	=	p.d.	×	current
P	=	VI	=	12	×	4.17	≈	50	W

Substitute	values,	rearrange	and	solve.

Questions
At	higher	temperatures	than	shown,	the	graph	in	Figure	19.15	deviates	increasingly	from	a	straight	line.
Suggest	an	explanation	for	this.



12

13

14

a
b

c

•

•

3

In	measurements	of	the	specific	heat	capacity	of	a	metal,	energy	losses	to	the	surroundings	are	a	source
of	error.	Is	this	a	systematic	error	or	a	random	error?	Justify	your	answer.
In	an	experiment	to	measure	the	specific	heat	capacity	of	water,	a	student	uses	an	electrical	heater	to
heat	some	water.	His	results	are	shown.	Calculate	a	value	for	the	heat	capacity	of	water.	Comment	on	any
likely	sources	of	error.
mass	of	beaker =	150	g
mass	of	beaker	+	water =	672	g
current	in	the	heater =	3.9	A
p.d.	across	the	heater =	11.4	V
initial	temperature =	18.5	°C
final	temperature =	30.2	°C
time	taken =	13.0	min
A	block	of	paraffin	wax	was	heated	gently,	at	a	steady	rate.	Heating	was	continued	after	the	wax	had
completely	melted.	The	graph	of	Figure	19.16	shows	how	the	material’s	temperature	varied	during	the
experiment.

For	each	section	of	the	graph	(AB,	BC	and	CD),	describe	the	state	of	the	material.
For	each	section,	explain	whether	the	material’s	internal	energy	is	increasing,	decreasing	or
remaining	constant.
Consider	the	two	sloping	sections	of	the	graph.	State	whether	the	material’s	specific	heat	capacity	is
greater	when	it	is	a	solid	or	when	it	is	a	liquid.	Justify	your	answer.

Figure	19.16:	Temperature	variation	of	a	sample	of	wax,	heated	at	a	constant	rate.

Specific	latent	heat
Energy	must	be	supplied	to	melt	or	boil	a	substance.	(In	this	case,	there	is	no	temperature	rise	to	consider
since	the	temperature	stays	constant	during	a	change	of	state.)	This	energy	is	called	latent	heat.
The	numerical	value	of	the	specific	latent	heat	of	a	substance	is	the	energy	required	per	kilogram	of	the
substance	to	change	its	state	without	any	change	in	temperature.
When	a	substance	melts,	this	quantity	is	called	the	specific	latent	heat	of	fusion;	for	boiling,	it	is	the
specific	latent	heat	of	vaporisation.
To	calculate	the	amount	of	energy	E	required	to	melt	or	vaporise	a	mass	m	of	a	substance,	we	simply	need	to
know	its	specific	latent	heat	L:

E	=	mL

L	is	measured	in	J	kg−1.	(Note	that	there	is	no	‘per	°C’	since	there	is	no	change	in	temperature.)	For	water,
the	values	are:

specific	latent	heat	of	fusion	of	water,	330	kJ	kg−1

specific	latent	heat	of	vaporisation	of	water,	2.26	MJ	kg−1

You	can	see	that	L	for	boiling	water	to	form	steam	is	roughly	seven	times	the	value	for	melting	ice	to	form
water.	As	we	saw	previously	in	the	topic	on	heating	ice,	this	is	because,	when	ice	melts,	only	one	or	two
bonds	are	broken	for	each	molecule;	when	water	boils,	several	bonds	are	broken	per	molecule.	Worked
example	3	shows	how	to	calculate	these	amounts	of	energy.

WORKED	EXAMPLE

The	specific	latent	heat	of	vaporisation	of	water	is	2.26	MJ	kg−1.	Calculate	the	energy	needed	to
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change	2.0	g	of	water	into	steam	at	100	°C.

We	have	been	given	the	following	quantities:

m	=	2.0	g	=	0.002	kg					and					L	=	2.26	MJ	kg−1

Substituting	these	values	in	the	equation	E	=	mL,	we	have:

energy	=	0.002	×	2.26	×	106	=	4520	J

Questions
The	specific	latent	heat	of	fusion	of	water	is	330	kJ	kg−1.	Calculate	the	energy	needed	to	change	2.0	g	of
ice	into	water	at	0	°C.	Suggest	why	the	answer	is	much	smaller	than	the	amount	of	energy	calculated	in
Worked	example	3.
A	sample	of	alcohol	is	heated	with	a	40	W	heater	until	it	boils.	As	it	boils,	the	mass	of	the	liquid	decreases
at	a	rate	of	2.25	g	per	minute.	Assuming	that	80%	of	the	energy	supplied	by	the	heater	is	transferred	to
the	alcohol,	estimate	the	specific	latent	heat	of	vaporisation	of	the	alcohol.	Give	your	answer	in	kJ	kg−1.

PRACTICAL	ACTIVITY	19.2

Determining	specific	latent	heat	L
The	principle	of	determining	the	specific	latent	heat	of	a	material	is	similar	to	determining	the	specific	heat
capacity	(but	remember	that	there	is	no	change	in	temperature).
Figure	19.17	shows	how	to	measure	the	specific	latent	heat	of	vaporisation	of	water.	A	beaker	containing
water	is	heated	using	an	electrical	heater.	A	wattmeter	(or	an	ammeter	and	a	voltmeter)	determines	the
rate	at	which	energy	is	supplied	to	the	heater.	The	beaker	is	insulated	to	minimise	energy	loss,	and	it
stands	on	a	balance.	A	thermometer	is	included	to	ensure	that	the	temperature	of	the	water	remains	at	100
°C.
The	water	is	heated	at	a	steady	rate	and	its	mass	recorded	at	equal	intervals	of	time.	Its	mass	decreases	as
it	boils.
A	graph	of	mass	against	time	should	be	a	straight	line	whose	gradient	is	the	rate	of	mass	loss.	The
wattmeter	shows	the	rate	at	which	energy	is	supplied	to	the	water	via	the	heater.	We	thus	have:

A	similar	approach	can	be	used	to	determine	the	specific	latent	heat	of	fusion	of	ice.	In	this	case,	the	ice	is
heated	electrically	in	a	funnel;	water	runs	out	of	the	funnel	and	is	collected	in	a	beaker	on	a	balance.
As	with	any	experiment,	we	should	consider	sources	of	error	in	measuring	L	and	their	effects	on	the	final
result.	When	water	is	heated	to	produce	steam,	some	energy	may	escape	to	the	surroundings	so	that	the
measured	energy	is	greater	than	that	supplied	to	the	water.	This	systematic	error	gives	a	value	of	L,	which
is	greater	than	the	true	value.	When	ice	is	melted,	energy	from	the	surroundings	will	conduct	into	the	ice,
so	that	the	measured	value	of	L	will	be	an	underestimate.



Figure	19.17:	Determining	the	specific	latent	heat	of	vaporisation	of	water.

REFLECTION
List	all	the	ideas	in	this	chapter	that	are	associated	with	an	increase	in	temperature.
What	strategies	could	you	use	to	make	sure	you	understand	these?

	
	



SUMMARY

The	kinetic	model	of	matter	allows	us	to	explain	behaviour	(such	as	changes	of	state)	and	macroscopic
properties	(such	as	specific	heat	capacity	and	specific	latent	heat)	in	terms	of	the	behaviour	of
molecules.

The	internal	energy	of	a	system	is	the	sum	of	the	random	distribution	of	kinetic	and	potential	energies
associated	with	the	atoms	or	molecules	that	make	up	the	system.

If	the	temperature	of	an	object	increases,	there	is	an	increase	in	its	internal	energy.

Internal	energy	also	increases	during	a	change	of	state,	but	there	is	no	change	in	temperature.

The	first	law	of	thermodynamics	expresses	the	conservation	of	energy:
increase	in	internal	energy	=	energy	supplied	by	heating	+	work	done	on	the	system

W	=	pΔV	is	the	work	done	on	a	gas	when	the	volume	of	a	gas	changes	at	constant	pressure.	W	is
positive	when	the	gas	is	compressed	(ΔV	is	negative).

Temperatures	on	the	thermodynamic	(Kelvin)	and	Celsius	scales	of	temperature	are	related	by:

T	(K)	=	θ	(°C)	+	273.15					θ	(°C)	=	T	(K)	−	273.15

Absolute	zero,	0	K,	is	the	lowest	possible	temperature.

A	thermometer	makes	use	of	a	physical	property	of	a	material	that	varies	with	temperature.

The	word	equation	for	the	specific	heat	capacity	of	a	substance	is:

The	specific	heat	capacity	of	a	substance	is	the	energy	required	per	unit	mass	of	the	substance	to
raise	the	temperature	by	1	K	(or	1	°C).

The	energy	transferred	in	raising	the	temperature	of	a	substance	is	given	by:

E	=	mcΔθ

The	specific	latent	heat	of	a	substance	is	the	energy	required	per	kilogram	of	the	substance	to	change
its	state	without	any	change	in	temperature:

E	=	mL
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EXAM-STYLE	QUESTIONS

The	first	law	of	thermodynamics	can	be	represented	by	the	expression:	ΔU	=	q
+	W. 	

An	ideal	gas	is	compressed	at	constant	temperature. 	

Which	row	shows	whether	ΔU,	q	and	W	are	negative,	positive	or	zero	during
the	change? [1]

	 ΔU q W

A negative negative positive

B positive positive negative

C zero negative positive

D zero positive negative
	

What	is	the	internal	energy	of	an	object? [1]

the	amount	of	heat	supplied	to	the	object 	

the	energy	associated	with	the	random	movement	of	the	atoms	in	the
object 	

the	energy	due	to	the	attraction	between	the	atoms	in	the	object 	

the	potential	and	kinetic	energy	of	the	object. 	

Describe	the	changes	to	the	kinetic	energy,	the	potential	energy	and	the	total
internal	energy	of	the	molecules	of	a	block	of	ice	as: 	

it	melts	at	0	°C [3]

the	temperature	of	the	water	rises	from	0	°C	to	room	temperature. [3]

	 [Total:	6]

Explain,	in	terms	of	kinetic	energy,	why	the	temperature	of	a	stone	increases
when	it	falls	from	a	cliff	and	lands	on	the	beach	below. [3]

Explain	why	the	barrel	of	a	bicycle	pump	gets	very	hot	as	it	is	used	to	pump	up
a	bicycle	tyre.	(Hint:	the	work	done	against	friction	is	not	large	enough	to
explain	the	rise	in	temperature.) [3]

The	so-called	‘zeroth	law	of	thermodynamics’	states	that	if	the	temperature	of
body	A	is	equal	to	the	temperature	of	body	B	and	the	temperature	of	body	B	is
the	same	as	body	C,	then	the	temperature	of	body	C	equals	the	temperature	of
body	A. 	

Explain,	in	terms	of	energy	flow,	why	the	concept	of	temperature	would	be
meaningless	if	this	law	was	not	obeyed. [2]

The	first	law	of	thermodynamics	can	be	represented	by	the	expression:	ΔU
=	q	+	W.	State	what	is	meant	by	all	the	symbols	in	this	expression. [3]

Figure	19.18	shows	a	fixed	mass	of	gas	that	undergoes	a	change	from	A	to
B	and	then	to	C. 	

During	the	change	from	A	to	B,	220	J	of	thermal	energy	(heat)	is
removed	from	the	gas.	Calculate	the	change	in	the	internal	energy	of
the	gas. [2]

During	the	change	from	B	to	C,	the	internal	energy	of	the	gas
decreases	by	300	J.	Using	the	first	law	of	thermodynamics	explain	how
this	change	can	occur. [2]

	 [Total:	7]
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Figure	19.18

When	a	thermocouple	has	one	junction	in	melting	ice	and	the	other	junction	in
boiling	water	it	produces	an	e.m.f.	of	63	µV. 	

What	e.m.f.	would	be	produced	if	the	second	junction	was	also	placed	in
melting	ice? [1]

When	the	second	junction	is	placed	in	a	cup	of	coffee,	the	e.m.f.	produced
is	49	µV.	Calculate	the	temperature	of	the	coffee. [2]

The	second	junction	is	now	placed	in	a	beaker	of	melting	lead	at	327	°C. 	

Calculate	the	e.m.f.	that	would	be	produced. [2]

State	the	assumption	that	you	make. [1]

	 [Total:	6]

The	resistance	of	a	thermistor	at	°C	is	2000	Ω.	At	100	°C	the	resistance	falls	to
200	Ω.	When	the	thermistor	is	placed	in	water	of	constant	temperature,	its
resistance	is	620	Ω. 	

Assuming	that	the	resistance	of	the	thermistor	varies	linearly	with
temperature,	calculate	the	temperature	of	the	water. [2]

The	temperature	of	the	water	on	the	thermodynamic	scale	is	280	K. 	

By	reference	to	the	particular	features	of	the	thermodynamic	scale	of
temperature,	comment	on	your	answer	to	part	a. [3]

	 [Total:	5]

A	500	W	kettle	contains	300	g	of	water	at	20	°C.	Calculate	the	minimum
time	it	would	take	to	raise	the	temperature	of	the	water	to	boiling	point. [5]

The	kettle	is	allowed	to	boil	for	2	minutes.	Calculate	the	mass	of	water	that
remains	in	the	kettle.	State	any	assumptions	that	you	make. [4]

(Specific	heat	capacity	of	water	=	4.18	×	103	J	kg−1	°C−1;	specific	latent
heat	of	vaporisation	of	water	=	2.26	×	106	J	kg−1.) 	

	 [Total:	9]

Define	specific	heat	capacity	of	a	substance. [2]

A	mass	of	20	g	of	ice	at	−15	°C	is	taken	from	a	freezer	and	placed	in	a
beaker	containing	200	g	of	water	at	26	°C.	Data	for	ice	and	water	are	given
in	Table	19.5. 	

	 Specific	heat	capacity	/	J
kg−1	K−1

Specific	latent	heat	of
fusion	/	J	kg−1

ice 2.1	×	103 3.3	×	105

water 4.2	×	103 	

Table	19.5
	

Calculate	the	amount	of	thermal	energy	(heat)	needed	to	convert	all
the	ice	at	−15	°C	to	water	at	0	°C. [2]

Calculate	the	final	temperature	T	of	the	water	in	the	beaker	assuming
that	the	beaker	has	negligible	mass. [3]

[Total:	7]
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Define	specific	latent	heat	and	explain	the	difference	between	latent	heat
of	fusion	and	latent	heat	of	vaporisation. [3]

An	electric	heater	generating	power	of	120	W	is	immersed	in	a	beaker	of
liquid	that	is	placed	on	a	balance.	When	the	liquid	begins	to	boil	it	is
noticed	that	the	mass	of	the	beaker	and	liquid	decreases	by	6.2	g	every
minute. 	

State	how	this	shows	that	the	liquid	is	boiling	at	a	steady	rate. [1]

Calculate	a	value	for	the	specific	latent	heat	of	vaporisation	of	the
liquid. [2]

State	and	explain	whether	the	value	determined	in	ii	is	likely	to	be
larger	or	smaller	than	the	accepted	value. [2]

	 [Total:	8]

Explain	why	energy	is	needed	for	boiling	even	though	the	temperature	of
the	liquid	remains	constant. [2]

This	diagram	shows	an	apparatus	that	can	be	used	to	measure	the	specific
latent	heat	of	vaporisation	of	nitrogen. 	

Figure	19.19
	

Suggest	why	the	nitrogen	is	contained	in	a	vacuum	flask. [1]

The	change	in	mass	of	the	nitrogen	is	measured	over	a	specific	time
interval	with	the	heater	switched	off.	The	heater	is	switched	on,
transferring	energy	at	40	W,	and	the	change	of	mass	is	found	once	more. 	

The	results	are	shown	in	the	table. 	

	 Initial	reading
on	balance	/	g

Final	reading
on	balance	/	g

Time	/	minutes

heater	off 834.7 825.5 4

heater	on 825.5 797.1 2

Table	19.6
	

Calculate	the	specific	latent	heat	of	vaporisation	of	liquid	nitrogen. [4]

	 [Total:	7]

Explain	what	is	meant	by	internal	energy. [2]

Explain	what	is	meant	by	the	absolute	zero	of	temperature. [2]

An	electric	hot	water	heater	has	a	power	rating	of	9.0	kW.	The	water	is
heated	as	it	passes	through	the	heater.	Water	flows	through	the	heater	at	a
speed	of	1.2	m	s−1	through	pipes	that	have	a	total	cross-sectional	area	of
4.8	×	10−5	m2.	The	temperature	of	the	water	entering	the	heater	is	15	°C. 	
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Calculate	the	mass	of	water	flowing	through	the	heater	each	second. [2]

Calculate	the	temperature	at	which	the	water	leaves	the	heater. [3]

State	any	assumptions	you	have	made	in	your	calculation. [1]

It	is	possible	to	adjust	the	temperature	of	the	water	from	the	heater.
Suggest	how	the	temperature	of	the	water	could	be	increased	without
increasing	the	power	of	the	heater. [1]

(Density	of	water	=	1000	kg	m−3;	specific	heat	capacity	of	water	=
4200	J	kg−1	°C−1.) 	

	 [Total:	11]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	internal	energy,	determined
by	the	state	of	the	system,	as	the	sum	of
a	random	distribution	of	kinetic	and
potential	energies	of	the	molecules	of	a
system

19.3 	 	 	

relate	a	rise	in	temperature	of	an	object
to	an	increase	in	its	internal	energy

19.3 	 	 	

recall	and	use	W	=	pΔV	for	the	work
done	when	the	volume	of	a	gas	changes
at	constant	pressure	and	understand
the	difference	between	work	done	by	a
gas	and	the	work	done	on	a	gas

19.3 	 	 	

recall	and	use	the	first	law	of
thermodynamics:	ΔU	=	q	+	W

19.3 	 	 	

understand	that	(thermal)	energy	is
transferred	from	a	region	of	higher
temperature	to	a	region	of	lower
temperature	and	that	regions	of	equal
temperature	are	in	thermal	equilibrium

19.4 	 	 	

understand	the	use	of	a	physical
property	that	varies	with	temperature
to	measure	temperature	and	state
examples	of	such	properties

19.5 	 	 	

understand	that	thermodynamic
temperature	does	not	depend	on	the
property	of	any	particular	substance
and	recall	and	use:
T	/	K	=	θ	/	°C	+	273.15

19.4 	 	 	

understand	that	the	lowest	possible
temperature	is	zero	kelvin,	absolute
zero

19.4 	 	 	

define	and	use	specific	heat	capacity 19.6 	 	 	

define	and	use	specific	latent	heat	and
distinguish	between	specific	latent	heat
of	fusion	and	specific	latent	heat	of
vaporisation.

19.6 	 	 	
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	Chapter	20

Ideal	gases

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
measure	amounts	of	a	substance	in	moles	and	find	the	number	of	particles	using	molar	quantities
solve	problems	using	the	equation	of	state	pV	=	nRT	for	an	ideal	gas
deduce	a	relationship	between	pressure,	volume	and	the	microscopic	properties	of	the	molecules	of
a	gas,	stating	the	assumptions	of	the	kinetic	theory	of	gases
relate	 the	 kinetic	 energy	 of	 the	 molecules	 of	 a	 gas	 to	 its	 temperature	 and	 calculate	 root-mean-
square	speeds.

BEFORE	YOU	START
With	a	classmate,	write	down	what	you	know	about	Brownian	motion	and	what	it	shows	about	the
molecules	in	a	gas.
Try	to	explain	to	a	classmate,	in	terms	of	momentum	change,	why	a	ball	hitting	a	wall	exerts	a	force
on	it.
List	Newton’s	laws	of	motion.

THE	IDEA	OF	A	GAS
Figure	20.1	shows	a	weather	balloon	being	launched.	Balloons	like	this	carry	instruments	high	into	the
atmosphere,	to	measure	pressure,	temperature,	wind	speed	and	other	variables.
The	balloon	is	filled	with	helium	so	that	its	overall	density	is	less	than	that	of	the	surrounding	air.	The
result	is	an	upthrust	on	the	balloon,	greater	than	its	weight,	so	that	it	rises	upwards.	As	the	balloon
moves	upwards,	the	pressure	of	the	surrounding	atmosphere	decreases	so	that	the	balloon	expands.
The	temperature	drops,	which	tends	to	make	the	gas	in	the	balloon	shrink.	In	this	chapter,	we	will	look
at	the	behaviour	of	gases	as	their	pressure,	temperature	and	volume	change.



Figure	20.1:	A	weather	balloon	being	launched.

	
	



20.1	Particles	of	a	gas
We	picture	the	particles	of	a	gas	as	being	fast-moving.	They	bounce	off	the	walls	of	their	container	(and
off	each	other)	as	they	travel	around	at	high	speed	(see	Figure	20.2).	How	do	we	know	that	these
particles	are	moving	like	this?
It	is	much	harder	to	visualise	the	particles	of	a	gas	than	those	of	a	solid,	because	they	move	about	in	such
a	disordered	way,	and	most	of	a	gas	is	empty	space.	The	movement	of	gas	particles	was	investigated	in
the	1820s	by	a	Scottish	botanist,	Robert	Brown.	He	was	using	a	microscope	to	look	at	pollen	grains
suspended	in	water,	and	saw	very	small	particles	moving	around	inside	the	water.	He	then	saw	the	same
motion	in	particles	of	dust	in	the	air.	It	is	easier	in	the	laboratory	to	look	at	the	movement	of	tiny	particles
of	smoke	in	air.	The	particles	are	seen	to	be	moving	in	a	random,	haphazard	and	jerky	motion	that	we
believe	is	caused	by	them	being	hit	by	invisible	molecules	of	water	or	air	around	them.	The	pollen	and
dust	particles	are	big	enough	to	see	in	an	ordinary	microscope	but	air	molecules	are	too	small	to	see.

Figure	20.2:	Particles	of	a	gas	–	collisions	with	the	walls	of	the	container	cause	the	gas’	pressure	on	the
container.	(Particles	do	not	have	shadows	like	this.	The	shadows	are	added	here	to	show	depth.)

Fast	molecules
For	air	at	standard	temperature	and	pressure	(STP,	−0	°C	and	100	kPa),	the	average	speed	of	the
molecules	is	about	400	m	s−1.	At	any	moment,	some	are	moving	faster	than	this	and	others	more	slowly.	If
we	could	follow	the	movement	of	a	single	air	molecule,	we	would	find	that,	some	of	the	time,	its	speed
was	greater	than	this	average;	at	other	times,	it	would	be	less.	The	velocity	(magnitude	and	direction)	of
an	individual	molecule	changes	every	time	it	collides	with	anything	else.
This	value	for	molecular	speed	is	reasonable.	It	is	comparable	to	(but	greater	than)	the	speed	of	sound	in
air	(approximately	330	m	s−1	at	STP).	Very	fast-moving	particles	can	easily	escape	from	the	Earth’s
gravitational	field.	The	required	escape	velocity	is	about	11	km	s−1.	Since	we	still	have	an	atmosphere,	on
average,	the	air	molecules	must	be	moving	much	more	slowly	than	this	value.
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20.2	Explaining	pressure
A	gas	exerts	pressure	on	any	surface	with	which	it	comes	into	contact.	Pressure	is	a	macroscopic
property,	defined	as	the	force	exerted	per	unit	area	of	the	surface.
The	pressure	of	the	atmosphere	at	sea	level	is	approximately	100	000	Pa.	The	surface	area	of	a	typical
person	is	2.0	m2.	Hence	the	force	exerted	on	a	person	by	the	atmosphere	is	about	200	000	N.	This	is
equivalent	to	the	weight	of	about	200	000	apples!
Fortunately,	air	inside	the	body	presses	outwards	with	an	equal	and	opposite	force,	so	we	do	not	collapse
under	the	influence	of	this	large	force.	We	can	explain	the	macroscopic	phenomenon	of	pressure	by
thinking	about	the	behaviour	of	the	microscopic	particles	that	make	up	the	atmosphere.
Figure	20.3	shows	the	movement	of	a	single	molecule	of	air	in	a	box.	It	bounces	around	inside,	colliding
with	the	various	surfaces	of	the	box.	At	each	collision,	it	exerts	a	small	force	on	the	box.	The	pressure	on
the	inside	of	the	box	is	a	result	of	the	forces	exerted	by	the	vast	number	of	molecules	in	the	box.	Two
factors	affect	the	force,	and	hence	the	pressure,	that	the	gas	exerts	on	the	box:

the	number	of	molecules	that	hit	each	side	of	the	box	in	one	second
the	force	with	which	a	molecule	collides	with	the	wall.

If	a	molecule	of	mass	m	hits	the	wall	head-on	with	a	speed	v	it	will	rebound	with	a	speed	v	in	the	opposite
direction.	The	change	in	momentum	of	the	molecule	is	2mv.	Since	force	is	equal	to	rate	of	change	of
momentum,	the	higher	the	speed	of	the	molecule	the	greater	the	force	that	it	exerts	as	it	collides	with	the
wall.	Hence,	the	pressure	on	the	wall	will	increase	if	the	molecules	move	faster.
If	the	piston	in	a	bicycle	pump	is	pushed	inwards,	but	the	temperature	of	the	gas	inside	is	kept	constant,
then	more	molecules	will	hit	the	piston	in	each	second,	but	each	collision	will	produce	the	same	force
because	the	temperature	and	therefore	the	average	speed	of	the	molecules	is	the	same.	The	increased
rate	of	collisions	alone	means	that	the	force	on	the	piston	increases	and	thus	the	pressure	rises.	If	the
temperature	of	the	gas	in	a	container	rises	then	the	molecules	move	faster	and	hit	the	sides	faster	and
more	often;	both	of	these	factors	cause	the	pressure	to	rise.

Figure	20.3:	The	path	of	a	single	molecule	in	an	otherwise	empty	box.

Questions
State	and	explain,	in	terms	of	the	kinetic	model	(the	movement	of	molecules),	what	happens	to	the
pressure	inside	a	tyre	when	more	molecules	at	the	same	temperature	are	pumped	into	the	tyre.
Explain,	using	the	kinetic	model,	why	a	can	containing	air	may	explode	if	the	temperature	rises.

	
	



20.3	Measuring	gases
We	are	going	to	picture	a	container	of	gas,	such	as	the	box	shown	in	Figure	20.4.	There	are	four
properties	of	this	gas	that	we	might	measure:	pressure,	temperature,	volume	and	mass.	In	this	chapter,
you	will	learn	how	these	quantities	are	related	to	one	another.

Figure	 20.4:	 A	 gas	 has	 four	 measurable	 properties,	 which	 are	 all	 related	 to	 one	 another:	 pressure,
temperature,	volume	and	mass.

Pressure
This	is	the	normal	force	exerted	per	unit	area	by	the	gas	on	the	walls	of	the	container.	We	saw	in	Chapter
7	that	molecular	collisions	with	the	walls	of	the	container	produce	a	force	and	thus	create	a	pressure.
Pressure	is	measured	in	pascals,	Pa	(1	Pa	=	1	N	m−2).

Temperature
This	might	be	measured	in	°C,	but	in	practice	it	is	more	useful	to	use	the	thermodynamic	(Kelvin)	scale	of
temperature.	You	should	recall	how	these	two	scales	are	related:

T	(K)	=	θ	(°C)	+	273.15

Volume
This	is	a	measure	of	the	space	occupied	by	the	gas.	Volume	is	measured	in	m3.

Mass
This	is	measured	in	g	or	kg.	In	practice,	it	is	more	useful	to	consider	the	amount	of	gas,	measured	in
moles.	The	mole	is	the	SI	unit	of	substance,	not	a	unit	of	mass.
We	have	seen	in	Chapter	15	that	each	atom	or	molecule	has	a	mass	in	unified	atomic	mass	units	(u),
approximately	equal	to	the	number	of	nucleons	(protons	and	neutrons)	it	contains.

We	have	also	seen	that	1	u	=	1.66	×	10−27	kg.
Thus,	each	atom	of	carbon-12	has	a	mass:

So,	0.012	kg	of	carbon-12	contains	 	molecules.

A	mole	of	any	substance	(solid,	liquid	or	gas)	contains	a	standard	number	of	particles	(molecules	or
atoms).	This	number	is	known	as	the	Avogadro	constant,	NA.	The	value	for	NA	is	6.02	×	1023	mol−1.	We
can	easily	determine	the	number	of	atoms	in	a	sample	if	we	know	how	many	moles	it	contains.	For
example:
2.0	mol	of	helium	contains

2.0	×	6.02	×	1023	=	1.20	×	1024	atoms

10	mol	of	carbon	contains

10	×	6.02	×	1023	=	6.02	×	1024	atoms
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We	will	see	later	that,	if	we	consider	equal	numbers	of	moles	of	two	different	gases	under	the	same
conditions,	their	physical	properties	are	the	same.

Questions
The	mass	of	one	atom	of	carbon-12	is	12	u.	Determine:

the	mass	of	one	atom	of	carbon-12	in	kg,	given	that	1	u	=	1.66	×	10−27	kg
the	number	of	atoms	and	the	number	of	moles	in	54	g	of	carbon
the	number	of	atoms	in	1.0	kg	of	carbon.
Calculate	the	mass	in	grams	of	a	single	atom	of	uranium-235	of	mass	235	u.
A	small	pellet	of	uranium-235	has	a	mass	of	20	mg.	For	this	pellet,	calculate:

the	number	of	uranium	atoms
the	number	of	moles.

‘It	can	be	useful	to	recall	that	1.0	kg	of	ordinary	matter	contains	in	the	order	of	1026	atoms.’	Making
suitable	estimates,	test	this	statement.
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20.4	Boyle’s	law
This	law	relates	the	pressure	p	and	volume	V	of	a	gas.	It	was	discovered	in	1662	by	Robert	Boyle.
If	a	gas	is	compressed	at	constant	temperature,	its	pressure	increases	and	its	volume	decreases.	A
decrease	in	volume	occupied	by	the	gas	means	that	there	are	more	particles	per	unit	volume	and	more
collisions	per	second	of	the	particles	with	unit	area	of	the	wall.	Because	the	temperature	is	constant,	the
average	speed	of	the	molecules	does	not	change.	This	means	that	each	collision	with	the	wall	involves	the
same	change	in	momentum,	but	with	more	collisions	per	second	on	unit	area	of	the	wall	there	is	a	greater
rate	of	change	of	momentum	and,	therefore,	a	larger	pressure	on	the	wall.
Pressure	and	volume	are	inversely	related.
We	can	write	Boyle’s	law	as:
The	pressure	exerted	by	a	fixed	mass	of	gas	is	inversely	proportional	to	its	volume,	provided	the
temperature	of	the	gas	remains	constant.
Note	that	this	law	relates	two	variables,	pressure	and	volume,	and	it	requires	that	the	other	two,	mass
and	temperature,	remain	constant.
Boyle’s	law	can	be	written	as:

or	simply:

pV	=	Constant

We	can	also	represent	Boyle’s	law	as	a	graph,	as	shown	in	Figure	20.5.	A	graph	of	p	against	 	is	a
straight	line	passing	through	the	origin,	showing	direct	proportionality.

Figure	 20.5:	 Graphical	 representations	 of	 the	 relationship	 between	 pressure	 and	 volume	 of	 a	 gas
(Boyle’s	law).

For	solving	problems,	you	may	find	it	more	useful	to	use	the	equation	in	this	form:

p1V1	=	p2V2

Here,	p1	and	V1	represent	the	pressure	and	volume	of	the	gas	before	a	change,	and	p2	and	V2	represent
the	pressure	and	volume	of	the	gas	after	the	change.	Worked	example	1	shows	how	to	use	this	equation.

WORKED	EXAMPLE

A	cylinder	contains	0.80	m3	of	nitrogen	gas	at	a	pressure	of	1.2	atmosphere	(1	atm	=	1.01	×	105
Pa).	A	piston	slowly	compresses	the	gas	to	a	pressure	of	6.0	atm.	The	temperature	of	the	gas
remains	constant.	Calculate	the	final	volume	of	the	gas.
Note	from	the	question	that	the	temperature	of	the	gas	is	constant,	and	that	its	mass	is	fixed
(because	it	is	contained	in	a	cylinder).	This	means	that	we	can	apply	Boyle’s	law.

We	are	going	to	use	Boyle’s	law	in	the	form	p1V1	=	p2V2.	Write	down	the	quantities	that	you
know,	and	that	you	want	to	find	out.

Note	that	we	don’t	need	to	worry	about	the	particular	units	of	pressure	and	volume	being	used
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here,	so	long	as	they	are	the	same	on	both	sides	of	the	equation.	The	final	value	of	V2	will	be	in	dm3

because	V1	is	in	m3.

Substitute	the	values	in	the	equation,	rearrange	and	find	V2:

So	the	volume	of	the	gas	is	reduced	to	0.16	m3.
The	pressure	increases	by	a	factor	of	5,	so	the	volume	decreases	by	a	factor	of	5.

Question
A	balloon	contains	0.04	m3	of	air	at	a	pressure	of	120	kPa.	Calculate	the	pressure	required	to	reduce
its	volume	to	0.025	m3	at	constant	temperature.

	
	



20.5	Changing	temperature
Boyle’s	law	requires	that	the	temperature	of	a	gas	is	fixed.	What	happens	if	the	temperature	of	the	gas	is
allowed	to	change?	Figure	20.6	shows	the	results	of	an	experiment	in	which	a	fixed	mass	of	gas	is	cooled
at	constant	pressure.	The	gas	contracts;	its	volume	decreases.

Figure	20.6:	The	volume	of	a	gas	decreases	as	its	temperature	decreases.

This	graph	does	not	show	that	the	volume	of	a	gas	is	proportional	to	its	temperature	on	the	Celsius	scale.
If	a	gas	contracted	to	zero	volume	at	0	°C,	the	atmosphere	would	condense	on	a	cold	day	and	we	would
have	a	great	deal	of	difficulty	in	breathing!	However,	the	graph	does	show	that	there	is	a	temperature	at
which	the	volume	of	a	gas	does,	in	principle,	shrink	to	zero.	Looking	at	the	lower	temperature	scale	on
the	graph,	where	temperatures	are	shown	in	kelvin	(K),	we	can	see	that	this	temperature	is	0	K,	or
absolute	zero.	(Historically,	this	is	how	the	idea	of	absolute	zero	first	arose.)
We	can	represent	the	relationship	between	volume	V	and	thermodynamic	temperature	T	as:

or	simply:

Note	that	this	relationship	only	applies	to	a	fixed	mass	of	gas	and	to	constant	pressure.
This	relationship	is	an	expression	of	Charles’s	law,	named	after	the	French	physicist	Jacques	Charles,
who	in	1787	experimented	with	different	gases	kept	at	constant	pressure.
If	we	combine	Boyle’s	law	and	Charles’s	law,	we	can	arrive	at	a	single	equation	for	a	fixed	mass	of	gas:

Shortly,	we	will	look	at	the	constant	quantity	that	appears	in	this	equation,	but	first	we	will	consider	the
extent	to	which	this	equation	applies	to	real	gases.

KEY	EQUATION

Fixed	mass	of	gas.

Real	and	ideal	gases
The	relationships	between	p,	V	and	T	that	we	have	considered	are	based	on	experimental	observations	of
gases	such	as	air,	helium,	nitrogen	and	so	on,	at	temperatures	and	pressures	around	room	temperature
and	pressure.	In	practice,	if	we	change	to	more	extreme	conditions,	such	as	low	temperatures	or	high
pressures,	gases	start	to	deviate	from	these	laws	as	the	gas	atoms	exert	significant	electrical	forces	on
each	other.	For	example,	Figure	20.7	shows	what	happens	when	nitrogen	is	cooled	down	towards
absolute	zero.	At	first,	the	graph	of	volume	against	temperature	follows	a	good	straight	line.	However,	as



it	approaches	the	temperature	at	which	it	condenses,	it	deviates	from	ideal	behaviour	and	at	77	K	it
condenses	to	become	liquid	nitrogen.

Figure	20.7:	A	real	gas	(in	this	case,	nitrogen)	deviates	from	the	behaviour	predicted	by	Charles’s	law
at	low	temperatures.

Thus,	we	have	to	attach	a	condition	to	the	relationships	discussed	earlier.	We	say	that	they	apply	to	an
ideal	gas.
When	we	are	dealing	with	real	gases,	we	have	to	be	aware	that	their	behaviour	may	be	significantly
different	from	the	ideal	gas.
An	ideal	gas	is	thus	one	for	which	we	can	apply	the	equation:
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20.6	Ideal	gas	equation
So	far,	we	have	seen	how	p,	V	and	T	are	related.	It	is	possible	to	write	a	single	equation	relating	these
quantities	that	takes	into	account	the	amount	of	gas	being	considered.
We	can	write	the	equation	in	the	following	form:

pV	=	nRT

where	n	is	the	amount	(number	of	moles)	of	an	ideal	gas.
Or	in	the	form:

pV	=	NkT

where	N	is	the	number	of	molecules	and	k	is	the	Boltzmann	constant	described	later	in	topic	20.8.
This	equation	is	called	the	equation	of	state	for	an	ideal	gas	(or	the	ideal	gas	equation).	It	relates	all
four	of	the	variable	quantities	discussed	at	the	beginning	of	this	chapter.	The	constant	of	proportionality
R	is	called	the	universal	molar	gas	constant.	Its	experimental	value	is:

R	=	8.31	J	mol−1	K−1

Note	that	it	doesn’t	matter	what	gas	we	are	considering–it	could	be	a	very	‘light’	gas	like	hydrogen,	or	a
much	‘heavier’	one	like	carbon	dioxide.	So	long	as	it	is	behaving	as	an	ideal	gas,	we	can	use	the	same
equation	of	state	with	the	same	constant	R.

KEY	EQUATION
equation	of	state:

pV	=	nRT	or	pV	=	NkT

Calculating	the	number	n	of	moles
Instead	of	knowing	the	mass	of	one	molecule	in	unified	atomic	mass	units,	sometimes	we	may	be	given
the	molar	mass	(the	mass	of	one	mole)	and	the	mass	of	gas	we	are	concerned	with,	to	find	how	many
moles	are	present.	To	do	this,	we	use	the	relationship:

For	example:	How	many	moles	are	there	in	1.6	kg	of	oxygen?

molar	mass	of	oxygen-16	=	32	g	mol−1

(Note	that	this	tells	us	that	there	are	50	moles	of	oxygen	molecules	in	1.6	kg	of	oxygen.	An	oxygen
molecule	consists	of	two	oxygen	atoms	–	its	formula	is	O2	–	so	1.6	kg	of	oxygen	contains	100	moles	of
oxygen	atoms.)
Now	look	at	Worked	examples	2	and	3.

WORKED	EXAMPLE

Calculate	the	volume	occupied	by	one	mole	of	an	ideal	gas	at	room	temperature	(20	°C)	and
pressure	(1.013	×	105	Pa).

Write	down	the	quantities	given.

p	=	1.013	×	105Pa							n	=	1.0
T	=	293	K
Hint:	Note	that	the	temperature	is	converted	to	kelvin.
Substituting	these	values	in	the	equation	of	state	gives:
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Hint:	1	dm	=	0.1	m;	hence	1	dm3	=	10−3	m3.
This	value,	the	volume	of	one	mole	of	gas	at	room	temperature	and	pressure,	is	well	worth
remembering.	It	is	certainly	known	by	most	chemists.
A	car	tyre	contains	0.020	m3	of	air	at	27	°C	at	a	pressure	of	3.0	×	105	Pa.	Calculate	the	mass	of	the
air	in	the	tyre.	(Molar	mass	of	air	=	28.8	g	mol−1.)

Here,	we	need	first	to	calculate	the	number	of	moles	of	air	using	the	equation	of	state.	We
have:

p	=	3.0	×	105	Pa					V	=	0.02	m3					T	=	27	°C	=	300	K
Hint:	Don’t	forget	to	convert	the	temperature	to	kelvin.
So,	from	the	equation	of	state:

Now	we	can	calculate	the	mass	of	air:
mass	=	number	of	moles	×	molar	mass
mass	=	2.41	×	28.8	=	69.4	g	≈	69	g

Questions
For	the	questions	that	follow,	you	will	need	the	following	value:

R	=	8.31	J	mol−1	K−1

At	what	temperature	(in	K)	will	1.0	mol	of	a	gas	occupy	1.0	m3	at	a	pressure	of	1.0	×	104	Pa?
Nitrogen	consists	of	molecules	N2.	The	molar	mass	of	nitrogen	is	28	g	mol−1.	For	100	g	of	nitrogen,
calculate:

the	number	of	moles
the	volume	occupied	at	room	temperature	and	pressure	(20	°C;	1.01	×	105	Pa).

Calculate	the	volume	of	5.0	mol	of	an	ideal	gas	at	a	pressure	of	1.0	×	105	Pa	and	a	temperature	of	200
°C.
A	sample	of	gas	contains	3.0	×	1024	molecules.	Calculate	the	volume	of	the	gas	at	a	temperature	of
300	K	and	a	pressure	of	120	kPa.
At	what	temperature	would	1.0	kg	of	oxygen	occupy	1.0	m3	at	a	pressure	of	1.0	×	105	Pa?	(Molar
mass	of	O2	=	32	g	mol−1.)

A	cylinder	of	hydrogen	has	a	volume	of	0.100	m3.	Its	pressure	is	found	to	be	20	atmospheres	at	20	°C.
Calculate	the	mass	of	hydrogen	in	the	cylinder.
If	it	were	instead	filled	with	oxygen	to	the	same	pressure,	how	much	oxygen	would	it	contain?
(Molar	mass	of	H2	=	2.0	g	mol−1;	molar	mass	of	O2	=	32	g	mol−1;

1	atmosphere	=	1.01	×	105	Pa.)
	
	



20.7	Modelling	gases:	the	kinetic	model
In	this	chapter,	we	are	concentrating	on	the	macroscopic	properties	of	gases	(pressure,	volume,
temperature).	These	can	all	be	readily	measured	in	the	laboratory.	The	equation:

is	an	empirical	relationship.	In	other	words,	it	has	been	deduced	from	the	results	of	experiments.	It	gives
a	good	description	of	gases	in	many	different	situations.	However,	an	empirical	equation	does	not	explain
why	gases	behave	in	this	way.	An	explanation	requires	us	to	think	about	the	underlying	nature	of	a	gas
and	how	this	gives	rise	to	our	observations.
A	gas	is	made	of	particles	(atoms	or	molecules).	Its	pressure	arises	from	collisions	of	the	particles	with
the	walls	of	the	container;	more	frequent	or	harder	collisions	give	rise	to	greater	pressure.	Its
temperature	indicates	the	average	kinetic	energy	of	its	particles;	the	faster	they	move,	the	greater	their
average	kinetic	energy	and	the	higher	the	temperature.
The	kinetic	theory	of	gases	is	a	theory	that	links	these	microscopic	properties	of	particles	(atoms	or
molecules)	to	the	macroscopic	properties	of	a	gas.	Table	20.1	shows	the	assumptions	on	which	the	theory
is	based.
On	the	basis	of	these	assumptions,	it	is	possible	to	use	Newtonian	mechanics	to	show	that	pressure	is
inversely	proportional	to	volume	(Boyle’s	law),	volume	is	directly	proportional	to	thermodynamic	(kelvin)
temperature	(Charles’s	law),	and	so	on.	The	theory	also	shows	that	the	particles	of	a	gas	have	a	range	of
speeds	–	some	move	faster	than	others.
Learn	the	four	assumptions	of	the	kinetic	theory	shown	in	Table	20.1.

Assumption Explanation/comment

A	gas	contains	a	large	number	of	particles	(atoms
or	molecules)	moving	at	random	that	collide
elastically	with	the	walls	and	with	each	other.

Kinetic	energy	cannot	be	lost.	The	internal	energy
of	the	gas	is	the	total	kinetic	energy	of	the
particles.

The	forces	between	particles	are	negligible,	except
during	collisions.

If	the	particles	attracted	each	other	strongly	over
long	distances,	they	would	all	tend	to	clump
together	in	the	middle	of	the	container.

The	volume	of	the	particles	is	negligible	compared
to	the	volume	occupied	by	the	gas.

When	a	liquid	boils	to	become	a	gas,	its	particles
become	much	farther	apart.

The	time	of	collision	by	a	particle	with	the
container	walls	is	negligible	compared	with	the
time	between	collisions.

The	molecules	can	be	considered	to	be	hard
spheres.

Table	20.1:	The	basic	assumptions	of	the	kinetic	theory	of	gases.

The	kinetic	theory	has	proved	to	be	a	very	powerful	model.	It	convinced	many	physicists	of	the	existence
of	particles	long	before	it	was	ever	possible	to	visualise	them.

Molecules	in	a	box
We	can	use	the	kinetic	model	to	deduce	an	equation	that	relates	the	macroscopic	properties	of	a	gas
(pressure,	volume)	to	the	microscopic	properties	of	its	molecules	(mass	and	speed).	We	start	by	picturing
a	single	molecule	in	a	cube-shaped	box	of	side	l	(Figure	20.8).	This	molecule	has	mass	m,	and	is	moving
with	speed	c	parallel	to	one	side	of	the	box	(c	is	not	the	speed	of	light	in	this	case).	It	rattles	back	and
forth,	colliding	at	regular	intervals	with	the	ends	of	the	box	and	thereby	contributing	to	the	pressure	of
the	gas.	We	are	going	to	work	out	the	pressure	this	one	molecule	exerts	on	one	end	of	the	box	and	then
deduce	the	total	pressure	produced	by	all	the	molecules.
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Figure	20.8:	A	single	molecule	of	a	gas,	moving	in	a	box.

KEY	EQUATIONS

Note:	you	need	to	be	able	to	derive	the	final	equation	yourself.

You	need	to	read	through	the	proof	carefully	as	you	will	need	to	be	able	to	derive	the	final	equation
yourself.
The	stages	involved	in	this	calculation	are:

Find	the	change	in	momentum	as	a	single	molecule	hits	a	wall	at	90°.
Calculate	the	number	of	collisions	per	second	by	the	molecule	on	a	wall.
Find	the	change	in	momentum	per	second.
Find	the	pressure	on	the	wall.
Consider	the	effect	of	having	three	directions	in	which	the	molecule	can	move.

As	you	go	through	the	proof,	see	for	yourself	where	each	stage	starts	and	finishes.
Consider	a	collision	in	which	the	molecule	strikes	side	ABCD	of	the	cube.	It	rebounds	elastically	in	the
opposite	direction,	so	that	its	velocity	is	−c.	Its	momentum	changes	from	mc	to	−mc.	The	change	in
momentum	arising	from	this	single	collision	is	thus:

Between	consecutive	collisions	with	side	ABCD,	the	molecule	travels	a	distance	of	2l	at	speed	c.	Hence:

Now	we	can	find	the	force	that	this	one	molecule	exerts	on	side	ABCD,	using	Newton’s	second	law	of
motion.	This	says	that	the	force	produced	is	equal	to	the	rate	of	change	of	momentum:

(We	use	+2mc	because	now	we	are	considering	the	force	of	the	molecule	on	side	ABCD,	which	is	in	the
opposite	direction	to	the	change	in	momentum	of	the	molecule.)

The	area	of	side	ABCD	is	l2.	From	the	definition	of	pressure,	we	have:



This	is	for	one	molecule,	but	there	is	a	large	number	N	of	molecules	in	the	box.	Each	has	a	different
velocity,	and	each	contributes	to	the	pressure.	We	write	the	average	value	of	c2	as	<c2>,	and	multiply	by
N	to	find	the	total	pressure:

But	this	assumes	that	all	the	molecules	are	travelling	in	the	same	direction	and	colliding	with	the	same
pair	of	opposite	faces	of	the	cube.	In	fact,	they	will	be	moving	in	all	three	dimensions	equally.

If	there	are	components	cx,	cy	and	cz	of	the	velocity	in	the	x-,	y-	and	z-	directions	then	c2	=	cx2	+	cy2	+
cz2.	There	is	nothing	special	about	any	particular	direction	and	so	<cx2>	=	<cy2>	=	<cz2>	and	

.
The	equation	for	pressure	worked	out	above	involved	just	the	component	of	the	velocity	in	the	x-direction
and	if	c	is	the	actual	speed	of	the	particle	then	we	need	to	divide	by	3	to	find	the	pressure	exerted.

Here,	l3	is	equal	to	the	volume	V	of	the	cube,	so	we	can	write:

(Notice	that,	in	the	second	form	of	the	equation,	we	have	the	macroscopic	properties	of	the	gas	–
pressure	and	volume	–	on	one	side	of	the	equation	and	the	microscopic	properties	of	the	molecules	on	the
other	side.)

KEY	EQUATION
Pressure	of	an	ideal	gas:

Finally,	the	quantity	Nm	is	the	mass	of	all	the	molecules	of	the	gas,	and	this	is	simply	equal	to	the	mass	M
of	the	gas.	So	 	is	equal	to	the	density	ρ	of	the	gas,	and	we	can	write:

So	the	pressure	of	a	gas	depends	only	on	its	density	and	the	mean	square	speed	of	its	molecules.

A	plausible	equation?
It	is	worth	thinking	a	little	about	whether	the	equation	 	seems	to	make	sense.	It	should
be	clear	to	you	that	the	pressure	is	proportional	to	the	number	of	molecules,	N.	More	molecules	mean
greater	pressure.	Also,	the	greater	the	mass	of	each	molecule,	the	greater	the	force	it	will	exert	during	a
collision.
The	equation	also	suggests	that	pressure	p	is	proportional	to	the	average	value	of	the	speed	squared.	This
is	because,	if	a	molecule	is	moving	faster,	not	only	does	it	strike	the	container	harder,	but	it	also	strikes
the	container	more	often.
The	equation	suggests	that	the	pressure	p	is	inversely	proportional	to	the	volume	occupied	by	the	gas.
Here,	we	have	deduced	Boyle’s	law.	If	we	think	in	terms	of	the	kinetic	model,	we	can	see	that	if	a	mass	of
gas	occupies	a	larger	volume,	the	frequency	of	collision	between	the	molecules	and	unit	area	of	wall
decreases.	The	equation	shows	us	not	just	that	pressure	will	be	lower	but	that	it	is	inversely	proportional
to	volume.
These	arguments	should	serve	to	convince	you	that	the	equation	is	plausible;	this	sort	of	argument	cannot
prove	the	equation.
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Questions
Check	that	the	SI	base	units	on	the	left-hand	side	of	the	equation:

are	the	same	as	those	on	the	right-hand	side.
The	quantity	Nm	is	the	total	mass	of	the	molecules	of	the	gas,	i.e.	the	mass	of	the	gas.	At	room
temperature,	the	density	of	air	is	about	1.29	kg	m−3	at	a	pressure	of	105	Pa.

Use	these	figures	to	deduce	the	value	of	<c2>	for	air	molecules	at	room	temperature.
Find	a	typical	value	for	the	speed	of	a	molecule	in	the	air	by	calculating	 .	How	does	this
compare	with	the	speed	of	sound	in	air,	approximately	330	m	s−1?

	
	



20.8	Temperature	and	molecular	kinetic	energy
Now	we	can	compare	the	equation	 	with	the	ideal	gas	equation	pV	=	nRT.	The	left-
hand	sides	are	the	same,	so	the	two	right-hand	sides	must	also	be	equal:

We	can	use	this	equation	to	tell	us	how	the	absolute	temperature	of	a	gas	(a	macroscopic	property)	is
related	to	the	mass	and	speed	of	its	molecules.	If	we	focus	on	the	quantities	of	interest,	we	can	see	the
following	relationship:

The	quantity	 	is	the	Avogadro	constant,	the	number	of	particles	in	1	mole.	So:

It	is	easier	to	make	sense	of	this	if	we	divide	both	sides	by	2,	to	get	the	familiar	expression	for	kinetic
energy:

The	quantity	 	is	defined	as	the	Boltzmann	constant,	k.	Its	value	is	1.38	×	10−23	J	K−1.	Substituting	k
in	place	of	 	gives

This	is	the	average	kinetic	energy	E	of	a	molecule	in	the	gas,	and	since	k	is	a	constant,	the
thermodynamic	temperature	T	is	proportional	to	the	average	kinetic	energy	of	a	molecule.

KEY	EQUATION
Boltzmann	constant:

The	mean	translational	kinetic	energy	of	an	atom	(or	molecule)	of	an	ideal	gas	is	proportional	to	the
thermodynamic	temperature.
It	is	easier	to	recall	this	as:

mean	translational	kinetic	energy	of	atom	∝	T

KEY	EQUATION
mean	translational	kinetic	energy	of	atom	∝	T

We	need	to	consider	two	of	the	terms	in	this	statement.	First,	we	talk	about	translational	kinetic	energy.
This	is	the	energy	that	the	molecule	has	because	it	is	moving	from	one	point	in	space	to	another;	a
molecule	made	of	two	or	more	atoms	may	also	spin	or	tumble	around,	and	is	then	said	to	have	rotational
kinetic	energy	–	see	Figure	20.9.

Figure	20.9:	a	A	monatomic	molecule	has	only	translational	kinetic	energy.	b	A	diatomic	molecule	can
have	both	translational	and	rotational	kinetic	energy.

Second,	we	talk	about	mean	(or	average)	kinetic	energy.	There	are	two	ways	to	find	the	average	kinetic
energy	(k.e.)	of	a	molecule	of	a	gas.	Add	up	all	the	kinetic	energies	of	the	individual	molecules	of	the	gas
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and	then	calculate	the	average	k.e.	per	molecule.	Alternatively,	watch	an	individual	molecule	over	a
period	of	time	as	it	moves	about,	colliding	with	other	molecules	and	the	walls	of	the	container	and
calculate	its	average	k.e.	over	this	time.	Both	should	give	the	same	answer.
The	Boltzmann	constant	is	an	important	constant	in	physics	because	it	tells	us	how	a	property	of
microscopic	particles	(the	kinetic	energy	of	gas	molecules)	is	related	to	a	macroscopic	property	of	the	gas
(its	absolute	temperature).	That	is	why	its	units	are	joules	per	kelvin	(J	K−1).	Its	value	is	very	small	(1.38
×	10−23	J	K−1)	because	the	increase	in	kinetic	energy	in	J	of	a	molecule	is	very	small	for	each	kelvin
increase	in	temperature.
It	is	useful	to	remember	the	equation	linking	kinetic	energy	with	temperature	as	‘average	k.e.	is	three-
halves	kT’.

KEY	EQUATION

Questions
The	Boltzmann	constant	k	is	equal	to	 .	From	values	of	R	and	NA,	show	that	k	has	the	value	1.38	×
10−23	J	K−1.
Calculate	the	mean	translational	k.e.	of	atoms	in	an	ideal	gas	at	27	°C.
The	atoms	in	a	gas	have	a	mean	translational	k.e.	equal	to	5.0	×	10−21	J.	Calculate	the	temperature	of
the	gas	in	K	and	in	°C.

The	root-mean-square	speed
You	may	have	wondered	how	the	mean-square	speed	<	c2	>	compares	with	the	mean	speed	<	c>.
The	exact	relationship	depends	on	the	distribution	of	the	speeds	of	the	molecules.	If	all	the	molecules
have	the	same	speed,	then	 .
But	is	this	always	the	case?

Imagine	three	molecules	with	speeds	10,	20	and	30	m	s−1;	(very	low	speeds	for	molecules,	but	easier	for
our	calculations!).

Their	square	speeds	are	102,	202	and	302.
So,	their	mean-square	speed

In	this	case,	 ,	which	is	not	the	same	as	the	mean	speed.

Similarly,	the	mean	of	the	square	of	the	speeds	<	c2	>	=	467	m2	s−2	is	not	the	same	as	the	square	of	the
mean	of	the	speeds	(<	c	>)2	=	400	m2	s−2	in	the	example.

In	general,	the	values	for	<	c	>	and	 	are	similar	but,	because	they	are	not	the	same,	we	define	a
special	quantity	called	the	root-mean-square	speed	cr.m.s..

This	is	the	square	root	of	the	mean-square-speed;	that	is:

In	the	example,	for	the	three	molecules,	cr.m.s	=	22	m	s−1.

KEY	EQUATION

Root-mean-square	speed,	where	cr.m.s	is	the	root	of	the	mean	square
speed.
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Questions
Four	molecules	have	speeds	200,	400,	600	and	800	m	s−1.	Calculate:

their	mean	speed	<	c>
the	square	of	their	mean	speed	<	c>2

their	mean-square	speed	<	c2	>
their	root-mean-square	speed	cr.m.s..

Calculate	the	root-mean	square	speed	of	the	molecules	of	hydrogen	at	20	°C	given	that	each	molecule
of	hydrogen	has	mass	3.35	×	10−27	kg.

Mass,	kinetic	energy	and	temperature
Since	mean	k.e.	∝	T,	it	follows	that	if	we	double	the	thermodynamic	temperature	of	an	ideal	gas	(for
example,	from	300	K	to	600	K),	we	double	the	mean	k.e.	of	its	molecules.	It	doesn’t	follow	that	we	have
doubled	their	speed;	because	k.e.	∝	ν2,	their	mean	speed	has	increased	by	a	factor	of	√2.
Air	is	a	mixture	of	several	gases:	nitrogen,	oxygen,	carbon	dioxide,	etc.	In	a	sample	of	air,	the	mean	k.e.	of
the	nitrogen	molecules	is	the	same	as	that	of	the	oxygen	molecules	and	that	of	the	carbon	dioxide
molecules.	This	comes	about	because	they	are	all	repeatedly	colliding	with	one	another,	sharing	their
energy.	Carbon	dioxide	molecules	have	greater	mass	than	oxygen	molecules;	since	their	mean
translational	k.e.	is	the	same,	it	follows	that	the	carbon	dioxide	molecules	move	more	slowly	than	the
oxygen	molecules.

Questions
Show	that,	if	the	mean	speed	of	the	molecules	in	an	ideal	gas	is	doubled,	the	thermodynamic
temperature	of	the	gas	increases	by	a	factor	of	four.
A	fixed	mass	of	gas	expands	to	twice	its	original	volume	at	a	constant	temperature.	How	do	the
following	change?

the	pressure	of	the	gas
the	mean	translational	kinetic	energy	of	its	molecules.

Air	consists	of	molecules	of	oxygen	(molar	mass	=	32	g	mol−1)	and	nitrogen	(molar	mass	=	28	g	mol
−1).	Calculate	the	mean	translational	k.e.	of	these	molecules	in	air	at	20	°C.	Use	your	answer	to
calculate	the	root-mean-square	speed	of	each	type	of	molecule.
Show	that	the	change	in	the	internal	energy	of	one	mole	of	an	ideal	gas	per	unit	change	in
temperature	is	always	a	constant.	What	is	this	constant?

REFLECTION
Without	looking	at	your	textbook,	make	a	list	of	the	kinetic	theory	equations	and	write	down	what	each
term	in	the	equations	means.
Write	out	a	proof	on	your	own	of	the	main	kinetic	theory	equation	using	momentum	change	and
Newton’s	laws.
Write	out	the	assumptions	in	your	own	words.
Show	how	kinetic	theory	relates	temperature	and	molecular	speed.
What	things	might	you	want	more	help	with?

	
	



SUMMARY

For	an	ideal	gas:

One	mole	of	any	substance	contains	NA	particles	(atoms	or	molecules):

NA	=	Avogadro	constant	=	6.02	×	1023	mol−1

The	equation	of	state	for	an	ideal	gas	is:

pV	=	nRT	for	n	moles.	pV	=	NRT	for	N	molecules

There	are	four	assumptions	of	the	kinetic	theory:
1.	Molecules	move	at	random,	colliding	elastically	with	the	walls.
2.	The	volume	of	the	molecules	is	small	compared	to	the	volume	of	the	container.
3.	There	are	no	forces	between	atoms	in	the	gas.
4.	The	time	of	each	collision	is	small	compared	to	the	time	between	collisions.

From	the	kinetic	model	of	a	gas,	we	can	deduce	the	relationship:
	where	<	c2	>	is	the	mean-square	speed	of	the	molecules.

The	mean	translational	kinetic	energy	E	of	a	particle	(atom	or	molecule)	of	an	ideal	gas	is	proportional
to	the	thermodynamic	temperature	T:

The	root-mean-sqare	speed	is	the	square	root	of	the	mean	square	speed	of	the	molecules:
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EXAM-STYLE	QUESTIONS

A	gas	is	enclosed	inside	a	cylinder	that	is	fitted	with	a	freely	moving	piston. 	

The	gas	is	initially	in	equilibrium	with	a	volume	V1	and	a	pressure	p.	The	gas	is
then	cooled	slowly.	The	piston	moves	into	the	cylinder	until	the	volume	of	the
gas	is	reduced	to	V2	and	the	pressure	remains	at	p. 	

What	is	the	work	done	on	the	gas	during	this	cooling? [1]

	

p(V2	−	V1) 	

	

p(V2	+	V1) 	

An	ideal	gas	is	made	to	expand	slowly	at	a	constant	temperature. 	

Which	statement	is	correct? [1]

The	heat	energy	transferred	to	the	gas	is	zero. 	

The	internal	energy	of	the	gas	increases. 	

The	work	done	by	the	gas	is	equal	to	the	heat	energy	added	to	it. 	

The	work	done	by	the	gas	is	zero. 	

State	how	many	atoms	there	are	in: 	

a	mole	of	helium	gas	(a	molecule	of	helium	has	one	atom) [1]

a	mole	of	chlorine	gas	(a	molecule	of	chlorine	has	two	atoms) [1]

a	kilomole	of	neon	gas	(a	molecule	of	neon	has	one	atom). [1]

A	container	holds	four	moles	of	carbon	dioxide	of	molecular	formula	CO2.
Calculate: 	

the	number	of	carbon	dioxide	molecules	there	are	in	the	container [1]

the	number	of	carbon	atoms	there	are	in	the	container [1]

the	number	of	oxygen	atoms	there	are	in	the	container. [1]

	 [Total:	6]

A	bar	of	gold-197	has	a	mass	of	1.0	kg.	Calculate: 	

the	mass	of	one	gold	atom	in	kg. [1]

the	number	of	gold	atoms	in	the	bar [1]

the	number	of	moles	of	gold	in	the	bar. [2]

(An	atom	of	gold	contains	197	nucleons	and	has	a	mass	of	197	u.) 	

	 [Total:	4]

A	cylinder	holds	140	m3	of	nitrogen	at	room	temperature	and	pressure.	Moving
slowly,	so	that	there	is	no	change	in	temperature,	a	piston	is	pushed	to	reduce
the	volume	of	the	nitrogen	to	42	m3. 	

Calculate	the	pressure	of	the	nitrogen	after	compression. [2]

Explain	the	effect	on	the	temperature	and	pressure	of	the	nitrogen	if	the
piston	is	pushed	in	very	quickly. [1]

	 [Total:	3]

The	atmospheric	pressure	is	100	kPa,	equivalent	to	the	pressure	exerted	by	a
column	of	water	10	m	high.	A	bubble	of	oxygen	of	volume	0.42	cm3	is	released
by	a	water	plant	at	a	depth	of	25	m.	Calculate	the	volume	of	the	bubble	when	it
reaches	the	surface.	State	any	assumptions	you	make. [4]

A	cylinder	contains	4.0	×	10−2	m3	of	carbon	dioxide	at	a	pressure	of	4.8	×	105

Pa	at	room	temperature. 	

Calculate: 	

the	number	of	moles	of	carbon	dioxide [2]

the	mass	of	carbon	dioxide. [2]

(Molar	mass	of	carbon	dioxide	=	44	g	or	one	molecule	of	carbon	dioxide
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has	mass	44	u.) 	

	 [Total:	4]

Calculate	the	volume	of	1	mole	of	ideal	gas	at	a	pressure	of	1.01	×	105	Pa	and
at	a	temperature	of	0	°C. [2]

A	vessel	of	volume	0.20	m3	contains	3.0	×	1026	molecules	of	gas	at	a
temperature	of	127	°C.	Calculate	the	pressure	exerted	by	the	gas	on	the	vessel
walls. [3]

Calculate	the	root-mean-square	speed	of	helium	molecules	at	room
temperature	and	pressure.	(Density	of	helium	at	room	temperature	and
pressure	=	0.179	kg	m−3.) [3]

Compare	this	speed	with	the	average	speed	of	air	molecules	at	the	same
temperature	and	pressure. [2]

	 [Total:	5]

A	sample	of	neon	is	contained	in	a	cylinder	at	27	°C.	Its	temperature	is	raised
to	243	°C. 	

Calculate	the	kinetic	energy	of	the	neon	atoms	at: 	

27	°C [3]

243	°C. [1]

Calculate	the	ratio	of	the	speeds	of	the	molecules	at	the	two	temperatures. [2]

	 [Total:	6]

A	truck	is	to	cross	the	Sahara	desert.	The	journey	begins	just	before	dawn
when	the	temperature	is	3	°C.	The	volume	of	air	held	in	each	tyre	is	1.50	m3

and	the	pressure	in	the	tyres	is	3.42	×	105	Pa. 	

Explain	how	the	air	molecules	in	the	tyre	exert	a	pressure	on	the	tyre
walls. [3]

Calculate	the	number	of	moles	of	air	in	the	tyre. [3]

By	midday	the	temperature	has	risen	to	42	°C. 	

Calculate	the	pressure	in	the	tyre	at	this	new	temperature.	You	may
assume	that	no	air	escapes	and	the	volume	of	the	tyre	is	unchanged. [2]

Calculate	the	increase	in	the	average	translational	kinetic	energy	of	an
air	molecule	due	to	this	temperature	rise. [2]

	 [Total:	10]

The	ideal	gas	equation	is	 . 	

State	the	meaning	of	the	symbols	N,	m	and	<	c2	>. [3]

A	cylinder	of	helium-4	contains	gas	with	volume	4.1	×	104	cm3	at	a
pressure	of	6.0	×	105	Pa	and	a	temperature	of	22	°C.	You	may	assume
helium	acts	as	an	ideal	gas	and	that	a	molecule	of	helium-4	contains	4
nucleons,	each	of	mass	1.66	×	10−27	kg.

	

Determine: 	

the	amount	of	gas	in	mol [3]

the	number	of	molecules	present	in	the	gas [2]

the	root-mean-square	speed	of	the	molecules. [3]

	 [Total:	11]

State	what	is	meant	by	an	ideal	gas. [2]

A	cylinder	contains	500	g	of	helium-4	at	a	pressure	of	5.0	×	105	Pa	and	at	a
temperature	of	27	°C.	You	may	assume	that	the	molar	mass	of	helium-4	is
4.0	g. 	

Calculate: 	

the	number	of	moles	of	helium	the	cylinder	holds [1]

the	number	of	molecules	of	helium	the	cylinder	holds [1]

the	volume	of	the	cylinder. [3]

	 [Total:	7]
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One	assumption	of	the	kinetic	theory	of	gases	is	that	molecules	undergo
perfectly	elastic	collisions	with	the	walls	of	their	container.

	

Explain	what	is	meant	by	a	perfectly	elastic	collision. [1]

State	three	other	assumptions	of	the	kinetic	theory. [3]

A	single	molecule	is	contained	within	a	cubical	box	of	side	length	0.30	m.
The	molecule,	of	mass	2.4	×	10−26	kg,	moves	backwards	and	forwards
parallel	to	one	side	of	the	box	with	a	speed	of	400	m	s−1.	It	collides
elastically	with	one	of	the	faces	of	the	box,	face	P. 	

Calculate	the	change	in	momentum	each	time	the	molecule	hits	face	P. [2]

Calculate	the	number	of	collisions	made	by	the	molecule	in	1.0	s	with
face	P. [2]

Calculate	the	mean	force	exerted	by	the	molecule	on	face	P. [2]

	 [Total:	10]

A	cylinder	contains	1.0	mol	of	an	ideal	gas.	The	gas	is	heated	while	the
volume	of	the	cylinder	remains	constant.	Calculate	the	energy	required	to
raise	the	temperature	of	the	gas	by	1.0	°C. [2]

Calculate	the	root-mean-square	speed	of	a	molecule	of	hydrogen-1	at	a
temperature	of	100	°C. 	

(Mass	of	a	hydrogen	molecule	=	3.34	×	10−27	kg.) [3]

Calculate,	for	oxygen	and	hydrogen	at	the	same	temperature,	the	ratio

	

(Mass	of	an	oxygen	molecule	=	5.31	×	10−26	kg.) [2]

	 [Total:	7]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

use	molar	quantities	and	understand
that	one	mole	is	an	amount	of	substance
containing	NA	particles,	where	NA	is	the
Avogadro	constant

20.3 	 	 	

understand	that	an	ideal	gas	obeys	PV	∝
T	where	T	is	the	thermodynamic
temperature

20.4 	 	 	

recall	and	use	the	equation	of	state	for
an	ideal	gas	expressed	as	pV	=	nRT,
where	n	=	amount	of	substance
(number	of	moles),	and	as	pV	=	NkT,
where	N	=	number	of	molecules

20.6 	 	 	

state	the	basic	assumptions	of	the
kinetic	theory	of	gas

20.7 	 	 	

explain	how	molecular	movement
causes	the	pressure	exerted	by	a	gas
and	derive	the	relationship:

,	where	<	c2	>	is
the	mean-square	speed

20.7 	 	 	

understand	that	the	root-mean-square
speed	cr.m.s.	is	given	by:

20.8 	 	 	

recall	that	the	Boltzmann	constant	k	is
given	by:

20.8 	 	 	

compare	with	 	with
pV	=	NkT	to	deduce	that	the	average
translational	kinetic	energy	of	a
molecule	is	 .

20.8 	 	 	
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	Chapter	21

Uniform	electric	fields

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
show	an	understanding	of	the	concept	of	an	electric	field
define	electric	field	strength
draw	field	lines	to	represent	an	electric	field
calculate	the	strength	of	a	uniform	electric	field
calculate	the	force	on	a	charge	in	a	uniform	electric	field
describe	how	charged	particles	move	in	a	uniform	electric	field.

BEFORE	YOU	START
You	will	have	learned	about	electrostatics	in	your	previous	studies	and	in	everyday	life.	You	will	also
have	met	the	idea	of	magnetism.
Make	 a	 list	 of	 the	 similarities	 between	 electrostatics	 and	 magnetism	 and	 also	 a	 list	 of	 the
differences.
Are	the	two	phenomena	related	or	not?	If	so,	how?

ELECTRICITY	IN	NATURE
The	lower	surface	of	a	thundercloud	is	usually	negatively	charged.	When	lightning	strikes	(Figure
21.1),	an	intense	electric	current	is	sent	down	to	the	ground	below.	You	may	have	noticed	a	‘strobe’
effect	–	this	is	because	each	lightning	strike	usually	consists	of	four	or	five	flashes	at	intervals	of	50
milliseconds	or	so.	You	will	already	know	a	bit	about	electric	(or	electrostatic)	fields,	from	your
experience	of	static	electricity	in	everyday	life	and	from	your	studies	in	science.	In	this	chapter,	you	will
learn	how	we	can	make	these	ideas	more	formal.	We	will	look	at	how	electric	forces	are	caused,	and
how	we	can	represent	their	effects	in	terms	of	electric	fields.	Then	we	will	find	mathematical	ways	of



calculating	electric	forces	and	field	strengths.
There	are	about	three	million	lightning	strikes	on	the	Earth	each	day;	the	energy	transferred	in	one
strike	is	10	MJ.	There	is	more	than	enough	energy	to	satisfy	the	industrial	world	with	all	its	energy
needs.	Why	is	it	not	harnessed?	What	problems	can	you	see	in	harnessing	it?

Figure	21.1:	Lightning	flashes;	dramatic	evidence	of	natural	electric	fields.
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21.1	Attraction	and	repulsion
Static	electricity	can	be	useful	–	it	is	important	in	the	process	of	photocopying,	in	dust	precipitation	to
clean	up	industrial	emissions	and	in	crop-spraying,	among	many	other	applications.	It	can	also	be	a
nuisance.	Who	hasn’t	experienced	a	shock,	perhaps	when	getting	out	of	a	car	or	when	touching	a	door
handle?	Static	electric	charge	has	built	up	and	gives	us	a	shock	when	it	discharges.
We	explain	these	effects	in	terms	of	electric	charge.	Simple	observations	in	the	laboratory	give	us	the
following	picture:

Objects	 are	usually	 electrically	 neutral	 (uncharged),	 but	 they	may	become	electrically	 charged,	 for
example,	when	one	material	is	rubbed	against	another.
There	are	two	types	of	charge,	which	we	call	positive	and	negative.
Opposite	types	of	charge	attract	one	another;	like	charges	repel	(Figure	21.2).
A	 charged	 object	 may	 also	 be	 able	 to	 attract	 an	 uncharged	 one;	 this	 is	 a	 result	 of	 electrostatic
induction.

Figure	21.2:	Attraction	and	repulsion	between	electric	charges.

These	observations	are	macroscopic.	They	are	descriptions	of	phenomena	that	we	can	observe	in	the
laboratory,	without	having	to	consider	what	is	happening	on	the	microscopic	scale,	at	the	level	of
particles	such	as	atoms	and	electrons.	However,	we	can	give	a	more	subtle	explanation	if	we	consider	the
microscopic	picture	of	static	electricity.
Using	a	simple	model,	we	can	consider	matter	to	be	made	up	of	three	types	of	particles:	electrons	(which
have	negative	charge),	protons	(positive)	and	neutrons	(neutral).	An	uncharged	object	has	equal	numbers
of	protons	and	electrons,	whose	charges	therefore	cancel	out.
When	one	material	is	rubbed	against	another,	there	is	friction	between	them,	and	electrons	may	be
rubbed	off	one	material	onto	the	other	(Figure	21.3).	The	material	that	has	gained	electrons	is	now
negatively	charged,	and	the	other	material	is	positively	charged.
If	a	positively	charged	object	is	brought	close	to	an	uncharged	one,	the	electrons	in	the	second	object
may	be	attracted.	We	observe	this	as	a	force	of	attraction	between	the	two	objects.	(This	is	known	as
electrostatic	induction.)

Figure	21.3:	Friction	can	transfer	electrons	between	materials.

It	is	important	to	appreciate	that	it	is	usually	electrons	that	are	involved	in	moving	within	a	material,	or
from	one	material	to	another.	This	is	because	electrons,	which	are	on	the	outside	of	atoms,	are	less
strongly	held	within	a	material	than	are	protons.	They	may	be	free	to	move	about	within	a	material	(like
the	conduction	electrons	in	a	metal),	or	they	may	be	relatively	weakly	bound	within	atoms.

PRACTICAL	ACTIVITY	21.1

Investigating	electric	fields



If	you	rub	a	strip	of	plastic	so	that	it	becomes	charged	and	then	hold	it	close	to	your	hair,	you	feel	your
hair	being	pulled	upwards.	The	influence	of	the	charged	plastic	spreads	into	the	space	around	it;	we
say	that	there	is	an	electric	field	around	the	charge.	To	produce	an	electric	field,	we	need	unbalanced
charges	(as	with	the	charged	plastic).	To	observe	the	field,	we	need	to	put	something	in	it	that	will
respond	to	the	field	(as	your	hair	responds).	There	are	two	simple	ways	in	which	you	can	do	this	in	the
laboratory.	The	first	uses	a	charged	strip	of	gold	foil,	attached	to	an	insulating	handle	(Figure	21.4).
The	second	uses	grains	of	a	material	such	as	semolina;	these	line	up	in	an	electric	field	(Figure	21.5),
rather	like	the	way	in	which	iron	filings	line	up	in	a	magnetic	field	(Figure	21.5).

Figure	21.4:	Investigating	the	electric	field	between	two	charged	metal	plates.

Figure	21.5:	Apparatus	showing	a	uniform	electric	field	between	two	parallel	charged	plates.
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21.2	The	concept	of	an	electric	field
A	charged	object	experiences	a	force	in	an	electric	field.	This	is	what	an	electric	field	is.	We	say	that	there
is	an	electric	field	anywhere	where	an	electric	charge	experiences	a	force.	An	electric	field	is	a	field	of
force.
This	is	a	rather	abstract	idea.	You	will	be	more	familiar	with	the	idea	of	a	‘field	of	force’	from	your
experience	of	magnets.	There	is	a	magnetic	field	around	a	permanent	magnet;	another	magnet	placed
nearby	will	experience	a	force.	You	have	probably	plotted	the	field	lines	used	to	represent	the	field
around	a	magnet.	There	is	a	third	type	of	force	field	that	we	are	all	familiar	with,	because	we	live	in	it.
You	have	already	met	this	force	in	Chapter	17,	the	gravitational	field.	There	are	many	similarities
between	electric	fields	and	gravitational	fields,	there	are	also	key	differences.
To	summarise:

electric	fields	–	act	on	objects	with	electric	charge
magnetic	 fields	 –	 act	 on	 magnetic	 materials,	 magnets	 and	 moving	 charges	 (including	 electric
currents)
gravitational	fields	–	act	on	objects	with	mass.

Later,	we	will	see	that	the	electric	force	and	the	magnetic	force	are	closely	linked.	They	are	generally
considered	as	a	single	entity,	the	electromagnetic	force.

Representing	electric	fields
We	can	draw	electric	fields	in	much	the	same	way	that	we	can	draw	magnetic	fields	or	gravitational
fields,	by	showing	field	lines	(sometimes	called	lines	of	force).	The	three	most	important	field	shapes	are
shown	in	Figure	21.6.
As	with	magnetic	fields,	this	representation	tells	us	two	things	about	the	field:	its	direction	(from	the
direction	of	the	lines),	and	how	strong	it	is	(from	the	separation	of	the	lines).	The	arrows	go	from	positive
to	negative;	they	tell	us	the	direction	of	the	force	on	a	positive	charge	in	the	field.

A	 uniform	 field	 has	 the	 same	 strength	 at	 all	 points.	 Example:	 the	 electric	 field	 between	 oppositely
charged	parallel	plates.
A	radial	field	spreads	outwards	in	all	directions.	Example:	the	electric	field	around	a	point	charge	or	a
charged	sphere.

Figure	21.6:	Field	lines	are	drawn	to	represent	an	electric	field.	They	show	the	direction	of	the	force	on
a	 positive	 charge	 placed	 at	 a	 point	 in	 the	 field.	 a	 A	 uniform	 electric	 field	 is	 produced	 between	 two
oppositely	 charged	 plates.	 b	 A	 radial	 electric	 field	 surrounds	 a	 charged	 sphere.	 c	 The	 electric	 field
between	a	charged	sphere	and	an	earthed	plate.

We	can	draw	electric	fields	for	other	arrangements.	Note	the	symbol	for	an	earth,	which	is	assumed	to	be
uncharged	(in	other	words,	at	zero	volts).

Questions
Which	of	the	three	field	diagrams	in	Figure	21.7	represents:

two	positive	charges	repelling	each	other?
two	negative	charges?
two	opposite	charges?



2
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Figure	21.7:	Electric	fields	between	charges.	For	Question	1.

Many	molecules	are	described	as	polar;	that	is,	they	have	regions	that	are	positively	or	negatively
charged,	though	they	are	neutral	overall.	Draw	a	diagram	to	show	how	sausage-shaped	polar
molecules	like	those	shown	in	Figure	21.8	might	realign	themselves	in	a	solid.

Figure	21.8:	Polar	molecules.	For	Question	2.

Figure	21.9	shows	the	electric	field	pattern	between	a	thundercloud	and	a	building.	State	and	explain
where	the	electric	field	strength	is	greatest.



Figure	21.9:	Predict	where	the	electric	field	will	be	strongest	–	that’s	where	lightning	may	strike.
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21.3	Electric	field	strength
The	electric	field	strength	at	a	point	is	defined	as	the	force	per	unit	charge	exerted	on	a	stationary
positive	charge	at	that	point.
To	define	electric	field	strength,	we	imagine	putting	a	positive	test	charge	+Q	in	the	field	and	measuring
the	electric	force	F	that	it	feels	(Figure	21.10).	It	is	important	to	recognise	the	importance	of	using	a
positive	test	charge,	as	this	determines	the	direction	of	an	electric	field.	(If	you	have	used	a	charged	gold
leaf	to	investigate	a	field,	this	illustrates	the	principle	of	testing	the	field	with	a	charge.)

Figure	21.10:	A	field	of	strength	E	exerts	force	F	on	charge	+Q.

From	this	definition,	we	can	write	an	equation	for	E:

where	E	is	the	electric	field	strength,	F	is	the	force	on	the	charge	and	Q	is	the	charge.

It	follows	that	the	units	of	electric	field	strength	are	newtons	per	coulomb	(N	C−1).

KEY	EQUATION

The	strength	of	a	uniform	field
You	can	set	up	a	uniform	field	between	two	parallel	metal	plates	by	connecting	them	to	the	terminals	of	a
high-voltage	power	supply	(Figure	21.11).	The	strength	of	the	field	between	them	depends	on	two	factors:

the	voltage	V	between	the	plates	–	the	higher	the	voltage,	the	stronger	the	field:	E	∝	V

the	separation	d	between	the	plates	–	the	greater	their	separation,	the	weaker	the	field:	

These	factors	can	be	combined	to	give	an	equation	for	E:

Worked	example	1	shows	a	derivation	of	this.	Note	that	the	minus	sign	is	often	omitted	because	we	are
only	interested	in	the	magnitude	of	the	field,	not	its	direction.	In	Figure	21.11,	the	voltage	V	increases
towards	the	right	while	the	force	F	acts	in	the	opposite	direction,	towards	the	left.	E	is	a	vector	quantity.

KEY	EQUATION

Strength	of	a	uniform	field	between	two	parallel	metal	plates.

If	we	look	at	this	formula	in	a	little	more	detail	we	can	see	that	the	electric	field	is	really	equal	to	the
change	in	the	potential	(potential	difference)	divided	by	the	change	in	distance	(distance	moved).	This	is
written:
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where	the	symbol	Δ	means	‘change	of’.

Figure	21.11:	There	is	a	uniform	field	between	two	parallel,	charged	plates.

From	this	equation,	we	can	see	that	we	can	write	the	units	of	electric	field	strength	as	volts	per	metre	(V
m−1).	Note:

1	V	m−1	=	1	N	C−1

Worked	example	2	shows	how	to	solve	problems	involving	uniform	fields.

WORKED	EXAMPLES

Two	metal	plates	are	separated	by	a	distance	d.	The	potential	difference	between	the	plates	is	V.	A
positive	charge	Q	is	pulled	at	a	constant	speed	with	a	constant	force	F	from	the	negative	plate	all
the	way	to	the	positive	plate.	Using	the	definition	for	electric	field	strength	and	the	concept	of	work
done,	show	that	the	magnitude	of	the	electric	field	strength	E	is	given	by	the	equation:

We	have:
work	done	on	charge	=	energy	transformed
From	their	definitions,	we	can	write:
work	done	=	force	×	distance					or					W	=	Fd
energy	transformed	=	VQ
Substituting	gives:
Fd	=	VQ
and	rearranging	gives:

The	left-hand	side	of	the	equation	is	the	electric	field	strength	E.	Hence:

Two	parallel	metal	plates	separated	by	2.0	cm	have	a	potential	difference	of	5.0	kV.	Calculate	the
electric	force	acting	on	a	dust	particle	between	the	plates	that	has	a	charge	of	8.0	×	10−19	C.

Write	down	the	quantities	given	in	the	question:

d	=	2.0	×	10−2	m

V	=	5.0	×	103	V

Q	=	8.0	×	10−19	C
Hint:	When	you	write	down	the	quantities	it	is	important	to	include	the	units	and	to	change
them	into	base	units.	We	have	used	powers	of	ten	to	do	this.
To	calculate	the	force	F,	you	first	need	to	determine	the	strength	of	the	electric	field:
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Now	calculate	the	force	on	the	dust	particle:
F	=	EQ

F	=	2.5	×	105	×	8.0	×	10−19

=	2.0	×	10−13	N

Questions
Figure	21.12	shows	an	arrangement	of	parallel	plates,	each	at	a	different	voltage.	The	electric	field
lines	are	shown	in	the	space	between	the	first	pair.	Copy	and	complete	the	diagram	to	show	the
electric	field	lines	in	the	other	two	spaces.

Figure	21.12:	An	arrangement	of	parallel	plates.	For	Question	4.

Calculate	the	electric	field	strength	at	a	point	where	a	charge	of	20	mC	experiences	a	force	vertically
downwards	of	150	N.
Calculate	the	electric	field	strength	between	two	parallel	charged	plates,	separated	by	40	cm	and
with	a	potential	difference	between	them	of	1000	V.
An	electron	is	situated	in	a	uniform	electric	field.	The	electric	force	that	acts	on	it	is	8	×	10−16	N.
What	is	the	strength	of	the	electric	field?	(Electron	charge	e	=	1.6	×	10−19	C.)
Air	is	usually	a	good	insulator.	However,	a	spark	can	jump	through	dry	air	when	the	electric	field
strength	is	greater	than	about	40	000	V	cm−1.	This	is	called	electrical	breakdown.	The	spark	shows
that	electrical	charge	is	passing	through	the	air–there	is	a	current.	(Do	not	confuse	this	with	a
chemical	spark	such	as	you	might	see	when	watching	fireworks;	in	that	case,	small	particles	of	a
chemical	substance	are	burning	quickly.)

A	Van	de	Graaff	generator	(Figure	21.13)	is	able	to	make	sparks	jump	across	a	4	cm	gap.	Estimate
the	voltage	produced	by	the	generator?
The	highest	voltage	reached	by	the	live	wire	of	a	conventional	mains	supply	is	325	V.	In	theory
(but	DO	NOT	try	this),	how	close	would	you	have	to	get	to	a	live	wire	to	get	a	shock	from	it?
Estimate	the	voltage	of	a	thundercloud	from	which	lightning	strikes	the	ground	100	m	below.



Figure	21.13:	A	Van	de	Graaff	generator	produces	voltages	sufficient	to	cause	sparks	in	air.

	
	



21.4	Force	on	a	charge
Now	we	can	calculate	the	force	F	on	a	charge	Q	in	the	uniform	field	between	two	parallel	plates.	We	have
to	combine	the	general	equation	for	field	strength	 	with	the	equation	for	the	strength	of	a	uniform
field	 .

This	gives:

For	an	electron	with	charge	−e,	this	becomes:

Figure	21.14	shows	a	situation	where	this	force	is	important.	A	beam	of	electrons	is	entering	the	space
between	two	charged	parallel	plates.	How	will	the	beam	move?
We	have	to	think	about	the	force	on	a	single	electron.	In	the	diagram,	the	upper	plate	is	negative	relative
to	the	lower	plate,	and	so	the	electron	is	pushed	downwards.	(You	can	think	of	this	simply	as	the
negatively	charged	electron	being	attracted	by	the	positive	plate,	and	repelled	by	the	negative	plate.)
If	the	electron	were	stationary,	it	would	accelerate	directly	downwards.	However,	in	this	example,	the
electron	is	moving	to	the	right.	Its	horizontal	velocity	will	be	unaffected	by	the	force,	but	as	it	moves
sideways	it	will	also	accelerate	downwards.	It	will	follow	a	curved	path,	as	shown.	This	curve	is	a
parabola.

Figure	21.14:	The	parabolic	path	of	a	moving	electron	in	a	uniform	electric	field.

Note	that	the	force	on	the	electron	is	the	same	at	all	points	between	the	plates,	and	it	is	always	in	the
same	direction	(downwards,	in	this	example).
This	situation	is	equivalent	to	a	ball	being	thrown	horizontally	in	the	Earth’s	uniform	gravitational	field
(Figure	21.15).	It	continues	to	move	at	a	steady	speed	horizontally,	but	at	the	same	time	it	accelerates
downwards.	The	result	is	the	familiar	curved	trajectory	shown.	For	the	electron	described,	the	force	of
gravity	is	tiny–negligible	compared	to	the	electric	force	on	it.

Figure	21.15:	A	ball,	thrown	in	the	uniform	gravitational	field	of	the	Earth,	follows	a	parabolic	path.
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Questions
In	Figure	21.16,	two	parallel	plates	are	shown,	separated	by	25	cm.

Copy	the	diagram	and	draw	field	lines	to	represent	the	field	between	the	plates.
What	is	the	potential	difference	between	points	A	and	B?
What	is	the	electric	field	strength	at	C,	and	at	D?
Calculate	the	electric	force	on	a	charge	of	+5	µC	placed	at	C.	In	which	direction	does	the	force
act?

Figure	21.16:	Two	parallel,	charged	plates.

A	particle	of	charge	+2	µC	is	placed	between	two	parallel	plates,	10	cm	apart	and	with	a	potential
difference	of	5	kV	between	them.	Calculate	the	field	strength	between	the	plates,	and	the	force
exerted	on	the	charge.
We	are	used	to	experiencing	accelerations	that	are	usually	less	than	10	m	s−2.	For	example,	when	we
fall,	our	acceleration	is	about	9.81	m	s−2.	When	a	car	turns	a	corner	sharply	at	speed,	its	acceleration
is	unlikely	to	be	more	than	5	m	s−2.	However,	if	you	were	an	electron,	you	would	be	used	to
experiencing	much	greater	accelerations	than	this.	Calculate	the	acceleration	of	an	electron	in	a
television	tube	where	the	electric	field	strength	is	50	000	V	cm−1.	(Electron	charge	−e	=	−1.6	×
10−19	C;	electron	mass	me	=	9.11	×	10−31	kg.)

Use	a	diagram	to	explain	how	the	electric	force	on	a	charged	particle	could	be	used	to	separate	a
beam	of	electrons	(e−)	and	positrons	(e+)	into	two	separate	beams.	(A	positron	is	a	positively
charged	particle	that	has	the	same	mass	as	an	electron	but	opposite	charge.	Positron–electron
pairs	are	often	produced	in	collisions	in	a	particle	accelerator.)
Explain	how	this	effect	could	be	used	to	separate	ions	that	have	different	masses	and	charges.

REFLECTION
When	charged	particles	pass	through	a	uniform	electric	field	they	are	deflected.
On	what	factors	does	the	deflection	depend?	How	could	this	be	used	to	compare	masses	of	different
ions?	What	variables	must	be	kept	the	same	or	constant	in	order	to	give	a	fair	comparison?
What	would	you	do	differently	if	you	were	to	approach	this	same	problem	again?

	
	



SUMMARY

An	electric	field	is	a	field	of	force,	created	by	electric	charges,	and	can	be	represented	by	electric	field
lines.

The	strength	of	the	field	is	the	force	acting	per	unit	positive	charge	on	a	stationary	positive	charge	at
a	point	in	the	field:

In	a	uniform	field	(e.g.	between	two	parallel	charged	plates),	the	force	on	a	charge	is	the	same	at	all
points;	the	strength	of	the	field	is	given	by:

An	electric	charge	moving	initially	at	right-angles	to	a	uniform	electric	field	follows	a	parabolic	path.
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EXAM-STYLE	QUESTIONS

A	pair	of	charged	parallel	plates	are	arranged	horizontally	in	a	vacuum. 	

The	upper	plate	carries	a	negative	charge	and	the	lower	plate	is	earthed. 	

An	electron	enters	the	space	between	the	plates	at	right	angles	to	the	electric
field. 	

In	which	direction	is	the	electric	field	between	the	plates	and	in	which
direction	is	the	force	on	the	electron? [1]

	 Electric	field	strength Force	on	the	electron

A downwards	towards	the	lower
plate

downwards	towards	the	lower
plate

B downwards	towards	the	lower
plate

upwards	towards	the	upper	plate

C upwards	towards	the	upper	plate downwards	towards	the	lower
plate

D upwards	towards	the	upper	plate upwards	towards	the	upper	plate

Table	21.1
	

A	pair	of	charged	parallel	plates	are	2.0	cm	apart	and	there	is	a	potential
difference	of	5.0	kV	across	the	plates. 	

A	charged	ion	between	the	plates	experiences	a	force	of	1.2	×	10−13	N	due	to
the	field. 	

What	is	the	charge	on	the	ion? [1]

1.6	×	10−19	C 	

4.8	×	10−19	C 	

2.5	×	10−15	C 	

4.0	×	10−6	C 	

Figure	21.4	shows	apparatus	used	to	investigate	the	field	between	a	pair	of
charged,	parallel	plates. 	

Explain	why	the	piece	of	gold	foil	deflects	in	the	manner	shown. [1]

State	and	explain	what	would	be	observed	if	the	gold	foil	momentarily
touched	the	negatively	charged	plate. [2]

	 [Total:	3]

A	charged	dust	particle	in	an	electric	field	experiences	a	force	of	4.4	×	10−13
N.	The	charge	on	the	particle	is	8.8	×	10−17	C.	Calculate	the	electric	field
strength. [2]

Calculate	the	potential	difference	that	must	be	applied	across	a	pair	of	parallel
plates,	placed	4	cm	apart,	to	produce	an	electric	field	of	4000	V	m−1. [2]

A	potential	difference	of	2.4	kV	is	applied	across	a	pair	of	parallel	plates.	The
electric	field	strength	between	the	plates	is	3.0	×	104	V	m−1. 	

Calculate	the	separation	of	the	plates. [2]

The	plates	are	now	moved	so	that	they	are	2.0	cm	apart.	Calculate	the
electric	field	strength	produced	in	this	new	position. [2]

	 [Total:	4]

A	variable	power	supply	is	connected	across	a	pair	of	parallel	plates.	The
potential	difference	across	the	plates	is	doubled	and	the	distance	between	the
plates	is	decreased	to	one-third	of	the	original.	State	by	what	factor	the
electric	field	changes.	Explain	your	reasoning. [3]

This	diagram	shows	a	positively	charged	sphere	hanging	by	an	insulating
thread	close	to	an	earthed	metal	plate. 	
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Figure	21.17
	

Copy	the	diagram	and	draw	five	lines	to	show	the	electric	field	near	the
plate	and	the	sphere. [3]

Explain	why	the	sphere	is	attracted	towards	the	metal	plate. [2]

The	sphere	is	now	replaced	with	a	similar	negatively	charged	sphere. 	

Explain	what	would	be	observed	when	the	sphere	is	brought	near	to
the	earthed	metal	plate. [2]

Describe	any	changes	to	the	electric	field	that	would	occur. [1]

	 [Total:	8]

This	diagram	shows	a	proton	as	it	moves	between	two	charged	parallel	plates.
The	charge	on	the	proton	is	+1.6	×	10−19	C. 	

Figure	21.18
	

Copy	the	diagram	and	draw	the	electric	field	between	the	parallel	plates. [2]

The	force	on	the	proton	when	it	is	at	position	B	is	6.4	×	10−14	N. 	

In	which	direction	does	the	force	on	the	proton	act	when	it	is	at	position	B? [1]

What	will	be	the	magnitude	of	the	force	on	the	proton	when	it	is	at	position
C? [1]

Calculate	the	electric	field	strength	between	the	plates. [2]

Calculate	the	potential	difference	between	the	plates. [2]

	 [Total:	8]

Define	what	is	meant	by	the	electric	field	strength	at	a	point. [2]

In	a	particle	accelerator,	a	proton,	initially	at	rest,	is	accelerated	between
two	metal	plates,	as	shown. 	
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Figure	21.19

	

Calculate	the	force	on	the	proton	due	to	the	electric	field. [3]

Calculate	the	work	done	on	the	proton	by	the	electric	field	when	it	moves
from	plate	A	to	plate	B. [2]

State	the	energy	gained	by	the	proton. [1]

Assuming	that	all	this	energy	is	converted	to	kinetic	energy	of	the	proton,
calculate	the	speed	of	the	proton	when	it	reaches	plate	B. [3]

(Charge	on	a	proton	=	+1.6	×	10−19	C;	mass	of	a	proton	=	1.7	×	10−27
kg.) 	

	 [Total:	11]

This	diagram	shows	the	structure	of	a	spark	plug	in	an	internal	combustion
engine.	The	magnified	section	shows	the	end	of	the	spark	plug,	with	some
of	the	lines	of	force	representing	the	electric	field. 	

Figure	21.20
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Copy	the	field	lines	from	the	diagram.	On	your	copy,	draw	arrows	on
the	lines	of	force	to	show	the	direction	of	the	field. [1]

What	evidence	does	the	diagram	give	that	the	field	is	strongest	near
the	tip	of	the	inner	electrode? [1]

The	gap	between	the	inner	and	outer	electrodes	is	1.25	mm	and	a	field
strength	of	5.0	×	106	N	C−1	is	required	for	electrical	breakdown.	Estimate
the	minimum	potential	difference	that	must	be	applied	across	the	inner
and	outer	electrodes	for	a	spark	to	be	produced.	(You	may	treat	the	two
electrodes	as	a	pair	of	parallel	plates.) [2]

When	an	electron	is	accelerated	through	a	potential	drop	of	approximately
20	V	it	will	have	sufficient	energy	to	ionise	a	nitrogen	atom.	Show	that	an
electron	must	move	4.0	µm	to	gain	this	energy. [2]

	 [Total:	6]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	that	an	electric	field	is	a
field	of	force

21.2 	 	 	

define	electric	field	as	force	per	unit
positive	charge

21.3 	 	 	

represent	an	electric	field	by	means	of
field	lines

21.3 	 	 	

understand	that	the	field	between
parallel	plates	is	uniform

21.3 	 	 	

recall	and	use	the	formula: 21.3 	 	 	

describe	the	paths	taken	by	charged
particles	as	they	pass	through	a	uniform
electric	field.

21.4 	 	 	
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	Chapter	22

Coulomb’s	law

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
recall	and	use	Coulomb’s	law
calculate	the	field	strength	for	a	point	charge
recognise	that	for	the	electric	field	strength	for	a	point	outside	a	spherical	conductor,	the	charge	on
the	sphere	may	be	considered	to	be	a	point	charge	at	the	centre	of	the	sphere
define	electric	potential
calculate	potential	due	to	a	point	charge
relate	field	strength	to	the	potential	gradient
compare	and	contrast	electric	and	gravitational	fields.

BEFORE	YOU	START
Cut	a	piece	of	paper	 into	very	 small	pieces.	Rub	a	plastic	 rod	 (or	 comb)	on	your	 sleeve.	Move	 it
towards	 the	 pieces	 of	 paper.	 You	 should	 observe	 that	 the	 pieces	 of	 paper	 jump	 up	 and	 attach
themselves	 to	 the	 comb.	 Hold	 the	 plastic	 rod	 still	 for	 a	 few	 minutes	 and	 you	 should	 observe
something	quite	surprising.
Write	 down	what	 you	 observe	 and	 an	 explanation	 as	 to	why	 this	 happened.	Discuss	 your	 results
with	a	 fellow	 learner.	Did	 they	observe	 the	 same	phenomenon?	Did	 they	 come	up	with	 the	 same
explanation?

LIVING	IN	A	FIELD
The	scientist	in	the	Figure	22.1	is	using	a	detector	to	measure	the	electric	field	produced	by	a	mobile
phone	mast.	People	often	worry	that	the	electric	field	produced	by	a	mobile	phone	transmitter	may	be
harmful,	but	detailed	studies	have	yet	to	show	any	evidence	for	this.	If	you	hold	a	mobile	phone	close	to



your	ear,	the	field	strength	will	be	far	greater	than	that	produced	by	a	nearby	mast.
With	5G	being	rolled	out	in	various	countries,	what	effect	will	this	have	on	the	local	environment?	Will
it	mean	more	masts	and	relay	stations?	Will	copper	cables	be	able	to	cope	with	the	speed	of	the
transmission	of	data	needed	to	make	5G	worthwhile?	Will	the	investment	needed	to	introduce	5G	cause
prices	to	rise	for	all	customers?

Figure	22.1:	Mobile	phone	masts	produce	weak	electric	fields	–	this	scientist	is	using	a	small	antenna
to	detect	and	measure	the	field	of	a	nearby	mast	to	ensure	that	it	is	within	safe	limits.
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22.1	Electric	fields
In	Chapter	21,	we	presented	some	fundamental	ideas	about	electric	fields:

An	electric	field	is	a	field	of	force	and	can	be	represented	by	field	lines.
The	electric	 field	 strength	at	 a	point	 is	 the	 force	per	unit	positive	 charge	 that	acts	on	a	 stationary
charge:

There	is	a	uniform	field	between	charged	parallel	plates:

In	this	chapter,	we	will	extend	these	ideas	to	consider	how	electric	fields	arise	from	electric	charges.	We
will	also	compare	electric	fields	with	gravitational	fields	(Chapter	17).
	
	



22.2	Coulomb’s	law
Any	electrically	charged	object	produces	an	electric	field	in	the	space	around	it.	It	could	be	something	as
small	as	an	electron	or	a	proton,	or	as	large	as	a	planet	or	star.	To	say	that	it	produces	an	electric	field
means	that	it	will	exert	a	force	on	any	other	charged	object	that	is	in	the	field.	How	can	we	determine	the
size	of	such	a	force?
The	answer	to	this	was	first	discovered	by	Charles	Coulomb,	a	French	physicist.	He	realised	that	it	was
important	to	think	in	terms	of	point	charges;	that	is,	electrical	charges	that	are	infinitesimally	small	so
that	we	need	not	worry	about	their	shapes.	In	1785,	Coulomb	proposed	a	law	that	describes	the	force	that
one	charged	particle	exerts	on	another.	This	law	is	remarkably	similar	in	form	to	Newton’s	law	of
gravitation.
Coulomb’s	law	states	that	any	two	point	charges	exert	an	electrical	force	on	each	other	that	is
proportional	to	the	product	of	their	charges	and	inversely	proportional	to	the	square	of	the	distance
between	them.
We	consider	two	point	charges	Q1	and	Q2	separated	by	a	distance	r	(Figure	22.2).	The	force	each	charge
exerts	on	the	other	is	F.	According	to	Newton’s	third	law	of	motion,	the	point	charges	interact	with	each
other	and	therefore	exert	equal	but	opposite	forces	on	each	other.

Figure	22.2:	The	variables	involved	in	Coulomb’s	law.

According	to	Coulomb’s	law,	we	have:

Therefore:

We	can	write	this	in	a	mathematical	form:

where	k	is	the	constant	of	proportionality.
This	constant	k	is	usually	given	in	the	form:

where	ε0	is	known	as	the	permittivity	of	free	space	(ε	is	the	Greek	letter	epsilon).	The	value	of	ε0	is
approximately	8.85	×	10−12	F	m−1.	An	equation	for	Coulomb’s	law	is	thus:

where	F	is	the	force	between	two	charges,	Q1	and	Q2,	and	r	is	the	distance	between	their	centres.

KEY	EQUATION
Coulomb’s	law:



Following	your	earlier	study	of	Newton’s	law	of	gravitation,	you	should	not	be	surprised	by	this
relationship.	The	force	depends	on	each	of	the	properties	producing	it	(in	this	case,	the	charges),	and	it	is
an	inverse	square	law	with	distance–if	the	particles	are	twice	as	far	apart,	the	electrical	force	is	a	quarter
of	its	previous	value	(Figure	22.3).

Figure	 22.3:	 Doubling	 the	 separation	 results	 in	 one-quarter	 of	 the	 force,	 a	 direct	 consequence	 of
Coulomb’s	law.

Note	also	that,	if	we	have	a	positive	and	a	negative	charge,	then	the	force	F	is	negative.	We	interpret	this
as	an	attraction.	Positive	forces,	as	between	two	like	charges,	are	repulsive.	In	gravity,	we	only	have
attraction.
So	far,	we	have	considered	point	charges.	If	we	are	considering	uniformly	charged	spheres	we	measure
the	distance	from	the	centre	of	one	to	the	centre	of	the	other	–	they	behave	as	if	their	charge	was	all
concentrated	at	the	centre.	Hence,	we	can	apply	the	equation	for	Coulomb’s	law	for	both	point	charges
(e.g.	protons,	electrons,	etc.)	and	uniformly	charged	spheres,	as	long	as	we	use	the	centre-to-centre
distance	between	the	objects.

PRACTICAL	ACTIVITY	22.1

Investigating	Coulomb’s	law
It	is	quite	tricky	to	investigate	the	force	between	charged	objects,	because	charge	tends	to	leak	away
into	the	air	or	to	the	Earth	during	the	course	of	any	experiment.	The	amount	of	charge	we	can
investigate	is	difficult	to	measure,	and	usually	small,	giving	rise	to	tiny	forces.
Figure	22.4	shows	one	method	for	investigating	the	inverse	square	law	for	two	charged	metal	balls
(polystyrene	balls	coated	with	conducting	silver	paint).	As	one	charged	ball	is	lowered	down	towards
the	other,	their	separation	decreases	and	so	the	force	increases,	giving	an	increased	reading	on	the
balance.



Figure	22.4:	Investigating	Coulomb’s	law.
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22.3	Electric	field	strength	for	a	radial	field
In	Chapter	21,	we	saw	that	the	electric	field	strength	at	a	point	is	defined	as	the	force	per	unit	charge
exerted	on	a	positive	charge	placed	at	that	point,	 .

So,	to	find	the	field	strength	near	a	point	charge	Q1	(or	outside	a	uniformly	charged	sphere),	we	have	to
imagine	a	small	positive	test	charge	Q2	placed	in	the	field,	and	determine	the	force	per	unit	charge	on	it.
We	can	then	use	the	definition	to	determine	the	electric	field	strength	for	a	point	(or	spherical)	charge.
The	force	between	the	two	point	charges	is	given	by:

The	electric	field	strength	E	due	to	the	charge	Q1	at	a	distance	of	r	from	its	centre	is	thus:

where	E	is	the	electric	field	strength	due	to	a	point	charge	Q,	and	r	is	the	distance	from	the	point.
The	field	strength	E	is	not	a	constant;	it	decreases	as	the	distance	r	increases.	The	field	strength	obeys	an
inverse	square	law	with	distance–just	like	the	gravitational	field	strength	for	a	point	mass.	The	field
strength	will	decrease	by	a	factor	of	four	when	the	distance	from	the	centre	is	doubled.
Note	also	that,	since	force	is	a	vector	quantity,	it	follows	that	electric	field	strength	is	also	a	vector.	We
need	to	give	its	direction	as	well	as	its	magnitude	in	order	to	specify	it	completely.	Worked	example	1
shows	how	to	use	the	equation	for	field	strength	near	a	charged	sphere.

KEY	EQUATION
Electric	field	strength:

WORKED	EXAMPLE

A	metal	sphere	of	diameter	12	cm	is	positively	charged.	The	electric	field	strength	at	the	surface	of
the	sphere	is	4.0	×	105	V	m−1.	Draw	the	electric	field	pattern	for	the	sphere	and	determine	the
total	surface	charge.

Figure	22.5:	The	electric	field	around	a	charged	sphere.

Draw	the	electric	field	pattern	(Figure	22.5).	The	electric	field	lines	must	be	normal	to	the
surface	and	radial.
Write	down	the	quantities	given:
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a
b

c
2

electric	field	strength	E	=	4.0	×	105	V	m−1

Use	the	equation	for	the	electric	field	strength	to	determine	the	surface	charge:

Questions
You	will	need	the	following	data	to	answer	the	following	questions.	(You	may	take	the	charge	of	each
sphere	to	be	situated	at	its	centre.)

ε0	=	8.85	×	10−12	F	m−1

A	metal	sphere	of	radius	20	cm	carries	a	positive	charge	of	+2.0	µC.
What	is	the	electric	field	strength	at	a	distance	of	25	cm	from	the	centre	of	the	sphere?
An	identical	metal	sphere	carrying	a	negative	charge	of	−1.0	µC	is	placed	next	to	the	first	sphere.
There	is	a	gap	of	10	cm	between	them.	Calculate	the	electric	force	that	each	sphere	exerts	on	the
other.
Remember	to	calculate	the	centre-to-centre	distance	between	the	two	spheres.
Determine	the	electric	field	strength	midway	along	a	line	joining	the	centres	of	the	spheres.

A	Van	de	Graaff	generator	produces	sparks	when	the	field	strength	at	its	surface	is	4.0	×	104	V	cm−1.
If	the	diameter	of	the	sphere	is	40	cm,	what	is	the	charge	on	it?

	
	



22.4	Electric	potential
When	we	discussed	gravitational	potential	(Chapter	17),	we	started	from	the	idea	of	potential	energy.	The
potential	at	a	point	is	then	the	potential	energy	of	unit	mass	at	the	point.	We	will	approach	the	idea	of
electrical	potential	in	the	same	way.	However,	you	may	be	relieved	to	find	that	you	already	know
something	about	the	idea	of	electrical	potential,	because	you	know	about	voltage	and	potential	difference.
This	topic	shows	how	we	formalise	the	idea	of	voltage,	and	why	we	use	the	expression	‘potential
difference’	for	some	kinds	of	voltage.

Electric	potential	energy
When	an	electric	charge	moves	through	an	electric	field,	its	potential	energy	changes.	Consider	this
example:	if	you	want	to	move	one	positive	charge	closer	to	another	positive	charge,	you	have	to	push	it
(Figure	22.6).	This	is	simply	because	there	is	a	force	of	repulsion	between	the	charges.	You	have	to	do
work	in	order	to	move	one	charge	closer	to	the	other.

Figure	22.6:	Work	must	be	done	to	push	one	positive	charge	towards	another.

In	the	process	of	doing	work,	energy	is	transferred	from	you	to	the	charge	that	you	are	pushing.	Its
potential	energy	increases.	If	you	let	go	of	the	charge,	it	will	move	away	from	the	repelling	charge.	This	is
analogous	to	lifting	up	a	mass;	it	gains	gravitational	potential	energy	as	you	lift	it,	and	it	falls	if	you	let	go.

Energy	changes	in	a	uniform	field

Figure	22.7:	Electrostatic	potential	energy	changes	in	a	uniform	field.



We	can	also	think	about	moving	a	positive	charge	in	a	uniform	electric	field	between	two	charged	parallel
plates.	If	we	move	the	charge	towards	the	positive	plate,	we	have	to	do	work.	The	potential	energy	of	the
charge	is	therefore	increasing.	If	we	move	it	towards	the	negative	plate,	its	potential	energy	is	decreasing
(Figure	22.7a).
Since	the	force	is	the	same	at	all	points	in	a	uniform	electric	field,	it	follows	that	the	energy	of	the	charge
increases	steadily	as	we	push	it	from	the	negative	plate	to	the	positive	plate.	The	graph	of	potential
energy	against	distance	is	a	straight	line,	as	shown	in	Figure	22.7b.
We	can	calculate	the	change	in	potential	energy	of	a	charge	Q	as	it	is	moved	from	the	negative	plate	to
the	positive	plate	very	simply.	Potential	difference	is	defined	as	the	energy	change	(joules)	per	unit	charge
(coulombs)	between	two	points	(recall	from	Chapter	8	that	one	volt	is	one	joule	per	coulomb).	Hence,	for
charge	Q,	the	work	done	in	moving	it	from	the	negative	plate	to	the	positive	plate	is:

W	=	QV

We	can	rearrange	this	equation	as:

This	is	really	how	voltage	V	is	defined.	It	is	the	energy	per	unit	positive	charge	at	a	point	in	an	electric
field.	By	analogy	with	gravitational	potential,	we	call	this	the	electric	potential	at	a	point.	Now	you	should
be	able	to	see	that	what	we	regard	as	the	familiar	idea	of	voltage	should	more	correctly	be	referred	to	as
electric	potential.	The	difference	in	potential	between	two	points	is	the	potential	difference	(p.d.)	between
them.
Just	as	with	gravitational	fields,	we	must	define	the	zero	of	potential	(this	is	the	point	where	we	consider
a	charge	to	have	zero	potential	energy).	Usually,	in	a	laboratory	situation,	we	define	the	Earth	as	being	at
a	potential	of	zero	volts.	If	we	draw	two	parallel	charged	plates	arranged	horizontally,	with	the	lower	one
earthed	(Figure	22.8),	you	can	see	immediately	how	similar	this	is	to	our	idea	of	gravitational	fields.	The
diagram	also	shows	how	we	can	include	equipotential	lines	in	a	representation	of	an	electric	field.
We	can	extend	the	idea	of	electric	potential	to	measurements	in	electric	fields.	In	Figure	22.9,	the	power
supply	provides	a	potential	difference	of	10	V.	The	value	of	the	potential	at	various	points	is	shown.	You
can	see	that	the	middle	resistor	has	a	potential	difference	across	it	of	(8	−	2)	V	=	6	V.

Figure	22.8:	Equipotential	lines	in	a	uniform	electric	field.



Figure	22.9:	Changes	in	potential	(shown	in	red)	around	an	electric	circuit.

Energy	in	a	radial	field
Imagine	again	pushing	a	small	positive	test	charge	towards	a	large	positive	charge.	At	first,	the	repulsive
force	is	weak,	and	you	have	only	to	do	a	small	amount	of	work.	As	you	get	closer,	however,	the	force
increases	(Coulomb’s	law),	and	you	have	to	work	harder	and	harder.
The	potential	energy	of	the	test	charge	increases	as	you	push	it.	It	increases	more	and	more	rapidly	the
closer	you	get	to	the	repelling	charge.	This	is	shown	by	the	graph	in	Figure	22.10.	We	can	write	an
equation	for	the	potential	V	at	a	distance	r	from	a	charge	Q:

where	V	is	the	potential	near	a	point	charge	Q,	ε0	is	the	permittivity	of	free	space	and	r	is	the	distance
from	the	point.
(This	comes	from	the	calculus	process	of	integration,	applied	to	the	Coulomb’s	law	equation.)
You	should	be	able	to	see	how	this	relationship	is	similar	to	the	equivalent	formula	for	gravitational
potential	in	a	radial	field:

Note	that	we	do	not	need	the	minus	sign	in	the	electric	equation	as	it	is	included	in	the	charge.	A
negative	charge	gives	an	attractive	(negative)	field	whereas	a	positive	charge	gives	a	repulsive	(positive)
field.
We	can	show	these	same	ideas	by	drawing	field	lines	and	equipotential	lines.	The	equipotentials	get
closer	together	as	we	get	closer	to	the	charge	(Figure	22.11).

KEY	EQUATION

Electric	potential	in	a	radial	field	due	to	a	point	charge.



Figure	22.10:	The	potential	changes	according	to	an	inverse	law	near	a	charged	sphere.

Figure	22.11:	The	electric	 field	around	a	positive	charge.	The	dashed	equipotential	 lines	are	 like	 the
contour	lines	on	a	map;	they	are	spaced	at	equal	intervals	of	potential.

To	arrive	at	this	result,	we	must	again	define	our	zero	of	potential.	Again,	we	say	that	a	charge	has	zero
potential	energy	when	it	is	at	infinity	(some	place	where	it	is	beyond	the	influence	of	any	other	charges).
If	we	move	towards	a	positive	charge,	the	potential	is	positive.	If	we	move	towards	a	negative	charge,	the
potential	is	negative.
This	allows	us	to	give	a	definition	of	electric	potential:	The	electric	potential	at	a	point	is	equal	to	the
work	done	per	unit	charge	in	bringing	unit	positive	charge	from	infinity	to	that	point.
Electric	potential	is	a	scalar	quantity.	To	calculate	the	potential	at	a	point	caused	by	more	than	one
charge,	find	each	potential	separately	and	add	them.	Remember	that	positive	charges	cause	positive
potentials	and	negative	charges	cause	negative	potentials.

Electrical	potential	energy
We	have	already	defined	electric	potential	energy	between	two	points	A	and	B	as	the	work	done	in
moving	positive	charge	from	point	A	to	point	B.	This	means	that	the	potential	energy	change	in	moving
point	charge	Q1	from	infinity	towards	a	point	charge	Q2	is	equal	to	the	potential	at	that	point	due	to	Q2
multiplied	by	Q1.	In	symbol	form:

W	=	VQ2

The	potential	V	near	the	charge	Q2	is:

Thus	the	potential	energy	of	the	pair	of	point	charges	W	(shown	as	Ep	in	the	equation)	is:
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KEY	EQUATION

Potential	energy	of	a	pair	of	point	charges.

WORKED	EXAMPLE

An	α-particle	approaches	a	gold	nucleus	and	momentarily	comes	to	rest	at	a	distance	of	4.5	×	10−14
m	from	the	gold	nucleus.	Calculate	the	electric	potential	energy	of	the	particles	at	that	instant.
(Charge	on	the	α-particle	=	2e;	charge	on	the	nucleus	=	79e.)

Convert	the	charges	to	coulombs.

α-particle	charge	=	2	×	1.6	×	10−19	C

charge	on	the	gold	nucleus	=	79	×	1.6	×	10−19	C

Electric	potential	difference	near	a	charged	sphere
We	have	already	seen	that	the	electric	potential	ΔV	at	a	distance	r	from	a	point	charge	Q	is	given	by	the
equation:

The	potential	difference	between	two	points,	one	at	a	distance	r1	and	the	second	at	a	distance	r2	from	a
charge	Q	is:

This	reflects	the	similar	formula	for	the	gravitational	potential	energy	between	two	points	near	a	point
mass.

KEY	EQUATION

Potential	difference	between	two	points	from	a	charge.

Field	strength	and	potential	gradient
We	can	picture	electric	potential	in	the	same	way	that	we	thought	about	gravitational	potential.	A
negative	charge	attracts	a	positive	test	charge,	so	we	can	regard	it	as	a	potential	‘well’.	A	positive	charge
is	the	opposite–a	‘hill’	(Figure	22.12).	The	strength	of	the	field	is	shown	by	the	slope	of	the	hill	or	well:

field	strength	=	−potential	gradient

The	minus	sign	is	needed	because,	if	we	are	going	up	a	potential	hill,	the	force	on	us	is	pushing	us	back
down	the	slope,	in	the	opposite	direction.

KEY	IDEA
electric	field	strength	=	−potential	gradient
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Step	1

Figure	22.12:	A	‘potential	well’	near	a	negative	charge,	and	a	‘potential	hill’	near	a	positive	charge.

This	relationship	applies	to	all	electric	fields.	For	the	special	case	of	a	uniform	field,	the	potential	gradient
E	is	constant.	Its	value	is	given	by:

where	V	is	the	potential	difference	between	two	points	separated	by	a	distance	d.
(This	is	the	same	as	the	relationship	 	quoted	in	Chapter	21.)

Worked	example	3	shows	how	to	determine	the	field	strength	from	a	potential–distance	graph.

WORKED	EXAMPLE

The	graph	(Figure	22.13)	shows	how	the	electric	potential	varies	near	a	charged	object.	Calculate
the	electric	field	strength	at	a	point	5	cm	from	the	centre	of	the	object.

Figure	22.13:	Variation	of	the	potential	V	near	a	positively	charged	object.

Draw	the	tangent	to	the	graph	at	the	point	5.0	cm.	This	is	shown	in	Figure	22.14.



Step	2
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Figure	22.14:	Drawing	the	tangent	to	the	V–r	graph	to	find	the	electric	field	strength	E.

Calculate	the	gradient	of	the	tangent:

The	electric	field	strength	is	therefore	+1.0	×	105	V	m−1	or	+1.0	×	105	N	C−1.
Remember	E	=	−potential	gradient.

Questions
What	is	the	electrical	potential	energy	of	a	charge	of	+1	C	placed	at	each	of	the	points	A,	B,	C,	D
between	the	charged,	parallel	plates	shown	in	Figure	22.15?
What	would	be	the	potential	energy	of	a	+2	C	charge	at	each	of	these	points?	(C	is	halfway
between	A	and	B,	D	is	halfway	between	C	and	B.)

Figure	22.15:	A	uniform	electric	field.	For	Question	3.

A	Van	de	Graaff	generator	has	a	spherical	dome	of	radius	10	cm.	It	is	charged	up	to	a	potential	of	100
000	V	(100	kV).	How	much	charge	is	stored	on	the	dome?	What	is	the	potential	at	a	distance	of	10	cm
from	the	dome?
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How	much	work	is	done	in	moving	a	+1	C	charge	along	the	following	paths	shown	in	Figure
22.16:	from	E	to	H;	from	E	to	F;	from	F	to	G;	from	H	to	E?
How	do	your	answers	differ	for	a:

−1	C	charge?
+2	C	charge?

Figure	22.16:	A	uniform	electric	field.	For	Question	5.

	
	



22.5	Gravitational	and	electric	fields
There	are	obvious	similarities	between	the	ideas	we	have	used	in	this	chapter	to	describe	electric	fields
and	those	we	used	in	Chapter	17	for	gravitational	fields.	This	can	be	helpful,	or	it	can	be	confusing!	The
summary	given	in	Table	22.1	is	intended	to	help	you	to	sort	them	out.
An	important	difference	is	this:	electric	charges	can	be	positive	or	negative,	so	they	can	attract	or	repel.
There	are	no	negative	masses,	so	there	is	only	attraction	in	a	gravitational	field.

Gravitational	fields Electric	fields

Origin

arise	from	masses

Origin

arise	from	electric	charges

Vector	forces

only	gravitational	attraction,	no	repulsion

Vector	forces

both	electrical	attraction	and	repulsion	are	possible
(because	of	positive	and	negative	charges)

All	gravitational	fields

field	strength	is	force	per	unit	mass

All	electric	fields

field	strength	is	force	per	unit	positive	charge

Units

F	in	N,	g	in	N	kg−1	or	m	s−2

Units

F	in	N,	E	in	N	C−1	or	V	m−1

Uniform	gravitational	fields

parallel	gravitational	field	lines

g	=	Constant

Uniform	electric	fields

parallel	electric	field	lines

Spherical	gravitational	fields

radial	field	lines

force	given	by	Newton’s	law:	

field	strength	is	therefore:	

(Gravitational	forces	are	always	attractive,	so	we
show	g	on	a	graph	against	r	as	negative.)

force	and	field	strength	obey	an	inverse	square	law
with	distance

Spherical	electric	fields

radial	field	lines

force	given	by	Coulomb’s	law:	

field	strength	is	therefore:	

(A	negative	charge	gives	an	attractive	field;	a
positive	charge	gives	a	repulsive	field.)

force	and	field	strength	obey	an	inverse	square	law
with	distance

Gravitational	potential Electric	potential
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given	by:	

potential	obeys	an	inverse	relationship	with
distance	and	is	zero	at	infinity

potential	is	a	scalar	quantity	and	is	always	negative

given	by:	

potential	obeys	an	inverse	relationship	with
distance	and	is	zero	at	infinity

potential	is	a	scalar	quantity

Table	22.1:	Gravitational	and	electric	fields	compared.

Question
You	will	need	the	following	data	to	answer	the	question.

proton	mass	=	1.67	×	10−27	kg
proton	charge	=	+1.60	×	10−19	C
ε0	=	8.85	×	10−12	F	m−1

G	=	6.67	×	10−11	N	m2	kg−2

Two	protons	in	the	nucleus	of	an	atom	are	separated	by	a	distance	of	10−15	m.	Calculate	the
electrostatic	force	of	repulsion	between	them,	and	the	force	of	gravitational	attraction	between	them.
(Assume	the	protons	behave	as	point	charges	and	point	masses.)	Is	the	attractive	gravitational	force
enough	to	balance	the	repulsive	electrical	force?	What	does	this	suggest	to	you	about	the	forces
between	protons	within	a	nucleus?

REFLECTION
In	Question	6,	we	showed	that	in	the	atomic	nuclei	the	electric	force	is	much	larger	than	the
gravitational	force.	Is	this	also	true	in	the	formation	of	atoms?	Yet,	in	the	formation	of	stars	and
planetary	systems,	the	gravitational	force	rules.
Discus	and	explain	why	there	is	this	difference.
What	did	this	discussion	and	explanation	reveal	about	you	as	a	learner?

	
	



SUMMARY

Coulomb’s	law	states	that	two	point	charges	exert	an	electrical	force	on	each	other	that	is
proportional	to	the	product	of	their	charges	and	inversely	proportional	to	the	square	of	the	distance
between	them.

The	equation	for	Coulomb’s	law	is:	

A	point	charge	Q	gives	rise	to	a	radial	field.	The	electric	field	strength	is	given	by	the	equation:

The	electric	potential	at	a	point	is	defined	as	the	work	done	per	unit	positive	charge	in	bringing
charge	from	infinity	to	the	point.

For	a	point	charge,	the	electric	potential	is	given	by:	

The	electric	potential	energy	of	two	point	charges	is:	
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EXAM-STYLE	QUESTIONS

How	does	the	potential	V	change	with	the	distance	r	from	a	point	charge? [1]

V	∝	r 	

V	∝	r2 	

V	∝	r−1 	

V	∝	r−2 	

The	electric	field	strength	20	cm	from	an	isolated	point	charge	is	1.9	×	104	N
C−1. 	

What	is	the	electric	field	strength	30	cm	from	the	charge? [1]

8.4	×	103	N	C−1 	

1.3	×	104	N	C−1 	

2.9	×	104	N	C−1 	

4.3	×	104	N	C−1 	

On	a	copy	of	this	diagram,	draw	the	electric	fields	between	the	charged
objects. [5]

Figure	22.17
	

Two	parallel	plates	are	4	cm	apart	and	have	a	potential	difference	of	2.5	kV
between	them. 	

Calculate	the	electric	field	strength	between	the	plates. [2]

A	small	piece	of	dust	carrying	a	charge	of	+2.4	nC	moves	into	the	space
between	the	plates. 	

Calculate	the	force	on	the	dust	particle. [2]

The	mass	of	the	dust	particle	is	4.2	mg.	Calculate	the	acceleration	of
the	particle	towards	the	negative	plate. [2]

	 [Total:	6]

A	small	sphere	carries	a	charge	of	2.4	×	10−9	C.	Calculate	the	electric	field
strength	at	a	distance	of: 	

2	cm	from	the	centre	of	the	sphere [2]

4	cm	from	the	centre	of	the	sphere. [2]

	 [Total:	4]

A	conducting	sphere	of	diameter	6.0	cm	is	mounted	on	an	insulating	base.	The
sphere	is	connected	to	a	power	supply	that	has	an	output	voltage	of	20	kV. 	

Calculate	the	charge	on	the	sphere. [3]

Calculate	the	electric	field	strength	at	the	surface	of	the	sphere. [2]

	 [Total:	5]

The	nucleus	of	a	hydrogen	atom	carries	a	charge	of	+1.60	×	10−19	C.
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Its	electron	is	at	a	distance	of	1.05	×	10−10	m	from	the	nucleus. 	

Calculate	the	ionisation	potential	of	hydrogen. [3]

(Hint:	This	is	equal	to	the	work	per	unit	charge	needed	to	remove	the	electron
to	infinity.) 	

Define	electric	field	strength. [2]

Two	charged	conducting	spheres,	each	of	radius	1.0	cm,	are	placed	with
their	centres	10	cm	apart,	as	shown. 	

Figure	22.18
	

Sphere	A	carries	a	charge	of	+2.0	×	10−9	C. 	

The	graph	shows	how	the	electric	field	strength	between	the	two	spheres
varies	with	distance	x. 	

Figure	22.19
	

Determine	the	field	strength	5.0	cm	from	the	centre	of	sphere	A [2]

Use	your	result	to	i	to	calculate	the	charge	on	sphere	B. [3]

Sphere	B	is	now	removed.	Calculate	the	potential	at	the	surface	of
sphere	A. [2]

Suggest	and	explain	how	the	potential	at	the	surface	of	sphere	A	would
compare	before	and	after	sphere	B	was	removed. [2]

	 [Total:	11]

An	α-particle	emitted	in	the	radioactive	decay	of	radium	has	a	kinetic	energy	of
8.0	×	10−13	J. 	

Calculate	the	potential	difference	that	an	α-particle,	initially	at	rest,
would	have	to	be	accelerated	through	to	gain	this	energy. [2]

Calculate	the	speed	of	the	α-particle	at	this	kinetic	energy. [3]

This	diagram	shows	the	path	of	an	α-particle	of	this	energy	as	it
approaches	a	gold	nucleus	head-on. 	
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Figure	22.20

	

State	the	speed	of	the	α-particle	at	its	point	of	closest	approach	to	the
gold	nucleus. [1]

Write	down	the	kinetic	energy	of	the	α-particle	at	this	point. [1]

Write	down	the	potential	energy	of	the	α-particle	at	this	point. [1]

Use	your	answer	to	part	b	iii	to	show	that	the	α-particle	will	reach	a
distance	of	4.5	×	10−14	m	from	the	centre	of	the	gold	nucleus. [2]

Suggest	and	explain	what	this	information	tells	us	about	the	gold	nucleus. [2]

(Mass	of	an	α-particle	=	6.65	×	10−27	kg;	charge	on	an	α-particle	=	+2e;
charge	on	a	gold	nucleus	=	+79e.) 	

	 [Total:	12]

Define	electric	potential	at	a	point. [2]

This	graph	shows	the	electrical	potential	near	an	antiproton. 	

Figure	22.21
	

Determine	the	potential	at	a	distance	0.53	×	10−10	m	from	the
antiproton. [2]

Determine	the	potential	energy	a	positron	would	have	at	this	distance. [2]

Use	the	graph	to	determine	the	electric	field	at	this	distance	from	the
antiproton. [2]

	 [Total:	8]

This	diagram	shows	a	conducting	sphere	of	radius	0.80	cm	carrying	a	charge
of	+6.0	×	10−8	C	resting	on	a	balance. 	
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Calculate	the	electric	field	at	the	surface	of	the	sphere. [2]

An	identical	sphere	carrying	a	charge	of	−4.5	×	10−8	C	is	held	so	that	its
centre	is	5.0	cm	vertically	above	the	centre	of	the	first	sphere. 	

Calculate	the	electric	force	between	the	two	spheres. [2]

Calculate	the	new	reading	on	the	balance. [1]

The	second	sphere	is	moved	vertically	downwards	through	1.5	cm.
Calculate	the	work	done	against	the	electric	field	in	moving	the	sphere. [3]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	nature	of	the	electric
field

22.1 	 	 	

represent	and	interpret	an	electric	field
using	field	lines

22.4 	 	 	

recall	and	use	Coulomb’s	law:	 22.2 	 	 	

understand	that	electric	field	g	is
defined	as	the	electric	force	per	unit
coulomb

22.5 	 	 	

derive	from	Coulomb’s	law	of
gravitation:

22.3 	 	 	

recall	and	use	the	equation:	 22.3 	 	 	

recall	and	use:	 22.4 	 	 	

define	electric	potential	at	a	point,	V,	as
the	work	done	in	bringing	unit	charge
from	infinity	to	that	point

22.4 	 	 	

recognise	that	the	electric	potential	at
infinity	is	zero

22.4 	 	 	

recognise	that	the	electric	potential
increases	as	you	move	closer	to	a
positively	charged	object

22.4 	 	 	

recognise	that	the	electric	potential
decreases	as	you	move	closer	to	a
negatively	charged	object

22.4 	 	 	

recall	and	use	the	formula:
gravitational	potential	

22.4 	 	 	

use	the	formula:	 22.4 	 	 	

understand	that	the	electric	potential
energy	of	two	point	masses	is	equal	to:	

22.4 	 	 	
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	Chapter	23

Capacitance

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	capacitance	and	state	its	unit,	the	farad
solve	problems	involving	charge,	voltage	and	capacitance
deduce	the	electric	potential	energy	stored	in	a	capacitor	from	a	potential–charge	graph
deduce	and	use	formulae	for	the	energy	stored	by	a	capacitor
derive	and	use	formulae	for	capacitances	in	series	and	parallel
recognise	 and	 use	 graphs	 showing	 variation	 of	 potential	 difference,	 current	 and	 charge	 as	 a
capacitor	discharges.
recall	and	use	the	time	constant	for	a	capacitor–resistor	circuit
use	the	equation	for	the	discharge	of	a	capacitor	through	a	resistor.

BEFORE	YOU	START
In	order	to	avoid	an	electric	shock,	electrical	engineers	regularly	connect	various	points	to	Earth,
even	though	the	equipment	is	disconnected	from	the	mains	supply.
What	does	this	suggest	to	you	is	happening?	How	can	you	get	a	shock	when	the	equipment	is	not
connected	to	the	mains?	Discuss	with	a	partner	and	be	prepared	to	share	your	thoughts	with	the
rest	of	the	class.

CAPACITORS
Most	electronic	devices,	such	as	radios,	computers	and	MP3	players,	make	use	of	components	called
capacitors.	These	are	usually	quite	small,	but	Figure	23.1	shows	a	giant	capacitor,	specially	constructed
to	store	electrical	energy	at	the	Fermilab	particle	accelerator	in	the	United	States.



Fermilab	is	a	particle	physics	and	accelerator	laboratory.	Particle	accelerators,	as	the	name	suggests,
accelerate	particles,	such	as	protons,	up	to	incredibly	high	energies.	The	‘tevatron’	at	Fermilab	can
accelerate	protons	up	to	energies	of	approximately	2	TeV	(1012	eV).	High-energy,	but	short-lasting
voltage	pulses	(100	000	V	lasting	10−5	s)	are	required	to	accelerate	the	particles.	Such	pulses	would
disrupt	the	public	electricity	supply.	To	ensure	the	public	power	supply	is	evenly	loaded	and	is	not
disrupted	by	peak	pulses,	large	capacitors	(temporary	energy	storage	devices)	are	continuously
charged	and	discharged	50	times	per	second.
Wind	turbines	and	solar	cells	only	generate	energy	in	suitable	weather	conditions.	Could	huge
capacitors	be	used	to	store	electrical	energy	generated	when	the	weather	conditions	are	suitable	for
use	at	times	when	it	is	not?	How	else	could	the	energy	be	stored?

Figure	 23.1:	 One	 of	 the	 world’s	 largest	 capacitors,	 built	 to	 store	 energy	 at	 the	 Fermilab	 particle
accelerator.

	
	



23.1	Capacitors	in	use
Capacitors	are	used	to	store	energy	in	electrical	and	electronic	circuits.	This	means	that	they	have	many
valuable	applications.	For	example,	capacitors	are	used	in	computers;	they	store	energy	in	normal	use
and	then	they	gradually	release	this	energy	if	there	is	a	power	failure,	so	that	the	computer	will	operate
long	enough	to	save	valuable	data.	Figure	23.2	shows	a	variety	of	shapes	and	sizes	of	capacitors.
Every	capacitor	has	two	leads,	each	connected	to	a	metal	plate.	To	store	energy,	these	two	plates	must	be
given	equal	and	opposite	electric	charges.	Between	the	plates	is	an	insulating	material	called	the
dielectric.	Figure	23.3	shows	a	simplified	version	of	the	construction	of	a	capacitor;	in	practice,	many
have	a	spiral	form.

Figure	23.2:	A	variety	of	capacitors.

To	move	charge	onto	the	plates	of	a	capacitor,	it	must	be	connected	to	a	voltage	supply.	The	negative
terminal	of	the	supply	pushes	electrons	onto	one	plate,	making	it	negatively	charged.	Electrons	are
repelled	from	the	other	plate,	making	it	positively	charged.	Figure	23.4	shows	that	there	is	a	flow	of
electrons	all	the	way	round	the	circuit.
The	two	ammeters	will	give	identical	readings.	The	current	stops	when	the	potential	difference	(p.d.)
across	the	capacitor	is	equal	to	the	electromotive	force	(e.m.f.)	of	the	supply.	We	then	say	that	the
capacitor	is	‘fully	charged’.

Figure	23.3:	The	construction	of	two	types	of	capacitor.



Figure	23.4:	The	flow	of	charge	when	a	capacitor	is	charged	up.

Note:	The	convention	is	that	current	is	the	flow	of	positive	charge.	Here,	it	is	free	electrons	that	flow.
Electrons	are	negatively	charged;	conventional	current	flows	in	the	opposite	direction	to	the	electrons
(Figure	23.5).

Figure	23.5:	A	flow	of	electrons	to	the	right	constitutes	a	conventional	current	to	the	left.

Charge	on	the	plates
Think	about	a	capacitor	with	uncharged	plates.	Each	plate	has	equal	amounts	of	positive	and	negative
charge.	Connecting	the	capacitor	to	a	supply	pulls	charge	+Q	from	one	plate	and	transfers	it	to	the	other,
leaving	behind	charge	−Q.	The	supply	does	work	in	separating	the	charges.	Since	the	two	plates	now
store	equal	and	opposite	charges,	the	total	charge	on	the	capacitor	is	zero.	When	we	talk	about	the
‘charge	stored’	by	a	capacitor,	we	mean	the	quantity	Q,	the	magnitude	of	the	charge	stored	on	each	plate.
To	make	the	capacitor	plates	store	more	charge,	we	would	have	to	use	a	supply	of	higher	e.m.f.	If	we
connect	the	leads	of	the	charged	capacitor	together,	electrons	flow	back	around	the	circuit	and	the
capacitor	is	discharged.
You	can	observe	a	capacitor	discharging	as	follows.	Connect	the	two	leads	of	a	capacitor	to	the	terminals
of	a	battery.	Disconnect,	and	then	reconnect	the	leads	to	a	light-emitting	diode	(LED).	It	is	best	to	have	a
protective	resistor	in	series	with	the	LED.	The	LED	will	glow	briefly	as	the	capacitor	discharges.
In	any	circuit,	the	charge	that	flows	past	a	point	in	a	given	time	is	equal	to	the	area	under	a	current–time
graph	(just	as	distance	is	equal	to	the	area	under	a	speed–time	graph).	So	the	magnitude	of	the	charge	on
the	plates	in	a	capacitor	is	given	by	the	area	under	the	current–time	graph	recorded	while	the	capacitor	is
being	charged	up.

The	meaning	of	capacitance
If	you	look	at	some	capacitors,	you	will	see	that	they	are	marked	with	the	value	of	their	capacitance.	The
greater	the	capacitance,	the	greater	is	the	charge	on	the	capacitor	plates	for	a	given	potential	difference
across	it.
The	capacitance	C	of	a	capacitor	is	defined	by:

where	Q	is	the	magnitude	of	the	charge	on	each	of	the	capacitor’s	plates	and	V	is	the	potential	difference
across	the	capacitor.
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KEY	EQUATION

The	charge	on	the	capacitor	may	be	calculated	using	the	equation:

Q	=	VC

This	equation	shows	that	the	charge	depends	on	two	things:	the	capacitance	C	and	the	voltage	V	(double
the	voltage	means	double	the	charge).	Note	that	it	isn’t	only	capacitors	that	have	capacitance.	Any	object
can	become	charged	by	connecting	it	to	a	voltage.	The	object’s	capacitance	is	then	the	ratio	of	the	charge
to	the	voltage.

Units	of	capacitance
The	unit	of	capacitance	is	the	farad,	F.	From	the	equation	that	defines	capacitance,	you	can	see	that	this
must	be	the	same	as	the	units	of	charge	(coulombs,	C)	divided	by	voltage	(V):

1	F	=	1	C	V−1

(It	is	unfortunate	that	the	letter	‘C’	is	used	for	both	capacitance	and	coulomb.	There	is	room	for	confusion
here!)
In	practice,	a	farad	is	a	large	unit.	Few	capacitors	have	a	capacitance	of	1	F.	Capacitors	usually	have	their
values	marked	in	picofarads	(pF),	nanofarads	(nF)	or	microfarads	(µF):

1	pF	=	10−12	F 1	nF	=	10−9	F 1	µF	=	10−6	F

Other	markings	on	capacitors
Many	capacitors	are	marked	with	their	highest	safe	working	voltage.	If	you	exceed	this	value,	charge	may
leak	across	between	the	plates,	and	the	dielectric	will	cease	to	be	an	insulator.	Some	capacitors
(electrolytic	ones)	must	be	connected	correctly	in	a	circuit.	They	have	an	indication	to	show	which	end
must	be	connected	to	the	positive	of	the	supply.	Failure	to	connect	correctly	will	damage	the	capacitor,
and	can	be	extremely	dangerous.

Questions
Calculate	the	charge	on	a	220	µF	capacitor	charged	up	to	15	V.	Give	your	answer	in	microcoulombs
(µC)	and	in	coulombs	(C).
A	charge	of	1.0	×	10−3	C	is	measured	on	a	capacitor	with	a	potential	difference	across	it	of	500	V.
Calculate	the	capacitance	in	farads	(F),	microfarads	(µF)	and	picofarads	(pF).
Calculate	the	average	current	required	to	charge	a	50	µF	capacitor	to	a	p.d.	of	10	V	in	a	time	interval
of	0.01	s.
A	student	connects	an	uncharged	capacitor	of	capacitance	C	in	series	with	a	resistor,	a	cell	and	a
switch.	The	student	closes	the	switch	and	records	the	current	I	at	intervals	of	10	s.	The	results	are
shown	in	Table	23.1.	The	potential	difference	across	the	capacitor	after	60	s	is	8.5	V.	Plot	a	current–
time	graph,	and	use	it	to	estimate	the	value	of	C.

t	/	s 0 10 20 30 40 50 60

I	/	µA 200 142 102 75 51 37 27

Table	23.1	Data	for	Question	4.

	
	



23.2	Energy	stored	in	a	capacitor
When	you	charge	a	capacitor,	you	use	a	power	supply	to	push	electrons	onto	one	plate	and	off	the	other.
The	power	supply	does	work	on	the	electrons,	so	their	potential	energy	increases.	You	recover	this	energy
when	you	discharge	the	capacitor.
If	you	charge	a	large	capacitor	(1000	µF	or	more)	to	a	potential	difference	of	6.0	V,	disconnect	it	from	the
supply	and	then	connect	it	across	a	6.0	V	lamp,	you	can	see	the	lamp	glow	as	energy	is	released	from	the
capacitor.	The	lamp	will	flash	briefly.	Clearly,	such	a	capacitor	does	not	store	much	energy	when	it	is
charged.
In	order	to	charge	a	capacitor,	work	must	be	done	to	push	electrons	onto	one	plate	and	off	the	other
(Figure	23.6).	At	first,	there	is	only	a	small	amount	of	negative	charge	on	the	left-hand	plate.	Adding	more
electrons	is	relatively	easy,	because	there	is	not	much	repulsion.	As	the	charge	on	the	plate	increases,	the
repulsion	between	the	electrons	on	the	plate	and	the	new	electrons	increases,	and	a	greater	amount	of
work	must	be	done	to	increase	the	charge	on	the	plate.

Figure	23.6:	When	a	capacitor	is	charged,	work	must	be	done	to	push	additional	electrons	against	the
repulsion	of	the	electrons	that	are	already	present.

This	can	be	seen	qualitatively	in	Figure	23.7a.	This	graph	shows	how	the	p.d.	V	increases	as	the	amount
of	charge	Q	increases.	It	is	a	straight	line	because	Q	and	V	are	related	by:

We	can	use	Figure	23.7a	to	calculate	the	work	done	in	charging	up	the	capacitor.
First,	consider	the	work	done	W	in	moving	charge	Q	through	a	constant	p.d.	V.	This	is	given	by:

W	=	QV

(You	studied	this	equation	in	Chapter	9.)	From	the	graph	of	Q	against	V	(Figure	23.7b),	we	can	see	that
the	quantity	Q	×	V	is	given	by	the	area	under	the	graph.
The	area	under	a	graph	of	p.d.	against	charge	is	equal	to	work	done.
If	we	apply	the	same	idea	to	the	capacitor	graph	(Figure	23.7a),	then	the	area	under	the	graph	is	the
shaded	triangle,	with	an	area	of	base	×	height.	Hence,	the	work	done	in	charging	a	capacitor	to	a
particular	p.d.	is	given	by:

Substituting	Q	=	CV	into	this	equation	gives	two	further	equations:
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Figure	23.7:	The	area	under	a	graph	of	voltage	against	charge	gives	a	quantity	of	energy.	The	area	in	a
shows	 the	 energy	 stored	 in	 a	 capacitor;	 the	 area	 in	 b	 shows	 the	 energy	 required	 to	 drive	 a	 charge
through	a	resistor.

where	W	energy	stored,	Q	is	the	charge	on	the	capacitor,	C	is	the	capacitance	and	V	is	the	potential
difference	across	the	capacitor.
These	three	equations	show	the	work	done	in	charging	up	the	capacitor.	This	is	equal	to	the	energy
stored	by	the	capacitor,	since	this	is	the	amount	of	energy	released	when	the	capacitor	is	discharged.

We	can	also	see	from	the	second	formula	 	that	the	energy	W	that	a	capacitor	stores
depends	on	its	capacitance	C	and	the	potential	difference	V	to	which	it	is	charged.

The	energy	W	stored	is	proportional	to	the	square	of	the	potential	difference	V	(W	∝	V2).	It	follows	that
doubling	the	charging	voltage	means	that	four	times	as	much	energy	is	stored.

KEY	EQUATIONS
Work	done	by	charging	a	capacitor:

WORKED	EXAMPLE

A	2000	µF	capacitor	is	charged	to	a	p.d.	of	10	V.	Calculate	the	energy	stored	by	the	capacitor.
Write	down	the	quantities	we	know:

Write	down	the	equation	for	energy	stored	and	substitute	values:

This	is	a	small	amount	of	energy	–	compare	it	with	the	energy	stored	by	a	rechargeable	battery,
typically	of	the	order	of	10	000	J.	A	charged	capacitor	will	not	keep	an	MP3	player	running	for	any
length	of	time.
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Questions
State	the	quantity	represented	by	the	gradient	of	the	straight	line	shown	in	Figure	23.7a.
The	graph	of	Figure	23.8	shows	how	V	depends	on	Q	for	a	particular	capacitor.

Figure	 23.8:	 The	 energy	 stored	 by	 a	 capacitor	 is	 equal	 to	 the	 area	 under	 the	 graph	 of	 voltage
against	charge.

The	area	under	the	graph	has	been	divided	into	strips	to	make	it	easy	to	calculate	the	energy	stored.
The	first	strip	(which	is	simply	a	triangle)	shows	the	energy	stored	when	the	capacitor	is	charged	up
to	1.0	V.	The	energy	stored	is:

Calculate	the	capacitance	C	of	the	capacitor.
Copy	Table	23.2	and	complete	it	by	calculating	the	areas	of	successive	strips,	to	show	how	W
depends	on	V.
Plot	a	graph	of	W	against	V.	Describe	the	shape	of	this	graph.

Q	/	mC V	/	V Area	of	strip	ΔW	/	mJ Sum	of	areas	W	/	mJ
1.0 1.0 0.5 0.5
2.0 2.0 1.5 2.0
3.0 	 	 	
4.0 	 	 	

Table	23.2	Data	for	Question	6.

PRACTICAL	ACTIVITY	23.1

Investigating	energy	stored	in	a	capacitor
If	you	have	a	sensitive	joulemeter	(capable	of	measuring	millijoules,	mJ),	you	can	investigate	the
equation	for	energy	stored.	A	suitable	circuit	is	shown	in	Figure	23.9.
The	capacitor	is	charged	up	when	the	switch	connects	it	to	the	power	supply.	When	the	switch	is
altered,	the	capacitor	discharges	through	the	joulemeter.	(It	is	important	to	wait	for	the	capacitor	to
discharge	completely.)	The	joulemeter	will	measure	the	amount	of	energy	released	by	the	capacitor.
By	using	capacitors	with	different	values	of	C,	and	by	changing	the	charging	voltage	V,	you	can
investigate	how	the	energy	W	stored	depends	on	C	and	V.
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Figure	 23.9:	 With	 the	 switch	 to	 the	 left,	 the	 capacitor	 C	 charges	 up;	 to	 the	 right,	 it	 discharges
through	the	joulemeter.

Questions
Calculate	the	energy	stored	in	the	following	capacitors:

a	5000	µF	capacitor	charged	to	5.0	V
a	5000	pF	capacitor	charged	to	5.0	V
a	200	µF	capacitor	charged	to	230	V.

Which	involves	more	charge,	a	100	µF	capacitor	charged	to	200	V	or	a	200	µF	capacitor	charged	to
100	V?	Which	stores	more	energy?
A	10	000	µF	capacitor	is	charged	to	12	V,	and	then	connected	across	a	lamp	rated	at	‘12	V,	36	W’.

Calculate	the	energy	stored	by	the	capacitor.
Estimate	the	time	the	lamp	stays	fully	lit.	Assume	that	energy	is	dissipated	in	the	lamp	at	a	steady
rate.

In	a	simple	photographic	flashgun,	a	0.20	F	capacitor	is	charged	by	a	9.0	V	battery.	It	is	then
discharged	in	a	flash	of	duration	0.01	s.	Calculate:

the	charge	on	and	energy	stored	by	the	capacitor
the	average	power	dissipated	during	the	flash
the	average	current	in	the	flash	bulb
the	approximate	resistance	of	the	bulb.

	
	



23.3	Capacitors	in	parallel
Capacitors	are	used	in	electric	circuits	to	store	energy.	Situations	often	arise	where	two	or	more
capacitors	are	connected	together	in	a	circuit.	In	this	topic,	we	will	look	at	capacitors	connected	in
parallel.	The	next	topic	deals	with	capacitors	in	series.
When	two	capacitors	are	connected	in	parallel	(Figure	23.10),	their	combined	or	total	capacitance	Ctotal
is	simply	the	sum	of	their	individual	capacitances	C1	and	C2:

Ctotal	=	C1	+	C2

This	is	because,	when	two	capacitors	are	connected	together,	they	are	equivalent	to	a	single	capacitor
with	larger	plates.	The	bigger	the	plates,	the	more	charge	that	can	be	stored	for	a	given	voltage,	and
hence	the	greater	the	capacitance.

Figure	23.10:	Two	capacitors	connected	in	parallel	are	equivalent	to	a	single,	larger	capacitor.

The	total	charge	Q	on	two	capacitors	connected	in	parallel	and	charged	to	a	potential	difference	V	is
simply	given	by:

Q	=	Ctotal	×	V

For	three	or	more	capacitors	connected	in	parallel,	the	equation	for	their	total	capacitance	becomes:

Ctotal	=	C1	+	C2	+	C3	+	…

Capacitors	in	parallel:	deriving	the	formula
We	can	derive	the	equation	for	capacitors	in	parallel	by	thinking	about	the	charge	on	the	two	capacitors.
As	shown	in	Figure	23.11,	C1	stores	charge	Q1	and	C2	stores	charge	Q2.	Since	the	p.d.	across	each
capacitor	is	V,	we	can	write:

Figure	 23.11:	 Two	 capacitors	 connected	 in	 parallel	 have	 the	 same	 p.d.	 across	 them,	 but	 different
amounts	of	charge.

The	total	charge	is	given	by	the	sum	of	these:

Q	=	Q1	+	Q2	=	C1V	+	C2V
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Since	V	is	a	common	factor:

Q	=	(C1	+	C2)V

Comparing	this	with	Q	=	CtotalV	gives	the	required	Ctotal	=	C1	+	C2.	It	follows	that	for	three	or	more
capacitors	connected	in	parallel,	we	have:

Ctotal	=	C1	+	C2	+	C3	+	…

Capacitors	in	parallel:	summary
For	capacitors	in	parallel,	the	following	rules	apply:

The	p.d.	across	each	capacitor	is	the	same.
The	total	charge	on	the	capacitors	is	equal	to	the	sum	of	the	charges:

Qtotal	=	Q1	+	Q2	+	Q3	+	…

The	total	capacitance	Ctotal	is	given	by:

Ctotal	=	C1	+	C2	+	C3	+	…

KEY	EQUATION

Ctotal	=	C1	+	C2	+	C3	+	…

The	combined	capacitance	of	capacitors	in	parallel.
You	must	learn	how	to	derive	this	equation.

Questions
Calculate	the	total	capacitance	of	two	100	µF	capacitors	connected	in	parallel.
Calculate	the	total	charge	they	store	when	charged	to	a	p.d.	of	20	V.

A	capacitor	of	capacitance	50	µF	is	required,	but	the	only	values	available	to	you	are	10	µF,	20	µF	and
100	µF	(you	may	use	more	than	one	of	each	value).	How	would	you	achieve	the	required	value	by
connecting	capacitors	in	parallel?	Give	at	least	two	answers.

	
	



23.4	Capacitors	in	series
In	a	similar	way	to	the	case	of	capacitors	connected	in	parallel,	we	can	consider	two	or	more	capacitors
connected	in	series	(Figure	23.12).	The	total	capacitance	Ctotal	of	two	capacitors	of	capacitances	C1	and
C2	is	given	by:

Here,	it	is	the	reciprocals	of	the	capacitances	that	must	be	added	to	give	the	reciprocal	of	the	total
capacitance.	For	three	or	more	capacitors	connected	in	series,	the	equation	for	their	total	capacitance	is:

Figure	23.12:	Two	capacitors	connected	in	series.

Capacitors	in	series:	deriving	the	formula
The	same	principles	apply	here	as	for	the	case	of	capacitors	in	parallel.	Figure	23.13	shows	the	situation.
C1	and	C2	are	connected	in	series,	and	there	is	a	p.d.	V	across	them.	This	p.d.	is	divided	(it	is	shared
between	the	two	capacitors),	so	that	the	p.d.	across	C1	is	V1	and	the	p.d.	across	C2	is	V2.	It	follows	that:

Figure	 23.13:	 Capacitors	 connected	 in	 series	 store	 the	 same	 charge,	 but	 they	 have	 different	 p.d.s
across	them.

Now	we	must	think	about	the	charge	stored	by	the	combination	of	capacitors.	In	Figure	23.13,	you	will
see	that	both	capacitors	are	shown	as	storing	the	same	charge	Q.	How	does	this	come	about?	When	the
voltage	is	first	applied,	charge	−Q	arrives	on	the	left-hand	plate	of	C1.	This	repels	charge	−Q	off	the
right-hand	plate,	leaving	it	with	charge	+Q.	Charge	−Q	now	arrives	on	the	left-hand	plate	of	C2,	and	this
in	turn	results	in	charge	+Q	on	the	right-hand	plate.

KEY	EQUATION

The	combined	capacitance	of	capacitors	in	series.
You	must	learn	how	to	derive	this	equation.

Note	that	charge	is	not	arbitrarily	created	or	destroyed	in	this	process	–	the	total	amount	of	charge	in	the
system	is	constant.	This	is	an	example	of	the	conservation	of	charge.
Notice	also	that	there	is	a	central	isolated	section	of	the	circuit	between	the	two	capacitors.	Since	this	is
initially	uncharged,	it	must	remain	so	at	the	end.	This	requirement	is	satisfied,	because	there	is	charge
−Q	at	one	end	and	+Q	at	the	other.	Hence,	we	conclude	that	capacitors	connected	in	series	store	the
same	charge.	This	allows	us	to	write	equations	for	V1	and	V2:
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The	combination	of	capacitors	stores	charge	Q	when	charged	to	p.d.	V,	and	so	we	can	write:

Substituting	these	in	V	=	V1	+	V2	gives:

Cancelling	the	common	factor	of	Q	gives	the	required	equation:

Worked	example	2	shows	how	to	use	this	relationship.

WORKED	EXAMPLE

Calculate	the	total	capacitance	of	a	300	µF	capacitor	and	a	600	µF	capacitor	connected	in	series.
The	calculation	should	be	done	in	two	steps;	this	is	relatively	simple	using	a	calculator	with
a	 	or	x−1	key.

Substitute	the	values	into	the	equation:

This	gives:

Now	take	the	reciprocal	of	this	value	to	determine	the	capacitance	in	µF:

Notice	that	the	total	capacitance	of	two	capacitors	in	series	is	less	than	either	of	the
individual	capacitances.

Using	the	x−1	key	on	your	calculator,	you	can	also	do	this	calculation	in	one	step:

Ctotal	=	(300−1	+	600−1)−1	=	200	µF

Questions
Calculate	the	total	capacitance	of	three	capacitors	of	capacitances	200	µF,	300	µF	and	600	µF,
connected	in	series.
You	have	a	number	of	identical	capacitors,	each	of	capacitance	C.	Determine	the	total	capacitance
when:

two	capacitors	are	connected	in	series
n	capacitors	are	connected	in	series
two	capacitors	are	connected	in	parallel
n	capacitors	are	connected	in	parallel.

	
	



23.5	Comparing	capacitors	and	resistors
It	is	helpful	to	compare	the	formulae	for	capacitors	in	series	and	parallel	with	the	corresponding	formulae
for	resistors	(Table	23.3).

Table	23.3	Capacitors	and	resistors	compared.

Notice	that	the	reciprocal	formula	applies	to	capacitors	in	series	but	to	resistors	in	parallel.	This	comes
from	the	definitions	of	capacitance	and	resistance.	Capacitance	indicates	how	good	a	capacitor	is	at
storing	charge	for	a	given	voltage,	and	resistance	indicates	how	bad	a	resistor	is	at	letting	current
through	for	a	given	voltage.
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23.6	Capacitor	networks

Figure	23.14:	Four	ways	to	connect	three	capacitors.

There	are	four	ways	in	which	three	capacitors	may	be	connected	together.	These	are	shown	in	Figure
23.14.	The	combined	capacitance	of	the	first	two	arrangements	(three	capacitors	in	series,	three	in
parallel)	can	be	calculated	using	the	formulae.	The	other	combinations	must	be	dealt	with	in	a	different
way:

Figure	23.14a	–	All	in	series.	Calculate	Ctotal	as	in	Table	23.3.

Figure	23.14b	–	All	in	parallel.	Calculate	Ctotal	as	in	Table	23.3.

Figure	 23.14c	 –	 Calculate	 Ctotal	 for	 the	 two	 capacitors	 of	 capacitances	 C1	 and	 C2,	 which	 are
connected	 in	 parallel,	 and	 then	 take	 account	 of	 the	 third	 capacitor	 of	 capacitance	 C3,	 which	 is
connected	in	series.
Figure	 23.14d	 –	 Calculate	 Ctotal	 for	 the	 two	 capacitors	 of	 capacitances	 C1	 and	 C2,	 which	 are
connected	 in	 series,	 and	 then	 take	 account	 of	 the	 third	 capacitor	 of	 capacitance	 C3,	 which	 is
connected	in	parallel.

These	are	the	same	approaches	as	would	be	used	for	networks	of	resistors.

Questions
For	each	of	the	four	circuits	shown	in	Figure	23.14,	calculate	the	total	capacitance	in	µF	if	each
capacitor	has	capacitance	100	µF.
Given	a	number	of	100	µF	capacitors,	how	might	you	connect	networks	to	give	the	following	values	of
capacitance:

400	µF?
25	µF?
250	µF?

(Note	that,	in	each	case,	there	is	more	than	one	correct	answer;	try	to	find	the	answer	that	requires
the	minimum	number	of	capacitors.)
You	have	three	capacitors	of	capacitances	100	pF,	200	pF	and	600	pF.	Determine	the	maximum	and
minimum	values	of	capacitance	that	you	can	make	by	connecting	them	together	to	form	a	network.
State	how	they	should	be	connected	in	each	case.
Calculate	the	capacitance	in	µF	of	the	network	of	capacitors	shown	in	Figure	23.15.
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Figure	23.15:	A	capacitor	network.	For	Question	18.

Sharing	charge,	sharing	energy
If	a	capacitor	is	charged	and	then	connected	to	a	second	capacitor	(Figure	23.16),	what	happens	to	the
charge	and	the	energy	that	it	stores?	Note	that,	when	the	capacitors	are	connected	together,	they	are	in
parallel,	because	they	have	the	same	p.d.	across	them.	Their	combined	capacitance	Ctotal	is	equal	to	the
sum	of	their	individual	capacitances.

Figure	23.16:	Capacitor	of	capacitance	C1	is	charged	and	then	connected	across	C2.

Now	we	can	think	about	the	charge	stored,	Q.	This	is	shared	between	the	two	capacitors;	the	total
amount	of	charge	stored	must	remain	the	same,	since	charge	is	conserved.	The	charge	is	shared	between
the	two	capacitors	in	proportion	to	their	capacitances.	Now	the	p.d.	can	be	calculated	from	 	and
the	energy	from	 .
If	we	look	at	a	numerical	example,	we	find	an	interesting	result	(Worked	example	3).
Figure	23.17	shows	an	analogy	to	the	situation	described	in	Worked	example	3.
Capacitors	are	represented	by	containers	of	water.	A	wide	(high	capacitance)	container	is	filled	to	a
certain	level	(p.d.).	It	is	then	connected	to	a	container	with	a	smaller	capacitance,	and	the	levels	equalise.
(The	p.d.	is	the	same	for	each.)	Notice	that	the	potential	energy	of	the	water	has	decreased,	because	the
height	of	its	centre	of	gravity	above	the	base	level	has	decreased.	Energy	is	dissipated	as	heat,	as	there	is
friction	both	within	the	moving	water	and	between	the	water	and	the	container.

Figure	23.17:	An	analogy	for	the	sharing	of	charge	between	capacitors.

WORKED	EXAMPLE

Consider	two	100	mF	capacitors.	One	is	charged	to	10	V,	disconnected	from	the	power	supply,	and
then	connected	across	the	other.	Calculate	the	energy	stored	by	the	combination.

Calculate	the	charge	and	energy	stored	for	the	single	capacitor.
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Calculate	the	final	p.d.	across	the	capacitors.	The	capacitors	are	in	parallel	and	have	a	total
stored	charge	of	1.0	C.

Ctotal	=	C1	+	C2	=	100	+	100	=	200	mF

The	p.d.	V	can	be	determined	using	Q	=	VC.

This	is	because	the	charge	is	shared	equally,	with	the	original	capacitor	losing	half	of	its	charge.
Now	calculate	the	total	energy	stored	by	the	capacitors.

The	charge	stored	remains	the	same,	but	half	of	the	stored	energy	is	lost.	The	energy	goes	to	heating
the	connecting	wires	as	the	electrons	migrate	between	the	capacitors.

Questions
Three	capacitors,	each	of	capacitance	120	µF,	are	connected	together	in	series.	This	network	is	then
connected	to	a	10	kV	supply.	Calculate:

their	combined	capacitance	in	µF
the	charge	stored
the	total	energy	stored.

A	20	µF	capacitor	is	charged	up	to	200	V	and	then	disconnected	from	the	supply.	It	is	then	connected
across	a	5.0	µF	capacitor.	Calculate:

the	combined	capacitance	of	the	two	capacitors	in	µF
the	charge	they	store
the	p.d.	across	the	combination
the	energy	dissipated	when	they	are	connected	together.

Capacitance	of	isolated	bodies
It	is	not	just	capacitors	that	have	capacitance	–	all	bodies	have	capacitance.	Yes,	even	you	have
capacitance!	You	may	have	noticed	that,	particularly	in	dry	conditions,	you	may	become	charged	up,
perhaps	by	rubbing	against	a	synthetic	fabric.	You	are	at	a	high	voltage	and	store	a	significant	amount	of
charge.	Discharging	yourself	by	touching	an	earthed	metal	object	would	produce	a	spark.
If	we	consider	a	conducting	sphere	of	radius	r	insulated	from	its	surroundings	and	carrying	a	charge	Q	it
will	have	a	potential	at	its	surface	of	V,	where

Since	 ,	it	follows	that	the	capacitance	of	a	sphere	is	C	=	4πε0r.

Question
Estimate	the	capacitance	of	the	Earth	given	that	it	has	a	radius	of	6.4	×	106	m.	State	any	assumptions
you	make.



	
	



22

a
i
ii
iii

b

c
i
ii

23.7	Charge	and	discharge	of	capacitors
In	Figure	23.18,	the	capacitor	is	charged	by	the	battery	when	the	switch	is	connected	to	terminal	P.	When
first	connected	to	P,	a	current	is	observed	in	the	microammeter.	The	current	starts	off	quite	large	and
gradually	decreases	to	zero.	When	connected	to	terminal	Q,	the	capacitor	discharges	through	the	resistor
and	a	current	in	the	opposite	direction	is	observed.	As	with	the	previous	current,	it	starts	off	large	and
gradually	falls	to	zero.

Figure	23.18	A	circuit	to	charge	and	discharge	a	capacitor.

Figure	23.19	A	graph	showing	how	the	current	changes	with	time	when	a	capacitor	discharges	through
a	resistor.

This	shape	of	this	graph	it	is	quite	common	in	sciences	and	it	occurs	in	different	situations	–	you	will	come
across	it	again	in	radioactive	decay	in	Chapter	29.	In	this	case,	it	comes	from	the	fact	that,	as	charge
flows	off	the	capacitor,	the	potential	difference	reduces	and	so	the	current	(the	charge	flowing	per	unit
time)	in	the	circuit	also	decreases.	In	radioactive	decay,	it	occurs	because	as	atoms	decay,	there	are	fewer
atoms	left	to	Charles’s	law	and,	therefore,	fewer	decays	per	unit	time.
This	type	of	decay	is	called	exponential	decay	and	is	described	by	the	formula:

where	x	is	the	dependent	variable,	y	is	the	independent	variable,	k	and	x0	are	constants	and	e	is	the
exponential	function	(a	naturally	occurring	number	of	value	2.7118	28	…).

Question
In	the	circuit	in	Figure	23.18,	the	resistance	has	a	resistance	of	2000	Ω,	the	capacitor	has	a
capacitance	of	1000	µF	and	the	battery	has	an	e.m.f.	of	12	V.

Calculate:
the	potential	difference	across	the	capacitor	when	it	is	fully	charged	by	the	battery
the	charge	stored	by	the	capacitor	when	it	is	fully	charged
the	current	in	the	resistor	when	the	switch	is	first	connected	to	terminal	Q.

Explain	what	happens	to	the	amount	of	charge	stored	on	the	plates	in	the	moments	after	the
switch	is	first	connected	to	terminal	Q.
Based	on	your	answer	to	part	b,	explain	what	effect	this	has	on:

the	potential	difference	across	the	capacitor
the	current	in	the	resistor.

Once	you	have	worked	through	Question	22,	you	should	understand	why	the	current	gradually	reduces:	it
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reduces	because	of	the	current	itself,	as	it	takes	charge	off	the	plates.
What	is	the	effect	of	changing	the	resistance	in	the	circuit?	There	will	be	no	change	in	the	initial	potential
difference	across	the	capacitor,	but	the	initial	current	through	the	resistor	will	be	changed.	Increased
resistance	will	mean	decreased	current,	so	charge	flows	off	the	capacitor	plates	more	slowly	and,
therefore,	the	capacitor	will	take	longer	to	discharge.	Conversely,	decreasing	the	resistance	will	cause	the
capacitor	to	discharge	more	quickly.
What	is	the	effect	of	increasing	the	capacitance	of	the	capacitor?	The	initial	p.d.	across	the	capacitor	is,
again,	unchanged.	So,	with	an	unchanged	resistance,	the	initial	current	will	be	unchanged.	However,
there	will	be	more	charge	on	the	capacitor	and	so	it	will	take	longer	to	discharge.
From	this,	we	can	see	that	the	time	taken	for	a	capacitor	to	discharge	depends	on	both	the	capacitance
and	the	resistance	in	the	circuit.	The	quantity	RC	is	called	the	time	constant	of	the	circuit.	It	is	written
using	the	Greek	letter	tau	(τ).

KEY	EQUATION

Time	constant	for	a	capacitor	discharging.

Question
Show	that	the	unit	of	the	time	constant	(RC)	is	the	second.

The	equation	for	the	exponential	decay	of	charge	on	a	capacitor	is:

where	I	is	the	current,	I0	is	the	initial	current,	t	is	time	and	RC	is	the	time	constant.

The	current	at	any	time	is	directly	proportional	to	the	potential	difference	across	the	capacitor,	which	in
turn	is	directly	proportional	to	charge	across	the	plate.	The	equation	also	describes	the	change	in	the
potential	difference	and	the	charge	on	the	capacitor.
So:

where	V	is	the	p.d,	and	V0	is	the	initial	p.d.

And:

where	Q	is	the	charge	and	Q0	is	the	initial	charge.

KEY	EQUATIONS
Exponential	decay	of	charge	on	a	capacitor:

WORKED	EXAMPLE

The	potential	difference	across	the	plates	of	a	capacitor	of	capacitance	500	µF	is	240	V.	The
capacitor	is	connected	across	the	terminals	of	a	600	Ω	resistor.
Find	the	time	taken	for	the	current	to	fall	to	0.10	A.

Calculate	the	initial	current:
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Calculate	the	time	constant:

Substitute	into	the	equation:

e	comes	from	the	antilog	of	the	natural	logarithm	(ln)	such	that	ln	(ex)	=	x
Taking	ln	of	both	sides:

Question
A	400	µF	capacitor	is	charged	using	a	20	V	battery.	It	is	connected	across	the	ends	of	a	600	Ω	resistor
with	20	V	potential	difference	across	its	plates.

Calculate	the	charge	stored	on	the	capacitor.
Calculate	the	time	constant	for	the	discharging	circuit.
Calculate	the	time	it	takes	the	charge	on	the	capacitor	to	fall	to	2.0	mC.
State	the	potential	difference	across	the	plates	when	the	charge	has	fallen	to	2.0	mC.

REFLECTION
In	Worked	example	3,	we	showed	that	when	a	charged	capacitor	is	connected	to	an	identical	uncharged
capacitor,	half	the	energy	is	dissipated	in	driving	the	charge	through	the	circuit	and	is	transformed	to
thermal	energy.	If	we	had	superconducting	connectors	–	ones	that	conduct	electricity	without	any
energy	losses	–	what	would	happen?	Discuss	with	a	partner.
What	did	you	find	satisfying	about	discussing	this	problem?

	
	



SUMMARY

Capacitors	are	constructed	from	two	metal	sheets	(‘plates’),	separated	by	an	insulating	material.	A
capacitor	stores	equal	and	opposite	amounts	of	charge	on	its	plates.

For	a	capacitor,	the	charge	stored	is	directly	proportional	to	the	p.d.	between	the	plates:

Q	=	VC

Capacitance	is	the	charge	stored	per	unit	of	p.d.

A	farad	is	a	coulomb	per	volt:	1	F	=	1	C	V−1.

Capacitors	store	energy.	The	energy	W	stored	at	p.d.	V	is:

The	formula	 	is	deduced	from	the	area	under	a	graph	of	potential	difference	against
charge.

For	capacitors	connected	in	parallel	and	in	series,	the	combined	capacitances	are:
parallel:	Ctotal	=	C1	+	C2	+	C3	+	…

series:	

These	formulae	are	derived	from	conservation	of	charge	and	addition	of	p.d.s.

The	graphs	for	the	discharge	current,	charge	stored	and	potential	difference	across	a	capacitor	are	all
examples	of	exponential	decay.

The	time	constant	for	circuits	containing	capacitance	and	resistance	is:	τ	=	CR

The	graphs	of	discharge	current,	charge	stored	and	potential	difference	across	a	capacitor	are	all	of
the	form:
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EXAM-STYLE	QUESTIONS

A	capacitor	has	a	potential	difference	of	6.0	V	across	its	plates	and	stores	9.0
mJ	of	energy. 	

Which	row	in	the	table	gives	the	capacitance	of	the	capacitor	and	the	charge
on	its	plates? [1]

	 Capacitance	/	µF Charge	/	mC
A 500 3.0
B 500 18
C 3000 3.0
D 3000 18

Table	23.3
	

A	capacitor	in	an	electronic	circuit	is	designed	to	slowly	discharge	through	an
indicator	lamp. 	

It	is	decided	that	the	time	taken	for	the	capacitor	to	discharge	needs	to	be
increased.	Four	changes	are	suggested: 	

Connect	a	second	capacitor	in	parallel	with	the	original	capacitor. 	

Connect	a	second	capacitor	in	series	with	the	original	capacitor. 	

Connect	a	resistor	in	parallel	with	the	lamp. 	

Connect	a	resistor	in	series	with	the	lamp. 	

Which	suggestions	would	lead	to	the	discharge	time	being	increased? [1]

1	and	3	only 	

1	and	4	only 	

2	and	3	only 	

2	and	4	only 	

A	470	µF	capacitor	is	connected	across	the	terminals	of	a	battery	of	e.m.f.	9	V.
Calculate	the	charge	on	the	plates	of	the	capacitor. [1]

Calculate	the	p.d.	across	the	terminals	of	a	2200	µF	capacitor	when	it	has	a
charge	of	0.033	C	on	its	plates. [1]

Calculate	the	capacitance	of	a	capacitor	if	it	stores	a	charge	of	2.0	C	when
there	is	a	potential	difference	of	5000	V	across	its	plates. [1]

Calculate	the	energy	stored	when	a	470	µF	capacitor	has	a	potential	difference
of	12	V	across	its	plates. [1]

Calculate	the	energy	stored	on	a	capacitor	if	it	stores	1.5	mC	of	charge	when
there	is	a	potential	difference	of	50	V	across	it. [1]

A	5000	µF	capacitor	has	a	p.d.	of	24	V	across	its	plates. 	

Calculate	the	energy	stored	on	the	capacitor. [1]

The	capacitor	is	briefly	connected	across	a	bulb	and	half	the	charge	flows
off	the	capacitor.	Calculate	the	energy	dissipated	in	the	lamp. [3]

	 [Total:	4]

A	4700	µF	capacitor	has	a	p.d.	of	12	V	across	its	terminals.	It	is	connected	to	a
resistor	and	the	charge	leaks	away	through	the	resistor	in	2.5	s. 	

Calculate	the	energy	stored	on	the	capacitor. [1]

Calculate	the	charge	stored	on	the	capacitor. [1]

Estimate	the	average	current	through	the	resistor. [1]

Estimate	the	resistance	of	the	resistor. [2]

Suggest	why	the	last	two	quantities	can	only	be	estimates. [1]

	 [Total:	6]

An	electronics	engineer	is	designing	a	circuit	in	which	a	capacitor	of
capacitance	of	4700	µF	is	to	be	connected	across	a	potential	difference	of	9.0
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V.	He	has	four	4700	µF,	6	V	capacitors	available.	Draw	a	diagram	to	show	how
the	four	capacitors	could	be	used	for	this	purpose. [1]

Calculate	the	different	capacitances	that	can	be	made	from	three	100	µF
capacitors.	For	each	value,	draw	the	network	that	is	used. [4]

This	diagram	shows	three	capacitors	connected	in	series	with	a	cell	of	e.m.f.
1.5	V. 	

Figure	23.20
	

Calculate	the	charges	Q1	to	Q6	on	each	of	the	plates. [5]

Calculate	the	p.d.	across	each	capacitor. [3]

	 [Total:	8]

State	one	use	of	a	capacitor	in	a	simple	electric	circuit. [1]

This	is	a	circuit	used	to	investigate	the	discharge	of	a	capacitor,	and	a
graph	showing	the	change	in	current	with	time	when	the	capacitor	is
discharged. 	

Figure	23.21
	

Deduce	the	resistance	R	of	the	resistor. [2]

Explain	why	the	current	decreases	as	the	capacitor	discharges. [2]

The	charge	on	the	capacitor	is	equal	to	the	area	under	the	graph.
Estimate	the	charge	on	the	capacitor	when	the	potential	difference
across	it	is	9.0	V. [2]

Calculate	the	capacitance	of	the	capacitor. [2]

	 [Total:	9]

The	spherical	dome	on	a	Van	de	Graaff	generator	has	a	diameter	of	40	cm	and
the	potential	at	its	surface	is	5.4	kV. 	

Calculate	the	charge	on	the	dome. [2]

Calculate	the	capacitance	of	the	dome. [2]

An	earthed	metal	plate	is	moved	slowly	towards	the	sphere	but	does	not	touch
it.	The	sphere	discharges	through	the	air	to	the	plate.	This	graph	shows	how
the	potential	at	the	surface	of	the	sphere	changes	during	the	discharge. 	
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Figure	23.22

	

Calculate	the	energy	that	is	dissipated	during	the	discharge. [5]

Suggest	why	the	discharge	ceases	while	there	is	still	some	charge	on	the
dome. [2]

	 [Total:	11]

Show	that	the	capacitance	C	of	an	isolated	conducting	sphere	of	radius	r	is
given	by	the	formula: 	

C	=	4πε0r [2]

This	diagram	shows	two	identical	conducting	brass	spheres	of	radius	10Cm
mounted	on	insulating	stands.	Sphere	A	has	a	charge	of	+5.0	×	10−8	C	and
sphere	B	is	uncharged. 	

Figure	23.23
	

Calculate	the	potential	at	the	surface	of	sphere	A. [2]

Calculate	the	energy	stored	on	sphere	A. [2]

Sphere	B	is	brought	up	to	sphere	A	and	is	touched	to	it	so	that	the	charge	is
shared	between	the	two	spheres,	before	being	taken	back	to	its	original
position. 	

Calculate	the	energy	stored	on	each	sphere. [3]

Suggest	why	there	is	a	change	in	the	total	energy	of	the	system. [1]

	 [Total:	10]

Define	the	term	capacitance	of	a	capacitor. [2]

This	is	a	circuit	that	can	be	used	to	measure	the	capacitance	of	a	capacitor. 	
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Figure	23.24

	

The	reed	switch	vibrates	back	and	forth	at	a	frequency	of	50	Hz.	Each	time	it
makes	contact	with	A,	the	capacitor	is	charged	by	the	battery	so	that	there	is	a
p.d.	of	12	V	across	it.	Each	time	it	makes	contact	with	B,	it	is	fully	discharged
through	the	resistor. 	

Calculate	the	charge	that	is	stored	on	the	capacitor	when	there	is	a
p.d.	of	12	V	across	it. [2]

Calculate	the	average	current	in	the	resistor. [2]

Calculate	the	average	power	dissipated	in	the	resistor. [3]

A	second	capacitor	of	the	same	value	is	connected	in	series	with	the	first
capacitor. 	

Discuss	the	effect	on	both	the	current	recorded	and	the	power	dissipated	in
the	resistor. [4]

	 [Total:	13]

Explain	what	is	meant	by	the	time	constant	of	a	circuit	containing
capacitance	and	resistance. [2]

A	circuit	contains	capacitors	of	capacitance	500	µF	and	2000	µF	in	series
with	each	other	and	in	series	with	a	resistance	of	2.5	kΩ. 	

Calculate	the	effective	capacitance	of	the	capacitors	in	series. [2]

Calculate	the	charge	on	the	capacitor	plates	when	there	is	a	potential
difference	of	50	V	across	the	plates. [2]

Calculate	the	time	taken	for	the	charge	on	the	plates	to	fall	to	5%	of
the	charge	when	there	was	a	p.d.	of	50	V	across	the	plates. [2]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	capacitance	of	both	capacitors
and	spherical	conductors

23.1 	 	 	

recall	and	use	the	formula: 23.1 	 	 	

recognise	that	the	unit	of	capacitance	is
the	farad	(F)

23.1 	 	 	

derive	and	use	the	formula:

Ctotal	=	C1	+	C2	+	C3	+	…

for	capacitors	in	parallel

23.3 	 	 	

recognise	that	the	time	constant	for
circuits	containing	capacitance	and
resistance	is:

τ	=	CR

23.7 	 	 	

derive	and	use	the	formula:	
	for

capacitors	in	series

23.4 	 	 	

determine	the	energy	stored	in	a
capacitor	from	the	potential–charge
graph

23.2 	 	 	

recall	and	use	the	formulae:	 23.2 	 	 	

understand	that	the	decay	of	charge	on
a	capacitor,	the	discharge	current	and
the	potential	difference	across	the
plates	are	exponential	decays

23.7 	 	 	

recognise	and	understand	that	the	rate
of	discharge	is	dependent	on	the	time
constant	of	the	circuit

23.7 	 	 	

recall	and	use	the	equation:

for	potential	difference,	discharge
current	and	charge	on	the	plates	of	a
capacitor.

23.7 	 	 	
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	Chapter	24

Magnetic	fields	and	electromagnetism

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
describe	a	magnetic	field	as	an	example	of	a	field	of	force	caused	by	moving	charges	or	permanent
magnets
use	field	lines	to	represent	a	field	and	sketch	various	patterns
determine	the	size	and	direction	of	the	force	on	a	current-carrying	conductor	in	a	magnetic	field
define	magnetic	flux	density	and	know	how	it	can	be	measured
explain	the	origin	of	the	forces	between	current-carrying	conductors	and	find	the	direction	of	these
forces.

BEFORE	YOU	START
Can	you	describe	how	to	plot	a	magnetic	field	using	a	compass	and	iron	filings?
What	effect	do	like	poles	and	unlike	poles	have	on	each	other?
Write	 down	 definitions	 for	 gravitational	 field	 and	 an	 electric	 field.	 Swap	 your	 definitions	 with	 a
partner.
With	your	partner,	discuss	how	charge	and	current	are	related.

MAGNETS	AND	CURRENTS
The	patient	shown	in	Figure	24.1	is	about	to	undergo	a	magnetic	resonance	imaging	(MRI)	scan.	The
patient	is	placed	in	a	magnetic	field	created	by	solenoid,	or	long	coil,	containing	many	turns	of	wire.	A
very	strong	magnetic	field	is	created	in	these	coils	by	a	high	current.	Most	of	these	coils	are	made	from
superconducting	materials	(materials	with	zero	resistivity).
Why	do	you	think	that	iron	objects,	such	as	scissors	and	gas	cylinders,	must	not	be	taken	into	the	same
room	as	this	machine?



What	advantages	are	there	in	using	a	superconducting	material	for	the	wires	in	the	coil?
In	this	chapter,	we	will	look	at	magnetic	forces	and	fields,	how	they	arise	and	how	they	interact.

Figure	24.1:	A	patient	about	to	have	an	MRI	scan.
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24.1	Producing	and	representing	magnetic
fields
A	magnetic	field	exists	wherever	there	is	force	on	a	magnetic	pole.	As	we	saw	with	electric	and
gravitational	fields,	a	magnetic	field	is	a	field	of	force.
You	can	make	a	magnetic	field	in	two	ways:	using	a	permanent	magnet,	or	using	the	movement	of	electric
charges,	usually	by	having	an	electric	current.	You	should	be	familiar	with	the	magnetic	field	patterns	of
bar	magnets	(Figure	24.2).	These	can	be	shown	using	iron	filings	or	plotting	compasses.

Figure	24.2:	Magnetic	field	patterns:	a	 for	a	bar	magnet;	b	 for	 two	attracting	bar	magnets	and	c	 for
two	repelling	bar	magnets.

We	represent	magnetic	field	patterns	by	drawing	magnetic	field	lines.
The	magnetic	field	lines	come	out	of	north	poles	and	go	into	south	poles.
The	 direction	 of	 a	 field	 line	 at	 any	 point	 in	 the	 field	 shows	 the	 direction	 of	 the	 force	 that	 a	 ‘free’
magnetic	north	pole	would	experience	at	that	point.
The	field	is	strongest	where	the	field	lines	are	closest	together.

An	electromagnet	makes	use	of	the	magnetic	field	created	by	an	electric	current	(Figure	24.3a).	A	coil	is
used	because	this	concentrates	the	magnetic	field.	One	end	becomes	a	north	pole	(field	lines	emerging),
while	the	other	end	is	the	south	pole.	Another	name	for	a	coil	like	this	is	a	solenoid.
The	field	pattern	for	the	solenoid	looks	very	similar	to	that	of	a	bar	magnet	(see	Figure	24.2a),	with	field
lines	emerging	from	a	north	pole	at	one	end	and	returning	to	a	south	pole	at	the	other.	The	strength	of
the	magnetic	field	of	a	solenoid	can	be	greatly	increased	by	adding	a	core	made	of	a	ferrous	(iron-rich)
material.	For	example,	an	iron	rod	placed	inside	the	solenoid	can	act	as	a	core;	when	the	current	flows
through	the	solenoid,	the	iron	core	itself	becomes	magnetised	and	this	produces	a	much	stronger	field.	A
flat	coil	(Figure	24.3b)	has	a	similar	field	to	that	of	a	solenoid.



Figure	24.3:	Magnetic	field	patterns	for	a	a	solenoid,	and	b	a	flat	circular	coil.

If	we	unravel	an	electromagnet,	we	get	a	weaker	field.	This,	too,	can	be	investigated	using	iron	filings	or
compasses.	The	magnetic	field	pattern	for	a	long	current-carrying	wire	is	very	different	from	that	of	a
solenoid.	The	magnetic	field	lines	shown	in	Figure	24.4	are	circular,	centred	on	the	long	current-carrying
wire.	Further	away	from	the	wire,	the	field	lines	are	drawn	further	apart,	representing	the	weaker	field	at
this	distance.	Reversing	the	current	reverses	the	direction	of	the	field.

Figure	24.4:	The	magnetic	 field	pattern	around	a	current-carrying	wire.	The	diagram	also	shows	 the
convention	used	to	indicate	the	direction	of	current.

All	magnetic	fields	are	created	by	moving	charges.	(In	the	case	of	a	wire,	the	moving	charges	are	free
electrons.)	This	is	even	true	for	a	permanent	bar	magnet.	In	a	permanent	magnet,	the	magnetic	field	is
produced	by	the	movement	of	electrons	within	the	atoms	of	the	magnet.	Each	electron	represents	a	tiny
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current	as	it	circulates	around	within	its	atom,	and	this	current	sets	up	a	magnetic	field.	In	a	ferrous
material,	such	as	iron,	the	weak	fields	due	to	all	the	electrons	combine	together	to	make	a	strong	field,
which	spreads	out	into	the	space	beyond	the	magnet.	In	non-magnetic	materials,	the	fields	produced	by
the	electrons	cancel	each	other	out.

Field	direction
The	idea	that	magnetic	field	lines	emerge	from	north	poles	and	go	into	south	poles	is	simply	a	convention.
Figure	24.5	shows	some	useful	rules	for	remembering	the	direction	of	the	magnetic	field	produced	by	a
current.

Figure	 24.5:	 Two	 rules	 for	 determining	 the	 direction	 of	 a	magnetic	 field,	a	 inside	 a	 solenoid	 and	b
around	a	current-carrying	wire.

The	right-hand	grip	rule	gives	the	direction	of	magnetic	field	lines	in	an	electromagnet.	Grip	the	coil	so
that	your	fingers	go	around	it	following	the	direction	of	the	current.	Your	thumb	now	points	in	the
direction	of	the	field	lines	inside	the	coil;	that	is,	it	points	towards	the	electromagnet’s	north	pole.
Another	way	to	identify	the	poles	of	an	electromagnet	is	to	look	at	it	end	on,	and	decide	which	way	round
the	current	is	flowing.	Figure	24.5a	show	how	you	can	remember	that	clockwise	is	a	south	pole,
anticlockwise	is	a	north	pole.
The	circular	field	around	a	wire	carrying	a	current	does	not	have	magnetic	poles.	To	find	the	direction	of
the	magnetic	field	you	need	to	use	another	rule,	the	right-hand	rule.	Grip	the	wire	with	your	right	hand,
pointing	your	thumb	in	the	direction	of	the	current.	Your	fingers	curl	around	in	the	direction	of	the
magnetic	field.
Note	that	these	two	rules	are	slightly	different.	The	right-hand	grip	rule	applies	to	a	solenoid;	the	fingers
are	curled	in	the	direction	of	the	current	and	the	thumb	then	gives	the	direction	of	the	field.	The	right-
hand	rule	applies	to	a	current	in	a	straight	wire;	the	thumb	is	pointed	in	the	direction	of	the	current	and
the	fingers	then	give	the	direction	of	the	field	lines.

Questions
Sketch	the	magnetic	field	pattern	around	a	long	straight	wire	carrying	an	electric	current.	Now,
alongside	this	first	sketch,	draw	a	second	sketch	to	show	the	field	pattern	if	the	current	flowing	is
doubled	and	its	direction	reversed.	How	does	the	pattern	show	that	the	field	is	stronger	nearer	the
wire?
Sketch	the	diagram	in	Figure	24.6,	and	label	the	north	and	south	poles	of	the	electromagnet.	Show	on
your	sketch	the	direction	of	the	magnetic	field	(as	shown	by	the	needle	of	a	plotting	compass)	at	each
of	the	positions	A,	B,	C	and	D.
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Figure	24.6:	A	current-carrying	solenoid.	For	Question	2.

State	which	of	the	pairs	of	electromagnets	shown	in	Figure	24.7	attract	one	another,	and	which	repel.

Figure	24.7:	Two	pairs	of	solenoids.	For	Question	3.
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24.2	Magnetic	force
A	current-carrying	wire	is	surrounded	by	a	magnetic	field.	This	magnetic	field	will	interact	with	an
external	magnetic	field,	giving	rise	to	a	force	on	the	conductor,	just	like	the	fields	of	two	interacting
magnets.	A	simple	situation	is	shown	in	Figure	24.8.

Figure	24.8:	The	copper	rod	is	free	to	roll	along	the	two	horizontal	aluminium	‘rails’.

The	magnets	create	a	fairly	uniform	magnetic	field.	As	soon	as	the	current	in	the	copper	rod	is	switched
on,	the	rod	starts	to	roll,	showing	that	a	force	is	acting	on	it.	We	use	Fleming’s	left-hand	(motor)	rule
to	predict	the	direction	of	the	force	on	the	current-carrying	conductor,	as	explained	in	Practical	Activity
24.1.

PRACTICAL	ACTIVITY	24.1

Using	Fleming’s	left-hand	rule
Look	at	Figure	24.9.	There	are	three	things	here,	all	of	which	are	mutually	at	right	angles	to	each	other
–	the	magnetic	field,	the	current	in	the	rod	and	the	force	on	the	rod.	These	can	be	represented	by
holding	the	thumb	and	the	first	two	fingers	of	your	left	hand	so	that	they	are	mutually	at	right	angles
(Figure	24.9).	Your	thumb	and	fingers	then	represent:

thuMb	–	direction	of	Motion
First	finger	–	direction	of	external	magnetic	Field

Figure	24.9:	Fleming’s	left-hand	(motor)	rule.
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seCond	finger	–	direction	of	conventional	Current.
If	the	thumb	and	first	two	fingers	of	the	left	hand	are	held	at	right	angles	to	one	another,	with	the	First
finger	pointing	in	the	direction	of	the	Field	and	seCond	finger	in	the	direction	of	the	Current,	then	the
thuMb	points	in	the	direction	of	the	Motion	or	force.
You	should	practise	using	your	left	hand	to	check	that	the	rule	correctly	predicts	these	directions.

Explaining	the	magnetic	force
We	can	explain	this	force	by	thinking	about	the	magnetic	fields	of	the	magnets	and	the	current-carrying
conductor.	These	fields	combine	or	interact	to	produce	the	force	on	the	rod.
Figure	24.10	shows:

the	external	magnetic	field	of	the	magnets
the	magnetic	field	of	the	current-carrying	conductor
the	combined	fields	of	the	current-carrying	conductor	and	the	magnets.

Figure	24.10:	In	the	field	of	a	permanent	magnet,	a	current-carrying	conductor	experiences	a	force	in
accordance	with	Fleming’s	left-hand	rule.	The	fields	due	to	the	permanent	magnet	and	the	current	(left
and	centre)	combine	as	shown	on	the	right.

If	you	think	of	the	magnetic	field	lines	as	elastic	bands	then	you	can	see	why	the	wire	is	pushed	out	in	the
direction	shown.
The	production	of	this	force	is	known	as	the	motor	effect,	because	this	force	is	used	in	electric	motors.
In	a	simple	motor,	a	current	in	a	coil	produces	a	magnetic	field;	this	field	interacts	with	a	second	field
produced	by	a	permanent	magnet.

Question
Figure	24.11	shows	three	examples	of	current-carrying	conductors	in	magnetic	fields.	For	each
example,	decide	whether	there	will	be	a	magnetic	force	on	the	conductor.	If	there	is	a	force,	in	what
direction	will	it	act?	Note	the	cross	in	the	circle	shows	the	current	is	into	the	plane	of	the	paper,	as	in
Figure	24.4.

Figure	24.11:	Three	conductors	in	a	magnetic	field.

	



	



5

6

7

a

b

24.3	Magnetic	flux	density
In	electric	or	gravitational	field	diagrams,	the	strength	of	the	field	is	indicated	by	the	separation	between
the	field	lines.	The	field	is	strongest	where	the	field	lines	are	closest	together.	The	same	is	true	for
magnetic	fields.	The	strength	of	a	magnetic	field	is	known	as	its	magnetic	flux	density,	with	symbol	B.
Sometimes	it	is	known	as	the	magnetic	field	strength.	(You	can	imagine	this	quantity	to	represent	the
number	of	magnetic	field	lines	passing	through	a	region	per	unit	area.)	The	magnetic	flux	density	is
greater	close	to	the	pole	of	a	bar	magnet,	and	gets	smaller	as	you	move	away	from	it.
We	define	gravitational	field	strength	g	at	a	point	as	the	force	per	unit	mass:

Electric	field	strength	E	is	defined	as	the	force	per	unit	positive	charge:

In	a	similar	way,	magnetic	flux	density	is	defined	in	terms	of	the	magnetic	force	experienced	by	a	current-
carrying	conductor	placed	at	right	angles	to	a	magnetic	field.	For	a	uniform	magnetic	field,	the	flux
density	B	is	defined	by	the	equation:

where	F	is	the	force	experienced	by	a	current-carrying	conductor,	I	is	the	current	in	the	conductor	and	L
is	the	length	of	the	conductor	in	the	uniform	magnetic	field	of	flux	density	B.	The	direction	of	the	force	F
is	given	by	Fleming’s	left-hand	rule.
The	magnetic	flux	density	at	a	point	in	space	is	the	force	experienced	per	unit	length	by	a	long	straight
conductor	carrying	unit	current	and	placed	at	right	angles	to	the	field	at	that	point.

The	unit	for	magnetic	flux	density	is	the	tesla,	T.	It	follows	from	the	equation	for	B	that	1	T	=	1	N	A−1	m
−1.
The	force	on	the	conductor	is	given	by	the	equation:

F	=	BIL

Note	that	you	can	only	use	this	equation	when	the	field	is	at	right	angles	to	the	current.

KEY	EQUATION

F	=	BIL

Force	on	the	conductor	(when	the	conductor	is	at	right	angles	to	the
magnetic	field).

Questions
A	current	of	0.20	A	flows	in	a	wire	of	length	2.50	m	placed	at	right	angles	to	a	magnetic	field	of	flux
density	0.060	T.	Calculate	the	force	on	the	wire.
A	20	cm	length	of	wire	is	placed	at	right	angles	to	a	magnetic	field.	When	a	current	of	1.5	A	flows	in
the	wire,	a	force	of	0.015	N	acts	on	it.	Determine	the	flux	density	of	the	field.
A	wire	of	length	50	cm	carrying	a	current	lies	at	right	angles	to	a	magnetic	field	of	flux	density	5.0
mT.

If	1018	electrons	pass	a	point	in	the	wire	each	second,	what	current	is	flowing?	(electron	charge	e
=	1.60	×	10−19	C.)
What	force	acts	on	the	wire?

	
	



24.4	Measuring	magnetic	flux	density
Practical	Activity	24.2	looks	at	two	practical	methods	for	measuring	magnetic	flux	density.

PRACTICAL	ACTIVITY	24.2	MEASURING	MAGNETIC	FLUX	DENSITY

Measuring	B	with	a	Hall	probe
The	simplest	device	for	measuring	magnetic	flux	density	B	is	a	Hall	probe	(Figure	24.12).	When	the
probe	is	held	so	that	the	field	lines	are	passing	at	right	angles	through	the	flat	face	of	the	probe,	the
meter	gives	a	reading	of	the	value	of	B.	Some	instruments	are	calibrated	so	that	they	give	readings	in
microteslas	(µT)	or	milliteslas	(mT).	Others	are	not	calibrated,	so	you	must	either	calibrate	them	or	use
them	to	obtain	relative	measurements	of	B.

Figure	24.12:	Using	a	Hall	probe	to	measure	the	flux	density	between	two	magnets.

A	Hall	probe	must	be	held	so	that	the	field	lines	are	passing	directly	through	it,	at	right	angles	to	the
flat	surface	of	the	probe	(Figure	24.13).	If	the	probe	is	not	held	in	the	correct	orientation,	the	reading
on	the	meter	will	be	reduced.

Figure	24.13:	Magnetic	flux	lines	must	pass	through	the	probe	at	90°	to	the	surface.

A	Hall	probe	is	sensitive	enough	to	measure	the	Earth’s	magnetic	flux	density.	The	probe	is	first	held	so
that	the	Earth’s	field	lines	are	passing	directly	through	it,	as	shown	in	Figure	24.13.	In	this	orientation,
the	reading	on	the	voltmeter	will	be	a	maximum.	The	probe	is	then	rotated	through	180°	so	that	the
magnetic	field	lines	are	passing	through	it	in	the	opposite	direction.	The	change	in	the	reading	of	the
meter	is	twice	the	Earth’s	magnetic	flux	density.	There	is	more	about	how	the	Hall	probe	works	in
Chapter	25.



Measuring	B	with	a	current	balance
Figure	24.14	shows	a	simple	arrangement	that	can	be	used	to	determine	the	flux	density	between	two
magnets.	The	magnetic	field	between	these	magnets	is	(roughly)	uniform.	The	length	L	of	the	current-
carrying	wire	in	the	uniform	magnetic	field	can	be	measured	using	a	ruler.

Figure	24.14:	An	arrangement	to	determine	magnetic	flux	density	in	the	laboratory.

When	there	is	no	current	in	the	wire,	the	magnet	arrangement	is	placed	on	the	top	pan	and	the	balance
is	zeroed.	Now,	when	a	current	I	flows	in	the	wire,	its	value	is	shown	by	the	ammeter.	The	wire
experiences	an	upward	force	and,	according	to	Newton’s	third	law	of	motion,	there	is	an	equal	and
opposite	force	on	the	magnets.	The	magnets	are	pushed	downwards	and	a	reading	appears	on	the	scale
of	the	balance.	The	force	F	is	given	by	mg,	where	m	is	the	mass	indicated	on	the	balance	in	kilograms
and	g	is	the	acceleration	of	free	fall	(9.81	m	s−2).
Knowing	F,	I	and	L,	the	magnetic	flux	density	B	between	the	magnets	can	be	determined	using	the
equation:

You	can	also	use	the	arrangement	in	Figure	24.14	to	show	that	the	force	is	directly	proportional	to	the
current.
A	system	like	this	in	effect	‘weighs’	the	force	on	the	current-carrying	conductor,	and	is	an	example	of	a
current	balance.	Another	version	of	a	current	balance	is	shown	in	Figure	24.15.	This	consists	of	a	wire
frame	that	is	balanced	on	two	pivots.	When	a	current	flows	through	the	frame,	the	magnetic	field
pushes	the	frame	downwards.	By	adding	small	weights	to	the	other	side	of	the	frame,	you	can	restore	it
to	a	balanced	position.
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Figure	24.15:	A	simple	laboratory	current	balance.

Questions
In	the	examples	shown	in	the	diagrams	in	Figure	24.16,	which	current	balances	will	tilt?	Will	the	side
carrying	the	current	tilt	upwards	or	downwards?

Figure	24.16:	Four	current	balances	–	will	they	tip?	For	Question	8.

In	the	arrangement	shown	in	Figure	24.17,	the	balance	reading	changes	from	102.48	g	to	104.48	g
when	the	current	is	switched	on.	Explain	why	this	happens	and	give	the	direction	and	the	size	of	the
force	on	the	wire	when	the	current	is	on.	What	is	the	direction	of	the	current	in	the	wire?



Figure	24.17:	Using	an	electronic	balance.	For	Question	9.
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24.5	Currents	crossing	fields
At	right	angles
We	explained	the	force	on	a	current-carrying	conductor	in	a	field	in	terms	of	the	interaction	of	the	two
magnetic	fields:	the	field	due	to	the	current	and	the	external	field.	Here	is	another,	more	abstract,	way	of
thinking	about	this.
Whenever	an	electric	current	cuts	across	magnetic	field	lines	(Figure	24.18),	a	force	is	exerted	on	the
current-carrying	conductor.	This	helps	us	to	remember	that	a	conductor	experiences	no	force	when	the
current	is	parallel	to	the	field.

Figure	24.18:	The	force	on	a	current-carrying	conductor	crossing	a	magnetic	field.

This	is	a	useful	idea,	because	it	saves	us	thinking	about	the	field	due	to	the	current.	In	Figure	24.18,	we
can	see	that	there	is	only	a	force	when	the	current	cuts	across	the	magnetic	field	lines.
This	force	is	very	important	–	it	is	the	basis	of	electric	motors.	Worked	example	1	shows	why	a	current-
carrying	coil	placed	in	a	magnetic	field	rotates.

WORKED	EXAMPLE

An	electric	motor	has	a	rectangular	loop	of	wire	with	the	dimensions	shown	in	Figure	24.19.	The
loop	is	in	a	magnetic	field	of	flux	density	0.10	T.	The	current	in	the	loop	is	2.0	A.	Calculate	the
torque	(moment)	that	acts	on	the	loop	in	the	position	shown.

Figure	24.19:	A	simple	electric	motor	–	a	current-carrying	loop	in	a	magnetic	field.

The	quantities	we	know	are:
B	=	0.10	T,					I	=	2.0	A					and	L	=	0.05	m
Now	we	can	calculate	the	force	on	one	side	of	the	loop	using	the	equation
F	=	BIL:

The	two	forces	on	opposite	sides	of	the	loop	are	equal	and	anti-parallel.	In	other	words,
they	form	a	couple.	From	Chapter	4,	you	should	recall	that	the	torque	(moment)	of	a	couple
is	equal	to	the	magnitude	of	one	of	the	forces	times	the	perpendicular	distance	between
them.	The	two	forces	are	separated	by	0.08	m,	so:
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Step	1

Questions
A	wire	of	length	50	cm	carrying	a	current	of	2.4	A	lies	at	right	angles	to	a	magnetic	field	of	flux
density	5.0	mT.	Calculate	the	force	on	the	wire.
The	coil	of	an	electric	motor	is	made	up	of	200	turns	of	wire	carrying	a	current	of	1.0	A.	The	coil	is
square,	with	sides	of	length	20	cm,	and	it	is	placed	in	a	magnetic	field	of	flux	density	0.05	T.

Determine	the	maximum	force	exerted	on	the	side	of	the	coil.
In	what	position	must	the	coil	be	for	this	force	to	have	its	greatest	turning	effect?
List	four	ways	in	which	the	motor	could	be	made	more	‘powerful’	–	that	is,	have	greater	torque.

At	an	angle	other	than	90°
Now	we	must	consider	the	situation	where	the	current-carrying	conductor	cuts	across	a	magnetic	field	at
an	angle	other	than	a	right	angle.	In	Figure	24.20,	the	force	gets	weaker	as	the	conductor	is	moved	round
from	OA	to	OB,	to	OC	and	finally	to	OD.	In	the	position	OD,	there	is	no	force	on	the	conductor.	To
calculate	the	force,	we	need	to	find	the	component	of	the	magnetic	flux	density	B	at	right	angles	to	the
current.	This	component	is	B	sin	θ,	where	θ	is	the	angle	between	the	magnetic	field	and	the	current	or	the
conductor.	Substituting	this	into	the	equation	F	=	BIL	gives:

KEY	EQUATION

Force	on	a	current-carrying	conductor.

or	simply:

Now	look	at	Worked	example	2.

Figure	 24.20:	 The	 force	 on	 a	 current-carrying	 conductor	 depends	 on	 the	 angle	 it	 makes	 with	 the
magnetic	field	lines.

WORKED	EXAMPLE

A	conductor	OC	(see	Figure	24.20)	of	length	0.20	m	lies	at	an	angle	θ	of	25°	to	a	magnetic	field	of
flux	density	0.050	T.	Calculate	the	force	on	the	conductor	when	it	carries	a	current	of	400	mA.

Write	down	what	you	know,	and	what	you	want	to	know:



Step	2

Step	3
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Write	down	the	equation,	substitute	values	and	solve:

Give	the	direction	of	the	force.	The	force	acts	at	90°	to	the	field	and	the	current,	i.e.
perpendicular	to	the	page.	The	left-hand	rule	shows	that	it	acts	downwards	into	the	plane	of
the	paper.

Note	that	the	component	of	B	parallel	to	the	current	is	B	cos	θ,	but	this	does	not	contribute	to	the
force;	there	is	no	force	when	the	field	and	current	are	parallel.	The	force	F	is	at	right	angles	to	both
the	current	and	the	field.

Question
What	force	is	exerted	on	each	of	the	currents	shown	in	Figure	24.21,	and	in	what	direction	does	each
force	act?

Figure	24.21:	Three	currents	in	a	magnetic	field.	For	Question	12.

	
	



24.6	Forces	between	currents
Any	electric	current	has	a	magnetic	field	around	it.	If	we	have	two	currents,	each	will	have	its	own
magnetic	field	and	we	might	expect	these	to	interact.

Explaining	the	forces
There	are	two	ways	to	understand	the	origin	of	the	forces	between	current-carrying	conductors.	In	the
first,	we	draw	the	magnetic	fields	around	two	current-carrying	conductors	(Figure	24.22a).	Figure	24.22a
shows	two	unlike	(anti-parallel)	currents,	one	flowing	into	the	page,	the	other	flowing	out	of	the	page.
Their	magnetic	fields	circle	round,	and	in	the	space	between	the	wires	there	is	an	extra-strong	field.	We
imagine	the	field	lines	squashed	together,	and	the	result	is	that	they	push	the	wires	apart.	The	diagram
shows	the	resultant	field,	and	the	repulsive	forces	on	the	two	wires.
Figure	24.22b	shows	the	same	idea,	but	for	two	like	(parallel)	currents.	In	the	space	between	the	two
wires,	the	magnetic	fields	cancel	out.	The	wires	are	pushed	together.

Figure	24.22:	The	forces	between	current-carrying	wires.

The	other	way	to	explain	the	forces	between	the	currents	is	to	use	the	idea	of	the	motor	effect.	Figure
24.23	again	shows	two	like	currents,	I1	and	I2,	but	this	time	we	only	consider	the	magnetic	field	B	of	one
of	them,	I1.	The	second	current	I2	is	flowing	across	the	magnetic	field	of	I1;	from	the	diagram,	you	can	see
that	B	is	at	right	angles	to	I2.	Hence,	there	will	be	a	force	on	I2	(the	BIL	force),	and	we	can	find	its
direction	using	Fleming’s	left-hand	rule.	The	arrow	shows	the	direction	of	the	force,	which	is	towards	I1.
Similarly,	there	will	be	a	BIL	force	on	I1,	directed	towards	I2.

These	two	forces	are	equal	and	opposite	to	one	another.	They	are	an	example	of	an	action	and	reaction
pair,	as	described	by	Newton’s	third	law	of	motion.
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Figure	24.23:	Explaining	the	force	between	two	currents.

PRACTICAL	ACTIVITY	24.3

Observing	the	forces	between	currents
You	can	observe	the	attraction	and	repulsion	between	two	parallel	currents	using	the	equipment	shown
in	Figure	24.24.
Two	long	thin	strips	of	aluminium	foil	are	mounted	so	that	they	are	parallel	and	a	small	distance	apart.
By	connecting	them	in	series	with	a	power	supply,	you	can	make	a	current	occur	in	both	of	them.	By
changing	the	connections,	you	can	make	the	current	first	in	the	same	direction	through	both	strips
(parallel	currents)	and	then	in	opposite	directions	(anti-parallel	currents).

Figure	24.24:	Current	in	two	aluminium	strips	–	their	magnetic	fields	interact.

If	you	try	this	out,	you	will	observe	the	strips	of	foil	either	bending	towards	each	other	or	away	from
each	other.	(Foil	is	used	because	it	is	much	more	flexible	than	wire.)
You	should	find	that	parallel	currents	attract	one	another,	while	anti-parallel	currents	repel.	This	may
seem	surprising,	since	we	are	used	to	opposite	charges	attracting,	and	opposite	magnetic	poles
attracting.	Now	we	have	found	that	opposite	currents	repel	one	another.

Question
Two	flat	circular	coils	of	wire	are	set	up	side	by	side,	as	shown	in	Figure	24.25.	They	are	connected	in
series	so	that	the	same	current	flows	around	each,	and	in	the	same	direction.	Will	the	coils	attract	or
repel	one	another?	Explain	your	answer,	first	by	describing	the	coils	as	electromagnets,	and	second
by	considering	the	forces	between	parallel	currents.	What	will	happen	if	the	current	is	reversed	in



both	coils?

Figure	24.25:	Two	coils	carrying	the	same	current.	For	Question	13.

	
	



24.7	Relating	SI	units
In	this	chapter,	we	have	seen	how	one	SI	unit,	the	tesla,	is	defined	in	terms	of	three	others,	the	amp,	the
metre	and	the	newton.	It	is	an	essential	feature	of	the	SI	system	that	all	units	are	carefully	defined;	in
particular,	derived	units	such	as	the	newton	and	tesla	must	be	defined	in	terms	of	a	set	of	more
fundamental	units	called	base	units.
We	met	the	idea	of	base	units	in	Chapter	3.	The	SI	system	of	units	has	seven	base	units,	of	which	you
have	met	six.	These	are:

m					kg					s					A					K					mol

(The	seventh	is	the	candela,	cd,	the	unit	of	luminous	intensity.)	Each	base	unit	is	carefully	defined;	for
example,	the	ampere	can	be	defined	in	terms	of	the	magnetic	force	between	two	parallel	wires	carrying	a
current.	The	exact	definition	is	not	required,	but	you	should	know	that	the	ampere	is	itself	a	base	unit.
Other	units	are	known	as	derived	units,	and	can	be	deduced	from	the	base	units.	For	example,	as	shown
in	Chapter	3,	the	newton	is	given	by:

1	N	=	1	kg	m	s−2

Similarly,	in	this	chapter,	you	have	learned	about	the	tesla,	the	unit	of	magnetic	flux	density,	given	by:

1	T	=	1	N	A−1	m−1					or					1	T	=	1	kg	A−1	s−2

If	you	learn	formulae	relating	physical	quantities,	you	can	replace	the	quantities	by	their	units	to	see	how
the	units	are	defined.	For	example:

force	=	mass	×	acceleration					F	=	ma					N	=	kg	m	s−2

You	should	be	able	to	picture	how	the	different	derived	units	form	a	logical	sequence,	as	shown	in	Table
24.1.

Base	units Derived	units Because

m,	kg,	s

newton	N	=	kg	m	s−2 F	=	ma

joule	J	=	kg	m2	s−2 W	=	Fd

watt	W	=	kg	m2	s−3

m,	kg,	s,	A

coulomb	C	=	A	s Q	=	It

volt	V	=	kg	m2	A−1	s−3

tesla	T	=	kg	A−1	s−2

Table	24.1	How	derived	units	relate	to	base	units	in	the	SI	system.
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24.8	Comparing	forces	in	magnetic,	electric
and	gravitational	fields
We	have	now	considered	three	types	of	field:	electric	(Chapter	21),	gravitational	(Chapter	17)	and
magnetic	(this	chapter).	What	are	the	similarities	and	differences	between	these	three	types	of	field?
Modern	physics	sees	magnetic	fields	and	electric	fields	as	two	parts	of	a	combined	whole,	an
electromagnetic	field.	Gravitational	fields,	however,	are	different	in	nature	to	electromagnetic	fields.
Gravitational	and	electric	fields	are	defined	in	terms	of	placing	a	test	mass	or	a	test	charge	at	a	point	to
measure	the	field	strength.	Similarly,	a	test	wire	carrying	a	current	can	be	placed	at	a	point	to	measure
the	magnetic	field	strength.	Therefore,	all	fields	are	defined	in	terms	of	the	force	on	a	unit	mass,	charge
or	current.
Other	features	that	all	fields	share	include:

action	at	a	distance,	between	masses,	between	charges	or	between	wires	carrying	currents
decreasing	strength	with	distance	from	the	source	of	the	field
representation	by	field	lines,	the	direction	of	which	show	the	direction	of	the	force	at	points	along	the
line;	the	density	of	field	lines	indicates	the	relative	strength	of	the	field.

How	do	the	forces	arising	from	these	fields	compare?	The	answer	depends	on	the	exact	situation.	Using
ideas	that	you	have	studied	earlier,	you	should	be	able	to	confirm	each	of	the	following	values:

The	force	between	two	1	kg	masses	1	m	apart	=	6.7	×	10−11	N

The	force	between	two	charges	of	1	C	placed	1	m	apart	=	9.0	×	109	N

The	force	per	metre	on	two	wires	carrying	a	current	of	1	A	placed	1	m	apart	=	2.0	×	10−7	N
This	might	suggest	that	the	electric	force	is	strongest	and	gravity	is	the	weakest.	Certainly,	if	you
consider	an	electron	in	a	hydrogen	atom	moving	in	a	circular	orbit	around	a	proton,	the	electrical	force	is
1039	times	the	gravitational	force.	So	for	an	electron,	or	any	other	small	charged	object,	electric	forces
are	the	most	significant.	However,	over	larger	distances	and	with	objects	of	large	mass,	the	gravitational
field	becomes	the	most	significant.	For	example,	the	motions	of	planets	in	the	Solar	System	are	affected
by	the	gravitational	field	but	the	electromagnetic	field	is	comparatively	insignificant.

REFLECTION
Without	looking	at	your	textbook,	make	a	list	of	the	definitions	for	measuring	the	strength	of	a
magnetic,	an	electric	and	a	gravitational	field.	Compare	your	definitions	with	other	students	in	your
class.
Write	a	list	of	situations	where	magnetic	fields	are	used	in	modern	life.
How	will	you	use	what	you	have	learned	in	the	future?

	
	



SUMMARY

Moving	charges	produce	a	magnetic	field;	this	is	electromagnetism.

A	current-carrying	conductor	has	concentric	magnetic	field	lines.	The	magnetic	field	pattern	for	a
solenoid	or	flat	coil	resembles	that	of	a	bar	magnet.

The	separation	between	magnetic	field	lines	is	an	indication	of	the	field’s	strength.

Magnetic	flux	density	B	is	defined	by	the	equation:

where	F	is	the	force	experienced	by	a	current-carrying	conductor,	I	is	the	current	in	the	conductor	and
L	is	the	length	of	the	conductor	in	the	uniform	magnetic	field.

The	unit	of	magnetic	flux	density	is	the	tesla	(T).	1	T	=	1	N	A−1	m−1.

The	magnetic	force	on	a	current-carrying	conductor	is	given	by:

The	force	on	a	current-carrying	conductor	can	be	used	to	measure	the	flux	density	of	a	magnetic	field.

A	force	acts	between	current-carrying	conductors	due	to	the	interaction	of	their	magnetic	fields.

	
	



1

A

B

C
D

2

A
B
C
D

3
a

b

4

a
b
c

5

a
b

EXAM-STYLE	QUESTIONS

A	wire	carrying	a	current	is	placed	at	right	angles	to	a	uniform	magnetic	field
of	magnetic	flux	density	B.	When	the	current	in	the	wire	is	I,	the	magnetic
force	that	acts	on	the	wire	is	F. 	

What	is	the	force	on	the	wire,	placed	in	the	same	orientation,	when	the
magnetic	field	strength	is	2B	and	the	current	is	 ? [1]

	

	

	

	

There	is	an	electric	current	in	a	wire	of	mass	per	unit	length	40	g	m−1.	The
wire	is	placed	in	a	magnetic	field	of	strength	0.50	T	and	the	current	is
gradually	increased	until	the	wire	just	lifts	off	the	ground. 	

What	is	the	value	of	the	current	when	this	happens? [1]

0.080	A 	

0.20	A 	

0.78	A 	

780	A 	

A	current-carrying	wire	is	placed	in	a	uniform	magnetic	field. 	

Describe	how	the	wire	should	be	placed	to	experience	the	maximum	force
due	to	the	magnetic	field. [1]

Describe	how	the	wire	should	be	placed	to	experience	no	force	due	to	the
magnetic	field. [1]

	 [Total:	2]

A	current-carrying	conductor	placed	at	right	angles	to	a	uniform	magnetic	field
experiences	a	force	of	4.70	×	10−3	N.	Determine	the	force	on	the	wire	when,
separately: 	

the	current	in	the	wire	is	increased	by	a	factor	of	3.0 [2]

the	magnetic	flux	density	is	halved [2]

the	length	of	the	wire	in	the	magnetic	field	is	reduced	to	40%	of	its	original
length. [2]

	 [Total:	6]

A	copper	wire	carrying	a	current	of	1.2	A	has	3.0	cm	of	its	length	placed	in	a
uniform	magnetic	field,	as	shown. 	

Figure	24.26
	

The	force	experienced	by	the	wire	is	3.8	×	10−3	N	when	the	angle	between	the
wire	and	the	magnetic	field	is	50°. 	

Calculate	the	magnetic	flux	density. [3]

State	the	direction	of	the	force	experienced	by	the	wire. [1]
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	 [Total:	4]

This	diagram	shows	a	view	from	above	of	two	long,	parallel	strips	of	aluminium
foil,	A	and	B,	carrying	a	current	downwards	into	the	paper. 	

Figure	24.27
	

On	a	copy	of	the	diagram,	draw	the	magnetic	field	around	and	between	the
two	strips. [2]

State	and	explain	the	direction	of	the	forces	caused	by	the	current	in	the
strips. [4]

	 [Total:	6]

This	diagram	shows	a	wire	XY	that	carries	a	constant	direct	current.	Plotting
compass	R,	placed	alongside	the	wire,	points	due	north.	Compass	P	is	placed
below	the	wire	and	compass	Q	is	placed	above	the	wire. 	

Figure	24.28
	

State	the	direction	of	the	current	in	the	wire. [1]

State	in	which	direction	compass	P	points. [1]

State	in	which	direction	compass	Q	points	if	the	current	in	the	wire	is
reversed. [1]

	 [Total:	3]

This	diagram	shows	a	rectangular	metal	frame	PQRS	placed	in	a	uniform
magnetic	field. 	
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Figure	24.29

	

The	magnetic	flux	density	is	4.5	×	10−3	T	and	the	current	in	the	metal	frame	is
2.5	A. 	

Calculate	the	force	experienced	by	side	PQ	of	the	frame. [3]

Suggest	why	side	QR	does	not	experience	a	force. [1]

Describe	the	motion	of	the	frame	immediately	after	the	current	in	the
frame	is	switched	on. [2]

Calculate	the	maximum	torque	(moment)	exerted	about	an	axis	parallel	to
side	PQ. [2]

	 [Total:	8]

This	diagram	shows	a	current-carrying	wire	frame	placed	between	a	pair	of
Magnadur	magnets	on	a	yoke.	A	pointer	is	attached	to	the	wire. 	

Figure	24.30
	

A	current	of	8.5	A	in	the	wire	causes	the	pointer	to	move	vertically	upwards.	A
small	paper	tape	is	attached	to	the	pointer	and	the	current	is	adjusted	until	the
weight	of	the	paper	tape	causes	the	pointer	to	return	to	its	initial	position	(with
no	current	and	no	paper	tape).	The	mass	of	the	paper	tape	is	60	mg.	The
section	of	the	wire	between	the	poles	of	the	magnetic	has	a	length	of	5.2	cm. 	

State	the	direction	of	the	magnetic	field. [1]

Calculate	the	force	on	the	wire	due	to	the	magnetic	field	when	it	carries	a
current	of	8.5	A. [2]

Calculate	the	magnetic	flux	density	of	the	magnetic	field	between	the	poles
of	the	magnet. [3]

Describe	what	happens	to	the	frame	if	low-frequency	alternating	current
passes	through	the	wire. [1]

	 [Total:	7]
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The	size	of	the	force	acting	on	a	wire	carrying	a	current	in	a	magnetic	field
is	proportional	to	the	size	of	the	current	in	the	wire.	With	the	aid	of	a
diagram,	describe	how	this	can	be	demonstrated	in	a	school	laboratory. [5]

At	a	certain	point	on	the	Earth’s	surface,	the	horizontal	component	of	the
Earth’s	magnetic	field	is	1.6	×	10−5	T.	A	piece	of	wire	3.0	m	long	and
weight	0.020	N	lies	in	an	east–west	direction	on	a	laboratory	bench.	When
a	large	current	flows	in	the	wire,	the	wire	just	lifts	off	the	surface	of	the
bench. 	

State	the	direction	of	the	current	in	the	wire. [1]

Calculate	the	minimum	current	needed	to	lift	the	wire	from	the	bench. [3]

	 [Total:	9]

This	diagram	shows	a	fixed	horizontal	wire	passing	centrally	between	the	poles
of	a	permanent	magnet	that	is	placed	on	a	top-pan	balance. 	

Figure	24.31
	

With	no	current	flowing,	the	balance	records	a	mass	of	102.45	g.	When	a
current	of	4.0	A	flows	in	the	wire,	the	balance	records	a	mass	of	101.06	g. 	

Explain	why	the	reading	on	the	top-pan	balance	decreases	when	the
current	is	switched	on. [2]

State	and	explain	the	direction	of	the	current	flow	in	the	wire. [2]

The	length	of	the	wire	in	the	magnetic	field	is	5.0	cm.	Calculate	the
average	magnetic	flux	density	between	the	poles	of	the	magnet. [2]

Sketch	a	graph,	with	balance	reading	on	the	vertical	axis	and	current	on
the	horizontal	axis,	to	show	how	the	balance	reading	changes	when	the
current	is	altered. [2]

	 [Total:	8]

Define	magnetic	flux	density	and	explain	the	similarity	with	the
definition	of	electric	field	strength. [3]

Two	thin	horizontal	wires	are	placed	in	a	north–south	direction.	One	wire	is
placed	on	a	bench	and	the	other	wire	is	held	3.0	cm	directly	above	the	first
wire. 	

When	equal	currents	flow	in	the	two	wires,	the	force	exerted	on	the
bench	by	the	lower	wire	decreases.	Explain	why	this	is	so.	What	can
you	say	about	the	directions	of	the	currents	in	the	two	wires? [4]

The	magnetic	flux	density	B	at	a	distance	x	from	a	long	straight	wire
carrying	a	current	I	is	given	by	the	expression	 ,
where	x	is	in	metres	and	I	is	in	amps.	When	the	current	in	each	wire	is
4.0	A,	calculate	the	force	per	unit	length	on	one	wire	due	to	the	current
in	the	other. [3]

	 [Total:	10]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	that	a	magnetic	field	is	a
field	of	force	produced	by	moving
charges	or	permanent	magnets	and
represented	by	field	lines

24.1 	 	 	

sketch	magnetic	field	patterns	due	to
the	currents	in	a	long	straight	wire,	a
flat	circular	coil	and	a	long	solenoid

24.1 	 	 	

understand	that	the	magnetic	field	due
to	the	current	in	a	solenoid	is	increased
by	a	ferrous	core

24.1 	 	 	

understand	forces	on	a	current-carrying
conductor	in	a	magnetic	field

24.3 	 	 	

recall	and	use	the	equation	
,	and	use	Fleming’s	left-

hand	rule	to	find	directions

24.2,	24.5 	 	 	

define	magnetic	flux	density 24.4 	 	 	

explain	the	origin	of	the	forces	between
current-carrying	conductors	and
determine	the	direction	of	the	forces.

24.6 	 	 	
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	Chapter	25

Motion	of	charged	particles

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
determine	the	direction	of	the	force	on	a	charge	moving	in	a	magnetic	field
recall	and	use	F	=	BQv	sinθ
describe	the	motion	of	a	charged	particle	moving	in	a	uniform	magnetic	field	perpendicular	to	the
direction	of	motion	of	the	particle
explain	how	electric	and	magnetic	fields	can	be	used	in	velocity	selection
understand	the	origin	of	the	Hall	voltage	and	derive	and	use	the	expression	

understand	the	use	of	a	Hall	probe	to	measure	magnetic	flux	density.

BEFORE	YOU	START
A	 current-carrying	 conductor	 in	 a	 uniform	magnetic	 field	 experiences	 a	magnetic	 force	F.	Write
down	the	factors	that	affect	this	force	F	and	how	you	can	determine	the	direction	of	the	force.
You	can	get	a	uniform	electric	field	between	two	oppositely	charged	parallel	plates.	Can	you	recall
and	write	down	the	definition	for	electric	field	strength	E?

MOVING	PARTICLES
The	world	of	atomic	physics	is	populated	by	a	great	variety	of	particles	–	electrons,	protons,	neutrons,
positrons,	and	many	more.	Many	of	these	particles	are	electrically	charged,	and	so	their	motion	is
influenced	by	electric	and	magnetic	fields.	Indeed,	we	use	this	fact	to	help	us	to	distinguish	one	particle
from	another.	Figure	25.1	shows	the	tracks	of	particles	in	a	detector	called	a	bubble	chamber.	A	photon
(no	track)	has	entered	from	the	top	and	collided	with	a	proton;	the	resulting	spray	of	nine	particles
shows	up	as	the	gently	curving	tracks	moving	downwards.	The	tracks	curve	because	the	particles	are
charged	and	are	moving	in	a	magnetic	field.	The	tightly	wound	spiral	tracks	are	produced	by	electrons



that,	because	their	mass	is	small,	are	more	dramatically	affected	by	the	field.
In	this	chapter,	we	will	look	at	how	charged	particles	behave	in	electric	and	magnetic	fields	and	how
this	knowledge	can	be	used	to	control	beams	of	charged	particles.	At	the	end	of	the	chapter,	we	will
look	at	how	this	knowledge	was	used	to	discover	the	electron	and	to	measure	its	charge	and	mass.

Figure	25.1:	A	bubble	chamber	image	of	the	tracks	of	sub-atomic	particles.	The	tracks	curve	because
the	charged	particles	are	affected	by	the	presence	of	a	magnetic	field.

	
	



25.1	Observing	the	force
You	can	use	your	knowledge	of	how	charged	particles	and	electric	currents	are	affected	by	fields	to
interpret	diagrams	of	moving	particles.	You	must	always	remember	that,	by	convention,	the	direction	of
conventional	electric	current	is	the	direction	of	flow	of	positive	charge.	When	electrons	are	moving,	the
conventional	current	is	regarded	as	flowing	in	the	opposite	direction.
An	electron	beam	tube	(Figure	25.2)	can	be	used	to	demonstrate	the	magnetic	force	on	moving	charged
particles.	A	beam	of	electrons	is	produced	by	an	‘electron	gun’,	and	magnets	or	electromagnets	are	used
to	apply	a	magnetic	field.

Figure	25.2:	An	electron	beam	tube.

You	can	use	such	an	arrangement	to	observe	the	effect	of	changing	the	strength	and	direction	of	the
magnetic	field,	and	the	effect	of	reversing	the	field.

Figure	25.3:	A	beam	of	electrons	is	deflected	as	it	crosses	a	magnetic	field.	The	magnetic	field	into	the
plane	of	the	paper	is	represented	by	the	cross	in	the	circle.

If	you	are	able	to	observe	a	beam	of	electrons	like	this,	you	should	find	that	the	force	on	the	electrons
moving	through	the	magnetic	field	can	be	predicted	using	Fleming’s	left-hand	rule	(see	Chapter	24).	In
Figure	25.3,	a	beam	of	electrons	is	moving	from	right	to	left,	into	a	region	where	a	magnetic	field	is
directed	into	the	plane	of	the	paper.	Since	electrons	are	negatively	charged,	they	represent	a
conventional	current	from	left	to	right.	Fleming’s	left-hand	rule	predicts	that,	as	the	electrons	enter	the
field,	the	force	on	them	will	be	upwards	and	so	the	beam	will	be	deflected	up	the	page.	As	the	direction	of
the	beam	changes,	so	does	the	direction	of	the	force.	The	force	due	to	the	magnetic	field	is	always	at	90°
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to	the	velocity	of	the	electrons.	It	is	this	force	that	gives	rise	to	the	motor	effect.	The	electrons	in	a	wire
experience	a	force	when	they	flow	across	a	magnetic	field,	and	they	transfer	the	force	to	the	wire	itself.	In
the	past,	most	oscilloscopes,	monitors	and	television	sets	made	use	of	beams	of	electrons.	The	beams
were	moved	about	using	magnetic	and	electric	fields,	and	the	result	was	a	rapidly	changing	image	on	the
screen.

PRACTICAL	ACTIVITY	25.1

Electron	beam	tubes
Figure	25.4	shows	the	construction	of	a	typical	tube.	The	electron	gun	has	a	heated	cathode.	The
electrons	have	sufficient	thermal	energy	to	be	released	from	the	surface	of	the	heated	cathode.	These
electrons	form	a	cloud	around	the	cathode.	The	positively	charged	anode	attracts	these	electrons,	and
they	pass	through	the	anode	to	form	a	narrow	beam	in	the	space	beyond.	The	direction	of	the	beam	can
be	changed	using	an	electric	field	between	two	plates	(as	in	Figure	25.4),	or	a	magnetic	field	created	by
electromagnetic	coils.

Figure	25.4:	The	construction	of	an	electron	beam	tube.

Question
Figure	25.5	shows	how	radiation	from	a	radioactive	material	passes	through	a	region	of	uniform
magnetic	field.
State	and	explain	whether	each	type	of	radiation	has	positive	or	negative	charge,	or	is	uncharged.

Figure	25.5:	Three	types	of	radiation	passing	through	a	magnetic	field.

Magnetic	force	on	a	moving	charged	particle
Imagine	a	charged	particle	moving	in	a	region	of	uniform	magnetic	field,	with	the	particle’s	velocity	at
right	angles	to	the	field.	We	can	make	an	intelligent	guess	about	the	factors	that	determine	the	size	of	the
force	on	the	particle	(Figure	25.6).	It	will	depend	on:

the	magnetic	flux	density	B	(strength	of	the	magnetic	field)
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the	charge	Q	on	the	particle
the	speed	ν	of	the	particle.

The	magnetic	force	F	on	a	moving	particle	at	right	angles	to	a	magnetic	field	is	given	by	the	equation:

F	=	BQv

The	direction	of	the	force	can	be	determined	from	Fleming’s	left-hand	rule.	The	force	F	is	always	at	90°	to
the	velocity	of	the	particle.	Consequently,	the	path	described	by	the	particle	will	be	an	arc	of	a	circle.

Figure	25.6:	The	path	of	a	charged	particle	is	curved	in	a	magnetic	field.

If	the	charged	particle	is	moving	at	an	angle	θ	to	the	magnetic	field,	the	component	of	its	velocity	at	right
angles	to	B	is	v	sin	θ.	Hence,	the	equation	becomes:

where	B	is	the	magnetic	flux	density,	Q	is	the	charge	on	the	particle,	v	is	the	speed	of	the	particle	and	θ	is
the	angle	between	the	magnetic	field	and	the	velocity	of	the	particle.

KEY	EQUATION

Magnetic	force	F	experienced	by	a	charged	particle.

We	can	show	that	the	two	equations	F	=	BIL	and	F	=	BQv	are	consistent	with	one	another,	as	follows.
Since	current	I	is	the	rate	of	flow	of	charge,	we	can	write:

Substituting	in	F	=	BIL	gives:

Now,	 	is	the	speed	ν	of	the	moving	particle,	so	we	can	write:

F	=	BQv

For	an	electron,	with	a	charge	of	−e,	the	magnitude	of	the	force	is:

F	=	Bev	(e	=	1.60	×	10−19	C)

The	force	on	a	moving	charged	particle	is	sometimes	called	the	‘Bev	force’;	it	is	this	force	acting	on	all
the	electrons	in	a	wire	that	gives	rise	to	the	‘BIL	force’.
Here	is	an	important	reminder:	the	force	F	is	always	at	right	angles	to	the	particle’s	velocity	v,	and	its
direction	can	be	found	using	Fleming’s	left-hand	rule	(Figure	25.7).
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Figure	25.7:	Fleming’s	left-hand	rule,	applied	to	a	moving	positive	charge.

Questions
An	electron	is	moving	at	1.0	×	106	m	s−1	in	a	uniform	magnetic	field	of	flux	density	0.50	T.
Calculate	the	force	on	the	electron	when	it	is	moving:

at	right	angles	to	the	field
at	an	angle	of	45°	to	the	field.

Positrons	are	particles	identical	to	electrons,	except	that	their	charge	is	positive	(+e).	Use	a	diagram
to	explain	how	a	magnetic	field	could	be	used	to	separate	a	mixed	beam	consisting	of	both	positrons
and	electrons.
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25.2	Orbiting	charged	particles
Consider	a	charged	particle	of	mass	m	and	charge	Q	moving	at	right	angles	to	a	uniform	magnetic	field.	It
will	describe	a	circular	path	because	the	magnetic	force	F	is	always	perpendicular	to	its	velocity.	The
magnetic	force	F,	provides	the	centripetal	force	on	the	particle	–	the	direction	of	the	force	is	always
towards	the	centre	of	the	circle.

Figure	 25.8:	 In	 this	 fine-beam	 tube,	 a	 beam	 of	 electrons	 is	 bent	 around	 into	 a	 circular	 orbit	 by	 a
uniform	magnetic	field.	The	beam	is	shown	up	by	the	presence	of	a	small	amount	of	gas	in	the	tube.	(The
electrons	travel	in	an	anticlockwise	direction.)

Figure	25.8	shows	a	fine-beam	tube.	In	this	tube,	a	beam	of	fast-moving	electrons	is	produced	by	an
electron	gun.	This	is	similar	to	the	cathode	and	anode	shown	in	Figure	25.4,	but	in	this	case	the	beam	is
directed	vertically	downwards	as	it	emerges	from	the	gun.	It	enters	the	spherical	tube,	which	has	a
uniform	horizontal	magnetic	field.	The	beam	is	at	right	angles	to	the	magnetic	field	and	the	Bev	force
pushes	it	round	in	a	circle.
The	fact	that	the	centripetal	force	is	provided	by	the	magnetic	force	BQv,	gives	us	a	clue	as	to	how	we
can	calculate	the	radius	r	of	the	orbit	of	a	charged	particle	in	a	uniform	magnetic	field.	The	centripetal
force	is	given	by:

Therefore

Cancelling	and	rearranging,	you	get:

If	the	charged	particles	are	electrons,	then	Q	is	numerically	equal	to	e.	The	equation	then	becomes:

The	momentum	p	of	the	particle	is	mv.	You	can	therefore	write	the	equation	as:

p	=	Ber

The	equation	 	shows	that:

faster-moving	particles	move	in	bigger	circles	because	r	∝	v
particles	with	greater	masses	also	move	in	bigger	circles	because	r	∝	m



•

•

1

Step	1

Step	2

4

particles	with	greater	charge	move	in	tighter	(smaller)	circles	because	

a	stronger	field	(greater	magnetic	flux	density)	makes	the	particles	move	in	tighter	circles	because	
.

These	ideas	have	a	variety	of	scientific	applications,	such	as	particle	accelerators	and	mass
spectrometers.	They	can	also	be	used	to	find	the	charge-to-mass	ratio	 	of	an	electron.

The	charge-to-mass	ratio	of	an	lectron
Experiments	to	find	the	mass	of	an	electron	first	involve	finding	the	charge-to-mass	ratio	 .	This	is
known	as	the	specific	charge	on	the	electron	–	the	word	‘specific’	here	means	‘per	unit	mass’.
Using	the	equation	for	an	electron	travelling	in	a	circle	in	a	magnetic	field,	we	have	 .	Clearly,
measurements	of	v,	B	and	r	are	needed	to	determine	 .

There	are	difficulties	in	measuring	B	and	r.	For	example,	it	is	difficult	to	directly	measure	r	with	a	ruler
outside	the	tube	in	Figure	25.8	because	of	parallax	error.	Also,	v	must	be	measured,	and	you	need	to
know	how	this	is	done.	One	way	is	to	use	the	potential	difference	(p.d.)	Vca	between	the	cathode	and	the
anode.	This	p.d.	causes	each	electron	to	accelerate	as	it	moves	from	the	cathode	to	the	anode.	An
individual	electron	has	charge	−e,	therefore	an	amount	of	work	is	done	on	each	electron	is	e	×	Vca.	This
is	equivalent	to	the	kinetic	energy	of	the	electron	as	it	leaves	the	anode	–	we	assume	that	the	electron	has
zero	kinetic	energy	at	the	cathode.	Therefore:

where	me	is	the	mass	of	the	electron	and	v	is	the	final	speed	of	the	electron.

Eliminating	v	from	the	equations:

gives:	

A	voltmeter	can	be	used	to	measure	Vca,	and	if	r	and	B	are	known,	we	can	calculate	the	ratio	 .	As	you
shall	see	shortly,	the	charge	on	the	electron	e	can	be	measured	more	directly,	and	this	allows	physicists	to
calculate	the	electron	mass	me	from	the	value	of	 .

WORKED	EXAMPLE

An	electron	is	travelling	at	right	angles	to	a	uniform	magnetic	field	of	flux	density	1.2	mT.	The
speed	of	the	electron	is	8.0	×	106	m	s−1.
Calculate	the	radius	of	circle	described	by	this	electron.
e	=	1.60	×	10−19	C	and	me	=	9.11	×	10−31	kg

Calculate	the	magnetic	force	on	the	electron.

Use	your	knowledge	of	motion	in	a	circle	to	determine	the	radius	r.

Therefore:

Note:	You	can	get	the	same	result	by	using	the	equation:

Questions
Look	at	the	photograph	of	the	electron	beam	in	the	fine-beam	tube	(Figure	25.8).
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State	the	direction	is	the	magnetic	field	(into	or	out	of	the	plane	of	the	photograph).
The	particles	in	the	circular	beam	shown	in	Figure	25.8	all	travel	round	in	the	same	orbit.
State	what	can	you	deduce	about	their	mass,	charge	and	speed.
An	electron	beam	in	a	vacuum	tube	is	directed	at	right	angles	to	a	magnetic	field,	so	that	it	travels
along	a	circular	path.
Predict	the	effect	on	the	size	and	shape	of	the	path	that	would	be	produced	(separately)	by	each	of
the	following	changes:

increasing	the	magnetic	flux	density
reversing	the	direction	of	the	magnetic	field
slowing	down	the	electrons
tilting	the	beam,	so	that	the	electrons	have	a	component	of	velocity	along	the	magnetic	field.

PRACTICAL	ACTIVITY	25.2

The	deflection	tube
A	deflection	tube	(Figure	25.9)	is	designed	to	show	a	beam	of	electrons	passing	through	a	combination
of	electric	and	magnetic	fields.

Figure	25.9:	The	path	of	an	electron	beam	in	a	deflection	tube.

By	adjusting	the	strengths	of	the	electric	and	magnetic	fields,	you	can	balance	the	two	forces	on	the
electrons,	and	the	beam	will	remain	horizontal.	The	magnetic	field	is	provided	by	two	vertical	coils,
called	Helmholtz	coils	(Figure	25.10),	which	give	a	very	uniform	field	in	the	space	between	them.
When	the	electron	beam	remains	straight,	it	follows	that	the	electric	and	magnetic	forces	on	each
electron	must	have	the	same	magnitude	and	act	in	opposite	directions.

Figure	25.10:	A	pair	of	Helmholtz	coils	is	used	to	give	a	uniform	magnetic	field.

Therefore:	electric	force	(upwards)	=	magnetic	force	(downwards)

eE	=	Bev

where	E	is	the	electric	field	strength	between	the	parallel	horizontal	plates.	The	speed	ν	of	the



electrons	is	simply	related	to	E	and	B	because	e	in	the	expression	cancels	out.	Therefore:

The	electric	field	strength	E	is	given	by:

where	V	is	the	p.d.	between	the	plates	and	d	is	the	distance	between	the	plates.	Therefore:
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25.3	Electric	and	magnetic	fields
Now	we	will	consider	in	detail	what	happens	when	an	electron	beam	passes	through	an	electric	field	and
a	magnetic	field	at	the	same	time.

Velocity	selection
In	a	device	called	a	velocity	selector,	charged	particles	of	a	specific	velocity	are	selected	using	both
electric	and	magnetic	fields.	This	is	used	in	devices	such	as	mass	spectrometers	where	it	is	essential	to
produce	a	beam	of	charged	particles	all	moving	with	the	same	velocity.	The	construction	of	a	velocity
selector	is	shown	in	Figure	25.11.

Figure	25.11:	A	velocity	selector	–	only	particles	with	the	correct	velocity	will	emerge	through	the	slit
S.

The	apparatus	is	very	similar	to	the	deflection	tube	in	Figure	25.9.	Two	oppositely	charged	horizontal
plates	are	situated	in	an	evacuated	chamber.	These	plates	provide	a	uniform	electric	field	of	strength	E	in
the	space	between	the	plates.
The	region	between	the	plates	is	also	occupied	by	a	uniform	magnetic	field	of	flux	density	B	that	is	at
right	angles	to	the	electric	field.	Negatively	charged	particles	(electrons	or	ions)	enter	from	the	left.	They
all	have	the	same	charge	−Q	but	are	travelling	at	different	speeds.	The	magnitude	of	the	electric	force
EQ	will	be	the	same	on	all	particles	as	it	does	not	depend	on	their	speed.	However,	the	magnitude	of	the
magnetic	force	BQv	will	be	greater	for	those	particles	that	are	travelling	faster.	Hence,	for	particles
travelling	at	the	desired	speed	v,	the	electric	force	and	the	magnetic	force	must	have	the	same	value,	but
be	in	opposite	directions.	The	resultant	force	on	the	charged	particles	in	the	vertical	direction	must	be
zero,	and	all	the	charged	particles	with	the	speed	v	will	emerge	undeflected	from	the	slit	S.	Therefore:

If	a	charged	particle	has	a	speed	greater	than	 ,	the	downward	magnetic	force	on	it	will	be	greater	than
the	upward	electric	force.	Thus,	it	will	be	deflected	downwards	and	it	will	hit	below	slit	S.
Note	that	we	do	not	have	to	concern	ourselves	with	the	gravitational	force	mg	acting	on	the	charged
particles	as	this	will	be	negligible	compared	with	the	electric	and	magnetic	forces.

Question
This	question	is	about	the	velocity	selector	shown	in	Figure	25.11.

State	the	directions	of	the	magnetic	and	electric	forces	on	a	positively	charged	ion	travelling
towards	the	slit	S.
Calculate	the	speed	of	an	ion	emerging	from	the	slit	S	when	the	magnetic	flux	density	is	0.30	T
and	the	electric	field	strength	is	1.5	×	103	V	m−1.
Explain	why	ions	travelling	with	a	speed	greater	than	your	answer	to	part	b	will	not	emerge	from
the	slit.

	
	



25.4	The	Hall	effect
In	Chapter	24,	you	saw	how	to	use	a	Hall	probe	to	measure	magnetic	flux	density.	This	probe	works	on
the	basis	of	the	Hall	effect.	The	Hall	effect	is	the	production	of	a	potential	difference	across	an	electrical
conductor	when	an	external	magnetic	field	is	applied	in	a	direction	perpendicular	to	the	current.

Figure	25.12:	A	Hall	voltage	is	produced	across	the	sides	of	the	slice	of	conductor	(metal).

Consider	a	slice	of	conductor	with	an	external	magnetic	field	applied	perpendicular	to	the	direction	of	the
current.	If	the	conductor	is	a	metal,	then	the	current	is	due	to	the	flow	of	electrons.	These	electrons	will
experience	a	magnetic	force,	which	will	make	them	drift	towards	one	side	of	the	conductor,	where	they
will	gather.	The	opposite	side	of	the	slice	is	deficient	of	electrons.	A	potential	difference,	known	as	the
Hall	voltage,	will	be	developed	across	the	conductor	(Figure	25.12).	As	you	will	see	later,	the	Hall
voltage	VH	for	the	slice	is	constant	for	a	given	current	and	is	directly	proportional	to	the	magnetic	flux
density	B	of	the	external	magnetic	field.

An	equation	for	the	Hall	voltage
Using	what	we	know	about	electric	current	and	the	forces	on	electric	charges	produced	by	electric	and
magnetic	fields,	we	can	derive	an	expression	for	the	Hall	voltage	VH.	Figure	25.13	shows	a	current-
carrying	slice	of	a	metal.	The	Hall	voltage	is	the	voltage	that	appears	between	the	two	opposite	sides	of
the	slice.

Figure	25.13:	a	 The	Hall	 voltage	 is	measured	across	 the	 slice	of	metal.	b	 The	 forces	on	an	electron
when	the	electric	and	magnetic	forces	are	equal	and	opposite.
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As	we	have	seen,	this	voltage	arises	because	electrons	accumulate	on	one	side	of	the	slice.	There	is	a
corresponding	lack	of	electrons	on	the	opposite	side	–	this	opposite	side	may	be	considered	to	have	a
positive	charge.	As	a	result,	there	is	an	electric	field	set	up	within	the	slice	between	the	two	sides.	The
two	charged	sides	may	be	treated	as	oppositely	charged	parallel	plates	–	see	Chapter	21.	Therefore,	the
electric	field	strength	E	is	related	to	the	Hall	voltage	VH	by:

where	d	is	the	width	of	the	slice.
Now,	imagine	a	single	electron	as	it	travels	with	drift	velocity	v	through	the	slice.	The	magnetic	field	is
into	the	plane	of	the	paper,	so	this	electron	will	experience	a	magnetic	force	Bev	to	the	right.	It	will	also
experience	an	electric	force	Ee	to	the	left.
When	the	current	first	starts	to	flow,	there	is	no	Hall	voltage	and	so	electrons	are	pushed	to	the	right	by
the	magnetic	field.	However,	as	the	charge	on	the	right-hand	side	builds	up,	so	does	the	internal	electric
field	and	this	pushes	the	electrons	in	the	opposite	direction	to	the	magnetic	force.	Soon,	an	equilibrium
situation	is	reached,	the	resultant	force	on	each	electron	is	zero	and	the	electrons	are	undeflected.	Now
we	can	equate	the	two	forces:

eE	=	Bev

Substituting	for	E	we	have:

Now	recall	from	Chapter	8	that	the	current	I	is	related	to	the	mean	drift	velocity	v	of	the	electrons	by	I	=
nAve,	where	A	is	the	cross-sectional	area	of	the	conductor	and	n	is	the	number	density	of	charge	carriers
(in	this	case,	electrons).	So,	we	can	substitute	for	v	to	get:

Making	VH	the	subject	of	the	equation	(and	cancelling	e)	gives:

The	cross-sectional	area	A	of	each	side-face	of	the	slice	is:

A	=	d	×	t

where	t	is	the	thickness	of	the	slice.
Substituting	and	cancelling	gives:

This	equation	for	the	Hall	voltage	shows	that	VH	is	directly	proportional	to	the	magnetic	flux	density	B	for
a	given	slice	and	current.	That	is	what	makes	the	Hall	effect	so	useful	for	measuring	B.
To	get	a	large	voltage,	it	would	be	desirable	to	have	a	material	with	a	smaller	value	for	n	compared	with
metals.	Hall	probes	use	a	very	thin	slice	of	semiconductor.	Semiconductors	have	a	number	density	many
thousands	of	times	smaller	than	metals,	hence	the	Hall	voltage	will	be	thousands	of	times	larger.
In	some	semiconductors,	the	charge	carriers	are	not	electrons,	but	positively	charged	particles	referred
to	as	‘holes’.	We	can	write	a	more	general	equation	for	the	Hall	voltage	replacing	e	with	q,	where	q	is	the
charge	of	an	individual	charge	carrier.	This	gives	 .

KEY	EQUATION
Hall	voltage:

VH	=	BI/(ntq)

You	must	learn	how	to	derive	this	equation.

Positive	charges	will	be	deflected	in	the	opposite	direction	to	negative	charges,	and	so	we	can	determine
whether	the	charge	carriers	are	positive	or	negative	by	the	sign	of	the	Hall	voltage.

Questions
A	Hall	probe	is	designed	to	operate	with	a	steady	current	of	0.020	A	in	a	semiconductor	slice	of



a

b
9

thickness	0.05	mm.	The	number	density	of	charge	carriers	(electrons)	in	the	semiconductor	is	1.5	×
1023	m−3.

Calculate	the	Hall	voltage	that	will	result	when	the	probe	is	placed	at	right	angles	to	a	magnetic
field	of	flux	density	0.10	T.
(Elementary	charge	e	=	1.60	×	10−19	C.)
Explain	why	the	current	in	the	Hall	probe	must	be	maintained	at	a	constant	value.

Suggest	how	the	Hall	effect	could	be	used	to	determine	the	number	density	of	charge	carriers	n	in	a
semiconducting	material.
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25.5	Discovering	the	electron
Today,	we	know	a	lot	about	electrons	and	we	use	the	idea	of	electrons	to	explain	all	sorts	of	phenomena,
including	electric	current	and	chemical	bonding.	However,	at	the	end	of	the	19th	century,	physicists	were
only	just	beginning	to	identify	the	tiny	particles	that	make	up	matter.
One	of	the	leaders	in	this	field	was	the	English	physicist	J.J.	Thomson	(Figure	25.14).	In	the	photograph,
he	is	shown	with	the	deflection	tube	that	he	used	in	his	discovery	of	the	electron.

Figure	25.14:	J.J.	Thomson	–	in	1897,	he	discovered	the	electron	using	the	vacuum	tube	shown	here.

His	tube	was	similar	in	construction	to	the	deflection	tube	shown	in	Figure	25.9.	At	one	end	was	an
electron	gun	that	produced	a	beam	of	electrons	(which	he	called	‘cathode	rays’).	Two	metal	plates
allowed	him	to	apply	an	electric	field	to	deflect	the	beam,	and	he	could	place	magnets	outside	the	tube	to
apply	a	magnetic	force	to	the	beam.	Here	is	a	summary	of	his	observations	and	what	he	concluded	from
them:

The	beam	in	his	tube	was	deflected	towards	a	positive	plate	and	away	from	a	negative	plate,	so	the
particles	involved	must	have	negative	charge.	This	was	confirmed	by	the	deflection	of	the	beam	by	a
magnetic	field.
When	the	beam	was	deflected,	 it	remained	as	a	tight,	single	beam	rather	than	spreading	out	 into	a
broad	beam.	This	showed	that,	if	the	beam	consisted	of	particles,	they	must	all	have	the	same	mass,
charge	 and	 speed.	 (Lighter	 particles	 would	 have	 been	 deflected	 more	 than	 heavier	 ones;	 particles
with	greater	charge	would	be	deflected	more,	and	faster	particles	would	be	deflected	less.)
By	applying	both	electric	and	magnetic	fields,	Thomson	was	able	to	balance	the	electric	and	magnetic
forces	 so	 that	 the	beam	 in	 the	 tube	 remained	 straight.	He	could	 then	calculate	 the	 charge-to-mass
ratio	 	 for	 the	particles	he	had	discovered.	Although	he	did	not	know	the	value	of	either	e	or	me
individually,	he	was	able	to	show	that	the	particles	concerned	must	be	much	lighter	than	atoms.	They
were	the	particles	that	we	now	know	as	electrons.	In	fact,	for	a	while,	Thomson	thought	that	atoms
were	made	up	of	thousands	of	electrons,	although	his	ideas	could	not	explain	how	so	many	negatively
charged	particles	could	combine	to	produce	a	neutral	atom.

The	magnitude	of	the	charge	e	of	an	electron	is	very	small	(1.60	×	10−19	C)	and	difficult	to	measure.	The
American	physicist	Robert	Millikan	devised	an	ingenious	way	to	do	it.	He	observed	electrically	charged
droplets	of	oil	as	they	moved	in	electric	and	gravitational	fields	and	found	that	they	all	had	a	charge	that
was	a	small	integer	multiple	of	a	particular	value,	which	he	took	to	be	the	magnitude	of	the	charge	on	a
single	electron,	e.	Having	established	a	value	for	e,	he	could	combine	this	with	Thomson’s	value	for	 	to
calculate	the	electron	mass	me.

Question
The	charge-to-mass	ratio	 	for	the	electron	is	1.76	×	1011	C	kg−1.

Calculate	the	mass	of	the	electron	using	e	=	1.60	×	10−19	C.

REFLECTION
Without	looking	at	your	textbook,	summarise	the	similarities	between	a	velocity-selector	and	the	Hall
effect.	Compare	your	summary	with	a	fellow	learner.	Did	you	miss	out	any	key	ideas?
Make	a	list	of	all	the	equations	leading	to	VH	∝	B	for	a	Hall	probe.



What	things	might	you	want	more	help	with	in	this	topic?

	
	



SUMMARY

The	magnetic	force	on	a	charged	particle	moving	at	right	angles	to	a	magnetic	field	is	given	by	the
equation:	F	=	BQv.	For	an	electron,	Q	=	e.

For	charged	particle	travelling	at	an	angle	θ	to	the	magnetic	field,	the	force	is	given	by	the	equation:

F	=	BQv	sinθ

The	direction	of	the	force	experienced	by	a	charge	moving	in	a	uniform	magnetic	field	can	be
determined	using	Fleming’s	left-hand	rule.

A	charged	particle	entering	at	right	angles	to	a	uniform	magnetic	field	describes	a	circular	path
because	the	magnetic	force	is	perpendicular	to	the	velocity.

For	an	electron	describing	a	circular	path	in	a	uniform	magnetic	field,	the	centripetal	force	is	provided
by	Bev.	Therefore:

In	a	velocity	selector,	the	speed	of	an	undeflected	charged	particle	in	a	region	where	electric	and
magnetic	fields	are	at	right	angles	is	given	by	the	equation:

This	speed	is	independent	of	the	charge	of	the	particle.

In	the	Hall	effect,	a	potential	difference	is	produced	across	an	electrical	conductor	when	an	external
magnetic	field	is	applied	in	a	direction	perpendicular	to	the	direction	of	the	current.

The	Hall	voltage	is	given	by:

Note:
VH	∝	magnetic	flux	density	B

VH	∝	current	I

In	a	Hall	probe,	VH	∝	B	because	the	current	in	the	slice	is	constant.

A	Hall	probe	uses	a	semiconducting	material	rather	than	a	metal	because	the	smaller	number	density
of	charge	carriers	gives	a	larger	Hall	voltage.
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EXAM-STYLE	QUESTIONS

A	scientist	is	doing	an	experiment	on	a	beam	of	electrons	travelling	at	right
angles	to	a	uniform	magnetic	field	of	flux	density	B.	The	graph	shows	the
variation	of	the	magnetic	force	F	acting	on	an	electron	with	the	speed	v	of	the
electron. 	

Figure	25.15
	

The	gradient	of	the	graph	is	G.	The	magnitude	of	the	charge	on	the	electron	is
e. 	

What	is	the	correct	relationship	for	the	magnetic	flux	density	B? [1]

B	=	G 	

B	=	G	×	e 	

	

	

The	magnetic	force	BQv	causes	an	electron	to	travel	in	a	circle	in	a	uniform
magnetic	field. 	

Explain	why	this	force	does	not	cause	an	increase	in	the	speed	of	the	electron. [3]

An	electron	beam	is	produced	from	an	electron	gun	in	which	each	electron	is
accelerated	through	a	potential	difference	(p.d.)	of	1.6	kV.	When	these
electrons	pass	at	right	angles	through	a	magnetic	field	of	flux	density	8.0	mT,
the	radius	of	curvature	of	the	electron	beam	is	0.017	m. 	

Calculate	the	ratio	 	(known	as	the	specific	charge	of	the	electron). [4]

Two	particles,	an	α-particle	and	a	β−-particle,	are	travelling	through	a	uniform
magnetic	field.	They	have	the	same	speed	and	their	velocities	are	at	right
angles	to	the	field.	Determine	the	ratio	of: 	

the	mass	of	the	α-particle	to	the	mass	of	the	β−-particle [2]

the	charge	of	the	α-particle	to	the	charge	of	the	β−-particle [2]

the	force	on	the	α-particle	to	the	force	on	the	β−-particle [2]

the	radius	of	the	α-particle’s	orbit	to	the	radius	of	the	β−-particle’s	orbit. [2]

	 [Total:	8]

A	moving	charged	particle	experiences	a	force	in	an	electric	field	and	also	in	a
magnetic	field.	State	two	differences	between	the	forces	experienced	in	the
two	types	of	field. [2]

This	diagram	shows	the	path	of	an	electron	as	it	travels	in	air.	The	electron
rotates	clockwise	around	a	uniform	magnetic	field	into	the	plane	of	the	paper,
but	the	radius	of	the	orbit	decreases	in	size. 	
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Figure	25.16

	

Explain	the	origin	of	the	force	that	causes	the	electron	to	spiral	in	this
manner. [2]

Explain	why	the	radius	of	the	circle	gradually	decreases. [2]

At	one	point	in	the	path,	the	speed	of	the	electron	is	1.0	×	107	m	s−1	and
the	magnetic	flux	density	is	0.25	T.	Calculate: 	

the	force	on	an	electron	at	this	point	due	to	the	magnetic	field [2]

the	radius	of	the	arc	of	the	circular	path	at	this	point. [2]

	 [Total:	8]

This	diagram	shows	an	arrangement	to	deflect	protons	from	a	source	to	a
detector	using	a	magnetic	field.	The	charge	on	each	proton	is	+e.	A	uniform
magnetic	field	exists	only	within	the	area	shown.	Protons	move	from	the	source
to	the	detector	in	the	plane	of	the	paper. 	

Figure	25.17
	

Copy	the	diagram	and	sketch	the	path	of	a	proton	from	the	source	to
the	detector.	Draw	an	arrow	at	two	points	on	the	path	to	show	the
direction	of	the	force	on	the	proton	produced	by	the	magnetic	field. [3]

State	the	direction	of	the	magnetic	field	within	the	area	shown. [1]

The	speed	of	a	proton	as	it	enters	the	magnetic	field	is	4.0	×	106	m	s−1.
The	magnetic	flux	density	is	0.25	T.	Calculate: 	

the	magnitude	of	the	force	on	the	proton	caused	by	the	magnetic	field [1]

the	radius	of	curvature	of	the	path	of	the	proton	in	the	magnetic	field. [2]

Two	changes	to	the	magnetic	field	in	the	area	shown	are	made.	These
changes	allow	an	electron	with	the	same	speed	as	the	proton	to	be
deflected	along	the	same	path	as	the	proton.	State	the	two	changes	made. [2]

	 [Total:	9]

This	diagram	shows	a	thin	slice	of	semiconductor	material	carrying	a	current
in	a	magnetic	field	at	right	angles	to	the	current. 	
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Figure	25.18

	

The	current	in	the	slice	is	due	to	the	movement	of	free	electrons. 	

Add	+	and	−	signs	to	the	diagram	to	show	the	charge	separation
caused	by	the	Hall	effect.	Explain	why	the	charges	separate. [3]

Explain	how	an	electron	can	eventually	move	in	a	straight	line	along
the	slice. [1]

The	Hall	voltage	is	measured	using	the	same	slice	of	semiconductor,	the
same	current	and	the	same	magnetic	field,	but	with	the	laboratory	at	two
temperatures,	one	significantly	higher	than	the	other. 	

Describe	and	explain	the	changes	in	the	magnitude	of	the	number	density,
the	drift	velocity	of	the	charge	carriers	and	the	Hall	voltage	in	the	two
experiments. [5]

	 [Total:	9]

This	diagram	shows	an	electron	tube.	Electrons	emitted	from	the	cathode
accelerate	towards	the	anode	and	then	pass	into	a	uniform	electric	field
created	by	two	oppositely	charged	horizontal	metal	plates. 	

Figure	25.19
	

Explain	why	the	beam	curves	upwards	between	the	plates. [2]

Explain	how	the	pattern	formed	on	the	fluorescent	screen	shows	that
all	the	electrons	have	the	same	speed	as	they	leave	the	anode. [2]

Write	down	an	equation	relating	the	speed	of	the	electrons	v	to	the
potential	difference	Vac	between	the	anode	and	the	cathode. [1]

The	deflection	of	the	beam	upwards	can	be	cancelled	by	applying	a
suitable	uniform	magnetic	field	in	the	space	between	the	parallel	plates.

	

State	the	direction	of	the	magnetic	field	for	this	to	happen. [1]

Write	down	an	equation	relating	the	speed	of	the	electrons	v,	the
electric	field	strength	E	that	exists	between	the	plates	and	the
magnetic	flux	density	B	needed	to	make	the	electrons	pass	undeflected
between	the	plates. [2]

Determine	the	value	of	B	required,	using	the	apparatus	shown	in	the
diagram,	given	that	for	an	electron	the	ratio	 . [4]

	 [Total:	12]

Protons	and	helium	nuclei	from	the	Sun	pass	into	the	Earth’s	atmosphere
above	the	poles,	where	the	magnetic	flux	density	is	6.0	×	10−5	T.	The	particles
are	moving	at	a	speed	of	1.0	×	106	m	s−1	at	right	angles	to	the	magnetic	field
in	this	region.	The	magnetic	field	can	be	assumed	to	be	uniform. 	

Calculate	the	radius	of	the	path	of	a	proton	as	it	passes	above	the	Earth’s
pole. [3]
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mass	of	a	helium	nucleus	=	6.8	×	10−27	kg 	

charge	on	a	helium	nucleus	=	3.2	×	10−19	C 	

Sketch	a	diagram	to	show	the	deflection	caused	by	the	magnetic	field	to
the	paths	of	a	proton	and	of	a	helium	nucleus	that	both	have	the	same
initial	velocity	as	they	enter	the	magnetic	field. [2]

	 [Total:	5]

This	diagram	shows	a	thin	slice	of	metal	of	thickness	t	and	width	d.	The	metal
slice	is	in	a	magnetic	field	of	flux	density	B	and	carries	a	current	I,	as	shown. 	

Figure	25.20
	

Copy	the	diagram	and	mark: 	

the	side	of	the	slice	that	becomes	negative	because	of	the	Hall	effect [1]

where	a	voltmeter	needs	to	be	placed	to	measure	the	Hall	voltage. [1]

Derive	an	expression	for	the	Hall	voltage	in	terms	of	I,	B,	t,	the	number
density	of	the	charge	carriers	n	in	the	metal	and	the	charge	e	on	an
electron. [3]

Given	that	I	=	40	mA,	d	=	9.0	mm,	t	=	0.030	mm,	B	=	0.60	T,	e	=	1.6	×
10−19	C	and	n	=	8.5	×	1028	m–3,	calculate: 	

the	mean	drift	velocity	v	of	the	free	electrons	in	the	metal [2]

the	Hall	voltage	across	the	metal	slice [2]

the	percentage	uncertainty	in	the	mean	drift	velocity	v	of	the	electrons,
assuming	the	percentage	uncertainties	in	the	quantities	are	as	shown.

[1]

Quantity %	uncertainty

Current	I 1.3

Width	d 2.5

Thickness	t 3.0

Number	density	of	charge	carriers	n 0.2

Table	25.1
	

Explain	why,	in	terms	of	the	movement	of	electrons,	the	Hall	voltage
increases	when	I	increases. [2]

A	Hall	probe	used	to	determine	the	magnetic	flux	density	of	a	magnetic
field	uses	a	thin	slice	of	a	semiconductor	rather	than	metal.	Explain
why	a	semiconductor	is	used. [2]

Explain	why,	when	the	slice	of	metal	is	rotated	about	the	horizontal	axis	XY,
the	Hall	voltage	varies	between	a	maximum	positive	value	and	a	maximum
negative	value. [2]

	 [Total:	16]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

use	Fleming’s	left-hand	rule	to
determine	the	direction	of	the	force	on
a	charge	moving	in	a	magnetic	field

25.1 	 	 	

recall	and	use:

F	=	BQv	sinθ

25.1 	 	 	

describe	the	motion	of	a	charged
particle	moving	in	a	uniform	magnetic
field	perpendicular	to	the	direction	of
motion	of	the	particle

25.2 	 	 	

explain	how	electric	and	magnetic	fields
can	be	used	in	velocity	selection	of
charged	particles

25.3 	 	 	

understand	the	Hall	effect	and	the
origin	of	the	Hall	voltage

25.4 	 	 	

derive	and	use	the	expression	for	Hall
voltage:

25.4 	 	 	

use	a	Hall	probe	to	measure	magnetic
flux	density.

25.4 	 	 	
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	Chapter	26

Electromagnetic	induction

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
define	 magnetic	 flux	 as	 the	 product	 of	 the	 magnetic	 flux	 density	 and	 the	 cross-sectional	 area
perpendicular	to	the	direction	of	the	magnetic	flux	density
recall	and	use	
understand	and	use	the	concept	of	magnetic	flux	linkage
understand	and	explain	experiments	that	demonstrate:

that	a	changing	magnetic	flux	can	induce	an	e.m.f.	in	a	circuit
that	the	direction	of	the	induced	e.m.f.	opposes	the	change	producing	it
the	factors	affecting	the	magnitude	of	the	induced	e.m.f.

recall	and	use	Faraday’s	and	Lenz’s	laws	of	electromagnetic	induction.

BEFORE	YOU	START
In	this	chapter,	knowledge	of	magnetic	fields	is	going	to	be	important.	Can	you	work	out	whether	a
field	is	uniform	or	not	from	the	field	pattern?	How?
Physical	 quantities	 introduced	 in	 this	 chapter	 may	 sound	 the	 same,	 but	 are	 very	 different.
Remember	the	definition	for	magnetic	flux	density	B	and	its	unit	(tesla,	T).

GENERATING	ELECTRICITY
Most	of	the	electricity	we	use	is	generated	by	electromagnetic	induction.	This	process	goes	on	in	the
generators	at	work	in	power	stations,	in	wind	turbines	(Figure	26.1)	and,	on	a	much	smaller	scale,	in
bicycle	dynamos.	It	is	the	process	whereby	a	conductor	and	a	magnetic	field	are	moved	relative	to	each
other	to	induce,	or	generate,	a	current	or	electromotive	force	(e.m.f.).



One	of	the	most	important	principles	in	physics	is	the	idea	of	conservation	of	energy.	You	cannot	just
produce	electrical	energy	from	nowhere.	In	the	case	of	a	generator	or	a	dynamo,	how	is	the	electrical
energy	produced?

Figure	26.1:	This	giant	wind	turbine	uses	electromagnetic	induction	to	produce	electricity.	Look	for
the	two	engineers	at	work.	(You	can	identify	them	by	their	white	helmets.)	This	gives	you	an	idea	of
the	size	of	the	generator.

	
	



26.1	Observing	induction
You	can	carry	out	some	simple	experiments	to	observe	features	of	electromagnetic	induction.	These	are
described	in	Practical	Activity	26.1.

PRACTICAL	ACTIVITY	26.1:	OBSERVING	INDUCTION
For	each	experiment,	try	to	predict	what	you	will	observe	before	you	try	the	experiment.

Experiment	1
Connect	a	small	electric	motor	to	a	moving-coil	voltmeter	(Figure	26.2).	Spin	the	shaft	of	the	motor	and
observe	the	deflection	of	the	voltmeter.	What	happens	when	you	spin	the	motor	more	slowly?	What
happens	when	you	stop?	Usually,	we	connect	a	motor	to	a	power	supply	and	it	turns.	In	this	experiment,
you	have	turned	the	motor	and	it	generates	a	voltage	across	its	terminals.	A	generator	is	like	an
electric	motor	working	in	reverse.

Figure	26.2:	A	motor	works	in	reverse	as	a	generator.

Experiment	2
Connect	a	coil	to	a	sensitive	microammeter	(Figure	26.3).	Move	a	bar	magnet	in	towards	the	coil.	Hold
it	still,	and	then	remove	it.	How	does	the	deflection	on	the	meter	change?	Try	different	speeds,	and	the
opposite	pole	of	the	magnet.	Try	weak	and	strong	magnets.
With	the	same	equipment,	move	the	coil	towards	the	magnet	and	observe	the	deflection	of	the	meter.

Figure	26.3:	A	magnet	moving	near	a	coil	generates	a	small	current.

Experiment	3
Connect	a	long	wire	to	a	sensitive	microammeter.	Move	the	middle	section	of	the	wire	up	and	down
through	the	magnetic	field	between	the	magnets	(Figure	26.4).	Double	up	the	wire	so	that	twice	as
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much	of	it	passes	through	the	magnetic	field.	What	happens	to	the	meter	reading	now?	How	can	you
form	the	wire	into	a	loop	to	give	twice	the	deflection	on	the	meter?

Figure	26.4:	Investigating	the	current	induced	when	a	wire	moves	through	a	magnetic	field.

Factors	affecting	induced	e.m.f
In	all	the	experiments	described	in	Practical	Activity	26.1,	you	have	seen	an	electric	current	caused	by	an
induced	e.m.f.	In	each	case,	there	is	a	magnetic	field	and	a	conductor.	When	you	move	the	magnet,	or	the
conductor,	there	is	an	induced	e.m.f.	When	you	stop,	the	current	stops.
From	the	three	experiments,	you	should	see	that	the	size	of	the	induced	e.m.f.	depends	on	several	factors.
For	a	straight	wire,	the	induced	e.m.f.	depends	on	the:

magnitude	of	the	magnetic	flux	density
length	of	the	wire	in	the	field
speed	of	the	wire	moving	across	the	magnetic	field.

For	a	coil	of	wire,	the	induced	e.m.f.	depends	on	the:
magnitude	of	the	magnetic	flux	density
cross-sectional	area	of	the	coil
angle	between	the	plane	of	the	coil	and	the	magnetic	field
number	of	turns	of	wire
rate	at	which	the	coil	turns	in	the	field.

	
	



26.2	Explaining	electromagnetic	induction
You	have	seen	that	relative	movement	of	a	conductor	and	a	magnetic	field	induces	a	current	in	the
conductor	when	it	is	part	of	a	complete	circuit.	In	the	experiments	in	Practical	Activity	26.1,	the	meter
was	used	to	complete	the	circuit.	Now	we	need	to	think	about	how	to	explain	these	observations,	using
what	we	know	about	magnetic	fields.

Cutting	magnetic	field	lines
Start	by	thinking	about	a	simple	bar	magnet.	It	has	a	magnetic	field	in	the	space	around	it.	We	represent
this	field	by	magnetic	field	lines.	Now	think	about	what	happens	when	a	wire	is	moved	into	the	magnetic
field	(Figure	26.5).	As	it	moves,	it	cuts	across	the	magnetic	field.	Remove	the	wire	from	the	field,	and
again	it	must	cut	across	the	field	lines,	but	in	the	opposite	direction.
We	think	of	this	cutting	of	a	magnetic	field	by	a	conductor	as	the	effect	that	gives	rise	to	current	caused
by	induced	e.m.f	in	the	conductor.	It	doesn’t	matter	whether	the	conductor	is	moved	through	the
magnetic	field	or	the	magnet	is	moved	past	the	conductor,	the	result	is	the	same–there	will	be	an	induced
e.m.f.

Figure	26.5:	Inducing	a	current	by	moving	a	wire	through	a	magnetic	field.

The	effect	is	more	noticeable	if	we	use	a	coil	of	wire.	For	a	coil	of	N	turns,	the	effect	is	N	times	greater
than	for	a	single	turn	of	wire.	With	a	coil,	it	is	helpful	to	imagine	the	number	of	field	lines	linking	the	coil.
If	there	is	a	change	in	the	number	of	field	lines	that	pass	through	the	coil,	an	e.m.f.	will	be	induced	across
the	ends	of	the	coil	(or	there	will	be	a	current	caused	by	induced	e.m.f	if	the	coil	forms	part	of	a	complete
circuit).
Figure	26.6	shows	a	coil	near	a	magnet.	When	the	coil	is	outside	the	field,	there	are	no	magnetic	field
lines	linking	the	coil.	When	it	is	inside	the	field,	field	lines	link	the	coil.	Moving	the	coil	into	or	out	of	the
field	changes	this	linkage	of	field	lines,	and	this	induces	an	e.m.f.	across	the	ends	of	the	coil.	Field	lines
linking	the	coil	is	a	helpful	starting	point	in	our	understanding	of	induced	e.m.f.	However,	as	you	will	see
later,	a	more	sophisticated	idea	of	magnetic	flux	is	required	for	a	better	understanding	of	how	an	e.m.f.	is
generated	in	a	circuit.
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Figure	26.6:	The	field	lines	passing	through	a	coil	changes	as	it	is	moved	in	and	out	of	a	magnetic	field.

Question
Use	the	idea	of	a	conductor	cutting	magnetic	field	lines	to	explain	how	a	current	is	caused	by	induced
e.m.f.	in	a	bicycle	generator	(Figure	26.7).

Figure	26.7:	 In	 a	 bicycle	 generator,	 a	 permanent	magnet	 rotates	 inside	 a	 fixed	 coil	 of	 wire.	 For
Question	1.

Current	direction	(extension)
How	can	we	predict	the	direction	of	the	current	caused	by	induced	e.m.f?	For	the	motor	effect	in	Chapter
24,	we	used	Fleming’s	left-hand	(motor)	rule.	Electromagnetic	induction	is	like	the	mirror	image	of	the
motor	effect.	Instead	of	a	current	producing	a	force	on	a	current-carrying	conductor	in	a	magnetic	field,
we	provide	an	external	force	on	a	conductor	by	moving	it	through	a	magnetic	field	and	this	induces	a
current	in	the	conductor.	So	you	should	not	be	too	surprised	to	find	that	we	use	the	mirror	image	of	the
left-hand	rule:	Fleming’s	right-hand	(generator)	rule.
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Figure	26.8:	Fleming’s	right-hand	(generator)	rule.

The	three	fingers	represent	the	same	things	again	(Figure	26.8):
thuMb–direction	of	Motion
First	finger–direction	of	external	magnetic	Field
seCond	finger–direction	of	(conventional)	Current	caused	by	induced	e.m.f

In	the	example	shown	in	Figure	26.9,	the	conductor	is	being	moved	downwards	across	the	magnetic	field.
There	is	a	current	caused	by	induced	e.m.f.	in	the	conductor	as	shown.	Check	this	with	your	own	right
hand.	You	should	also	check	that	reversing	the	movement	or	the	field	will	result	in	the	current	flowing	in
the	opposite	direction.

Figure	26.9:	Deducing	the	direction	of	the	current	using	Fleming’s	right-hand	rule.	(The	wire	shown	is
a	part	of	a	complete	circuit	or	loop.)

Induced	e.m.f.
When	a	conductor	is	not	part	of	a	complete	circuit,	there	cannot	be	a	current	induced	by	e.m.f.	Instead,
negative	charge	will	accumulate	at	one	end	of	the	conductor,	leaving	the	other	end	positively	charged.	We
have	induced	an	e.m.f.	across	the	ends	of	the	conductor.
Is	e.m.f.	the	right	term?	Should	it	be	potential	difference	(voltage)?	In	Chapter	8,	you	saw	the	distinction
between	voltage	and	e.m.f.	The	term	e.m.f.	is	the	correct	one	here	because,	by	pushing	the	wire	through
the	magnetic	field,	work	is	done	and	this	is	transformed	into	electrical	energy.	Think	of	this	in	another
way:	since	we	could	connect	the	ends	of	the	conductor	so	that	there	is	a	current	in	some	other
component,	such	as	a	lamp,	which	would	light	up,	it	must	be	an	e.m.f.	–	a	source	of	electrical	energy.
Figure	26.10	shows	how	an	e.m.f.	is	induced.	Notice	that,	within	the	conductor,	conventional	current	is
from	negative	to	positive,	in	the	same	way	as	inside	a	battery	or	any	other	source	of	e.m.f.	In	reality,	the
free	electrons	within	the	conductor	travel	from	right	to	left,	making	the	left-hand	side	of	the	conductor
negative.	What	causes	these	electrons	to	move?	Moving	the	conductor	is	equivalent	to	giving	a	free
electron	within	the	conductor	a	velocity	in	the	direction	of	this	motion.	This	electron	is	in	an	external
magnetic	field	and	hence	experiences	a	magnetic	force	Bev	from	right	to	left.	Check	this	out	for	yourself.
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Figure	26.10:	An	e.m.f.	is	induced	across	the	ends	of	the	conductor.

Questions
The	coil	in	Figure	26.11	is	rotating	in	a	uniform	magnetic	field.
Predict	the	direction	of	the	current	caused	by	induced	e.m.f.	in	sections	AB	and	CD.
State	which	terminal,	X	or	Y,	will	become	positive.
When	an	aircraft	flies	from	east	to	west,	its	wings	are	an	electrical	conductor	cutting	across	the
Earth’s	magnetic	flux.	In	the	northern	hemisphere,	state	which	wingtip	(left	or	right)	will	become
positive.
State	and	explain	what	will	happen	to	this	wingtip	in	the	southern	hemisphere.

Figure	26.11:	A	coil	rotating	in	a	uniform	magnetic	field.

Magnetic	flux	and	magnetic	flux	linkage
So	far,	in	this	chapter	we	have	looked	at	the	ideas	of	electromagnetic	induction	in	a	very	descriptive
manner.	Now	we	will	see	how	to	calculate	the	value	of	the	induced	e.m.f.	and	look	at	a	general	way	of
determining	its	direction.
In	Chapter	24,	we	saw	how	magnetic	flux	density	B	is	defined	by	the	equation

Now	we	can	go	on	to	define	magnetic	flux	as	a	quantity.	We	picture	magnetic	flux	density	B	as	the
number	of	magnetic	field	lines	passing	through	a	region	per	unit	area.	Similarly,	we	can	picture	magnetic
flux	as	the	total	number	of	magnetic	field	lines	passing	through	a	cross-sectional	area	A.	For	a	magnetic
field	normal	to	A,	the	magnetic	flux	Φ	(Greek	letter	phi)	must	therefore	be	equal	to	the	product	of
magnetic	flux	density	and	the	area	A	(Figure	26.12a).



•
•
•

Figure	26.12:	a	The	magnetic	flux	is	equal	to	BA	when	the	field	is	normal	to	the	area.	b	The	magnetic
flux	becomes	when	the	field	is	at	an	angle	θ	to	the	normal	of	the	area.

The	magnetic	flux	Φ	through	cross-sectional	area	A	is	defined	as:

where	B	is	the	component	of	the	magnetic	flux	density	perpendicular	to	the	area.

KEY	EQUATION
Magnetic	flux:

Φ	=	BA

KEY	EQUATION

B	cos	θ

The	component	of	the	magnetic	flux	density	B	perpendicular	to	the	plane
of	the	cross-sectional	area,	where	θ	is	the	angle	between	the	normal	to
the	area	and	the	magnetic	field.

How	can	we	calculate	the	magnetic	flux	when	B	is	not	perpendicular	to	A?	You	can	easily	see	that	when
the	field	is	parallel	to	the	plane	of	the	area,	the	magnetic	flux	through	A	is	zero.	To	find	the	magnetic	flux
in	general,	we	need	to	find	the	component	of	the	magnetic	flux	density	perpendicular	to	the	cross-
sectional	area.	Figure	28.12b	shows	a	magnetic	field	at	an	angle	θ	to	the	normal.	In	this	case:

or	simply:

(Note	that,	when	θ	=	90°,	Φ	=	0	and	when	θ	=	0°	Φ	=	BA)
For	a	coil	with	N	turns,	the	magnetic	flux	linkage	is	defined	as	the	product	of	the	magnetic	flux	and	the
number	of	turns;	that	is:

or

The	unit	for	magnetic	flux,	and	magnetic	flux	linkage	is	the	weber	(Wb).

One	weber	(1	Wb)	is	the	magnetic	flux	that	passes	perpendicularly	through	a	cross-section	of	area	1	m2
when	the	magnetic	flux	density	is	1	T.	1	Wb	=	1	Tm2.
An	e.m.f.	is	induced	in	a	circuit	whenever	magnetic	flux	linking	the	circuit	changes	with	respect	to	time.
Since	magnetic	flux	is	equal	to	 ,	there	are	three	ways	an	e.m.f.	can	be	induced:

changing	the	magnetic	flux	density	B
changing	the	cross-sectional	area	A	of	the	circuit
changing	the	angle	θ.

Now	look	at	Worked	example	1.
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a

WORKED	EXAMPLE

Figure	26.13	shows	a	solenoid	with	a	cross-sectional	area	0.10	m2.	It	is	linked	by	a	magnetic	field	of
flux	density	2.0	×	10−3	T	and	has	250	turns.
Determine	the	magnetic	flux	and	flux	linkage	for	this	solenoid.

We	have	B	=	2.0	×	10−3	T,	A	=	0.10	m2,	θ	=	0°	and	N	=	250	turns.
Hence	we	can	calculate	the	flux	Φ.

Now	calculate	the	flux	linkage.

Figure	26.13:	A	solenoid	in	a	magnetic	field.

Questions
Use	the	idea	of	magnetic	flux	linkage	to	explain	why,	when	a	magnet	is	moved	into	a	coil,	the	e.m.f.
induced	depends	on	the	strength	of	the	magnet	and	the	speed	at	which	it	is	moved.
In	an	experiment	to	investigate	the	factors	that	affect	the	magnitude	of	an	induced	e.m.f.,	a	student
moves	a	wire	back	and	forth	between	two	magnets,	as	shown	in	Figure	26.14.	State	why	the	e.m.f.
generated	in	this	way	is	almost	zero.

Figure	26.14:	A	wire	is	moved	horizontally	in	a	horizontal	magnetic	field.	For	Question	5.

In	the	type	of	generator	found	in	a	power	station	(Figure	26.15),	a	large	electromagnet	is	made	to
rotate	inside	a	fixed	coil.	An	e.m.f.	of	25	kV	is	induced;	this	is	an	alternating	voltage	of	frequency	50
Hz.

State	the	factor	that	determines	the	frequency.
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Suggest	the	factors	that	you	think	would	affect	the	magnitude	of	the	induced	e.m.f.

Figure	26.15:	For	Question	6.	The	generators	of	this	power	station	produce	electricity	at	an	induced
e.m.f.	of	25	kV.

At	the	surface	of	the	north	pole	of	a	bar	magnet,	the	magnetic	field	is	uniform	with	flux	density	0.15	T.
The	pole	has	dimensions	1.0	cm	×	1.5	cm.
Calculate	the	magnetic	flux	at	this	pole.
A	solenoid	has	diameter	5.0	cm,	length	25	cm	and	200	turns	of	wire	(Figure	26.16).	A	current	of	2.0	A
creates	a	uniform	magnetic	field	of	flux	density	2.0	×	10−5	T	through	the	core	of	this	solenoid.

Calculate	the	magnetic	flux	linkage	for	this	solenoid.
The	diameter	of	the	solenoid	is	5.0	±	0.2	cm.	Determine	the	absolute	uncertainty	in	value
calculated	in	part	a.	You	may	assume	all	the	other	quantities	have	negligible	uncertainties.

Figure	26.16:	A	solenoid.	For	Question	8.

A	rectangular	coil	with	120	turns	is	placed	at	right	angles	to	a	magnetic	field	of	flux	density	1.2	T.	The
coil	has	dimensions	5.0	cm	×	7.5	cm.
Calculate	the	magnetic	flux	linkage	for	this	coil.
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26.3	Faraday’s	law	of	electromagnetic	induction
Earlier	in	this	chapter,	we	saw	that	electromagnetic	induction	occurs	when	magnetic	flux	linking	a	circuit
changes	with	time.	We	can	now	use	Faraday’s	law	of	electromagnetic	induction	to	determine	the
magnitude	of	the	induced	e.m.f.	in	a	circuit:
The	magnitude	of	the	induced	e.m.f.	is	directly	proportional	to	the	rate	of	change	of	magnetic	flux
linkage.
Remember	that	‘rate	of	change’	in	physics	is	equivalent	to	‘per	unit	time’.	Therefore,	we	can	write	this
mathematically	as:

where	 	is	the	change	in	the	magnetic	flux	linkage	in	a	time	Δt.	When	working	in	SI	units,	the
constant	of	proportionality	is	equal	to	1.	(At	this	level	of	study,	you	do	not	need	to	worry	about	why	this	is
the	case.)
Therefore:

The	equation	is	a	mathematical	statement	of	Faraday’s	law.	Note	that	it	allows	us	to	calculate	the
magnitude	of	the	induced	e.m.f.;	its	direction	is	given	by	Lenz’s	law,	which	is	discussed	later	in	topic
26.3	Faraday’s	law	of	electromagnetic	induction.
Now	look	at	Worked	examples	2	and	3.

WORKED	EXAMPLES

A	straight	wire	of	length	0.20	m	moves	at	a	steady	speed	of	3.0	m	s−1	at	right	angles	to	a	magnetic
field	of	flux	density	0.10	T.	Use	Faraday’s	law	to	determine	the	magnitude	of	the	induced	e.m.f.
across	the	ends	of	the	wire.

With	a	single	conductor,	N	=	1.	To	determine	the	induced	e.m.f.	E,	we	need	to	find	the	rate
of	change	of	magnetic	flux;	in	other	words,	the	change	in	magnetic	flux	per	unit	time.

Figure	26.17:	A	moving	wire	cuts	across	the	magnetic	field.

Figure	26.17	shows	that	in	a	time	t,	the	wire	travels	a	distance	3.0t.
Therefore:
change	in	magnetic	flux	=	B	×	change	in	area
change	in	magnetic	flux	=	0.10	×	(3.0t	×	0.20)	=	0.060t
Use	Faraday’s	law	to	determine	the	magnitude	of	the	induced	e.m.f.
E	=	rate	of	change	of	magnetic	flux	linkage

ΔΦ	=	0.060t,	Δt	=	t	and	N	=	1

(The	t	cancels.	You	could	have	done	this	calculation	for	any	time	t,	even	1.0	s.	The	results
would	still	be	the	same.)
The	magnitude	of	the	induced	e.m.f.	across	the	ends	of	the	wire	is	60	mV.

This	example	illustrates	one	way	in	which	the	flux	density	of	a	magnetic	field	can	be	measured,
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shown	in	Figure	26.18.	A	search	coil	is	a	flat-coil	with	many	turns	of	very	thin	insulated	wire.
A	search	coil	has	2500	turns	and	cross-sectional	area	1.2	cm2.	It	is	placed	between	the	poles	of	a
magnet	so	that	the	magnetic	flux	passes	perpendicularly	through	the	plane	of	the	coil.	The
magnetic	field	between	the	poles	has	flux	density	0.50	T.	The	coil	is	pulled	rapidly	out	of	the	field	in
a	time	of	0.10	s.
Calculate	the	magnitude	of	the	average	induced	e.m.f.	across	the	ends	of	the	coil.

Figure	26.18:	An	e.m.f.	is	induced	in	the	search	coil	when	it	is	moved	out	of	the	field	between	the
poles	of	the	magnet.	A	search	coil	can	be	used	to	detect	the	presence	of	magnetic	flux.

Calculate	the	change	in	the	magnetic	flux	linkage,	Δ(NΦ).
When	the	coil	is	pulled	out	from	the	field,	the	final	flux	linking	the	coil	will	be	zero.	The
cross-sectional	area	A	needs	to	be	in	m2.	Note:	1	cm2	=	10−4	m2.
Δ(NΦ)	=	Final	NΦ	−	initial	NΦ

Δ(NΦ)	=	0	−	[2500	×	1.2	×	10−4	×	0.50]	=	−0.15	Wb
Now	calculate	the	induced	e.m.f.	using	Faraday’s	law	of	electromagnetic	induction.
Δ(NΦ)	=	−0.15	Wb					and					Δt	=	0.10	s

(The	negative	sign	is	not	required;	you	only	need	to	know	the	size	of	the	e.m.f.)
Note	that,	in	this	example,	we	have	assumed	that	the	flux	linking	the	coil	falls	steadily	to
zero	during	the	time	interval	of	0.10	s.	The	answer	is,	therefore,	an	average	value	of	the
induced	e.m.f.

Questions
A	conductor	of	length	L	moves	at	a	steady	speed	v	at	right	angles	to	a	uniform	magnetic	field	of	flux
density	B.
Show	that	the	magnitude	of	the	induced	e.m.f.	E	across	the	ends	of	the	conductor	is	given	by	the
equation:	E	=	BLv
(You	can	use	Worked	example	2	to	guide	you	through	Question	10.)
A	wire	of	length	10	cm	is	moved	through	a	distance	of	2.0	cm	in	a	direction	at	right	angles	to	its
length	in	the	space	between	the	poles	of	a	magnet,	and	perpendicular	to	the	magnetic	field.	The	flux
density	is	1.5	T.	If	this	takes	0.50	s,	calculate	the	magnitude	of	the	average	induced	e.m.f.	across	the
ends	of	the	wire.
Figure	26.19	shows	a	search	coil	with	2000	turns	and	cross-sectional	area	1.2	cm2.	It	is	placed
between	the	poles	of	a	strong	magnet.	The	magnetic	field	is	perpendicular	to	the	plane	of	the	coil.
The	ends	of	the	coil	are	connected	to	a	voltmeter.	The	coil	is	then	pulled	out	of	the	magnetic	field,	and
the	voltmeter	records	an	average	induced	e.m.f.	of	0.40	V	over	a	time	interval	of	0.20	s.
Calculate	the	magnetic	flux	density	between	the	poles	of	the	magnet.



Figure	26.19:	Using	a	search	coil	 to	determine	the	magnetic	flux	density	of	the	field	between	the
poles	of	this	magnet.

	
	



26.4	Lenz’s	law
We	use	Faraday’s	law	to	calculate	the	magnitude	of	an	induced	e.m.f.	Now,	we	can	go	on	to	think	about
the	direction	of	the	induced	e.m.f.	–	in	other	words,	which	end	of	a	wire	or	coil	moving	in	a	magnetic	field
becomes	positive,	and	which	becomes	negative.
Fleming’s	right-hand	rule	gives	the	direction	of	a	current	caused	by	induced	e.m.f.	This	is	a	particular
case	of	a	more	general	law,	Lenz’s	law,	which	will	be	explained	in	this	topic.	First,	we	will	see	how	the
motor	effect	and	the	generator	effect	are	related	to	each	other.

The	origin	of	electromagnetic	induction
So	far,	we	have	not	given	an	explanation	of	electromagnetic	induction.	You	have	seen,	from	the
experiments	at	the	beginning	of	this	chapter,	that	it	does	occur,	and	you	know	the	factors	that	affect	it.
But	what	is	the	origin	of	the	current?
Figure	26.20	gives	an	explanation.	A	straight	metal	wire	XY	is	being	pushed	downwards	through	a
horizontal	magnetic	field	of	flux	density	B.	Now,	think	about	the	free	electrons	in	the	wire.	They	are
moving	downwards,	so	they	are,	in	effect,	an	electric	current.	Of	course,	because	electrons	are	negatively
charged,	the	conventional	current	is	flowing	upwards.

Figure	26.20:	Showing	the	direction	of	the	current	caused	by	the	induced	e.m.f.

We	now	have	a	current	flowing	across	a	magnetic	field,	and	the	motor	effect	will,	therefore,	come	into
play.	Each	electron	experiences	a	force	of	magnitude	Bev.	Using	Fleming’s	left-hand	rule,	we	can	find	the
direction	of	the	force	on	the	electrons.	The	diagram	shows	that	the	electrons	will	be	pushed	in	the
direction	from	X	to	Y.	So	a	current	has	been	induced	to	flow	in	the	wire;	the	direction	of	the	conventional
current	is	from	Y	to	X.
Now,	we	can	check	that	Fleming’s	right-hand	rule	gives	the	correct	directions	for	motion,	field	and
current,	which	indeed	it	does.
So,	to	summarise,	there	is	a	current	caused	by	the	induced	e.m.f.	current	because	the	electrons	are
pushed	by	the	motor	effect.	Electromagnetic	induction	is	simply	a	consequence	of	the	motor	effect.
In	Figure	26.20,	electrons	are	found	to	accumulate	at	Y.	This	end	of	the	wire	is	thus	the	negative	end	of
the	e.m.f.	and	X	is	positive.	If	the	wire	was	connected	to	an	external	circuit,	electrons	would	flow	out	of	Y,
round	the	circuit,	and	back	into	X.	Figure	26.21	shows	how	the	moving	wire	is	equivalent	to	a	cell	(or	any
other	source	of	e.m.f.).



Figure	26.21:	A	moving	wire	in	a	magnetic	field	is	a	source	of	e.m.f.	–	equivalent	to	a	cell.

Forces	and	movement
Electromagnetic	induction	is	how	we	generate	most	of	our	electricity.	We	turn	a	coil	in	a	magnetic	field,
and	the	mechanical	energy	we	put	in	is	transferred	to	electrical	energy.	By	thinking	about	these	energy
transfers,	we	can	deduce	the	direction	of	the	current.
Figure	26.22	shows	one	of	the	experiments	from	earlier	in	this	chapter.	The	north	pole	of	a	magnet	is
being	pushed	towards	a	coil	of	wire.	There	is	a	current	in	the	coil,	but	what	is	its	direction?	The	diagram
shows	the	two	possibilities.

Figure	26.22:	Moving	a	magnet	towards	a	coil:	the	direction	of	the	current	caused	by	the	induced	e.m.f.
is	as	shown	in	b,	not	a.

The	current	in	the	coil	makes	it	into	an	electromagnet.	One	end	becomes	the	north	pole,	the	other	the
south	pole.	In	Figure	26.22a,	if	the	current	is	in	this	direction,	the	coil	end	nearest	the	approaching	north
pole	of	the	magnet	would	be	a	south	pole.	These	poles	will	attract	one	another,	and	you	could	gently	let
go	of	the	magnet	and	it	would	be	dragged	into	the	coil.	The	magnet	would	accelerate	into	the	coil,	the
current	caused	by	induced	e.m.f.	would	increase	further,	and	the	force	of	attraction	between	the	two
would	also	increase.
In	this	situation,	we	would	be	putting	no	(or	very	little	at	the	start)	energy	into	the	system,	but	the
magnet	would	be	gaining	kinetic	energy,	and	the	current	would	be	gaining	electrical	energy.	A	nice	trick
if	you	could	do	it,	but	this	would	violate	the	principle	of	conservation	of	energy!
Figure	26.22b	shows	the	correct	situation.	As	the	north	pole	of	the	magnet	is	pushed	towards	the	coil,	the
current	caused	by	the	induced	e.m.f.	makes	the	end	of	the	coil	nearest	the	magnet	become	a	north	pole.
The	two	poles	repel	one	another,	and	you	have	to	do	work	to	push	the	magnet	into	the	coil.	The	energy
transferred	by	your	work	is	transferred	to	electrical	energy	of	the	current.	The	principle	of	energy
conservation	is	not	violated	in	this	situation.
Figure	26.23	shows	how	we	can	apply	the	same	reasoning	to	a	straight	wire	being	moved	in	a	downward
direction	through	a	magnetic	field.	There	will	be	a	current	caused	by	induced	e.m.f.	in	the	wire,	but	in
which	direction?	Since	this	is	a	case	of	a	current	across	a	magnetic	field,	a	force	will	act	on	it	(the	motor
effect),	and	we	can	use	Fleming’s	left-hand	rule	to	deduce	its	direction.
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Figure	26.23:	Moving	a	wire	through	a	magnetic	field:	the	direction	of	the	current	is	as	shown	in	b,	not
a.

First,	we	will	consider	what	happens	if	the	current	caused	by	the	induced	e.m.f.	is	in	the	wrong	direction.
This	is	shown	in	Figure	26.23a.	The	left-hand	rule	shows	that	the	force	that	results	would	be	downward–
in	the	direction	in	which	we	are	trying	to	move	the	wire.	The	wire	would	thus	be	accelerated,	the	current
would	increase	and	again	we	would	be	getting	both	kinetic	and	electrical	energy	for	no	energy	input.
The	current	must	be	as	shown	in	Figure	26.23b.	The	force	that	acts	on	it	due	to	the	motor	effect	pushes
against	you	as	you	try	to	move	the	wire	through	the	field.	You	have	to	do	work	to	move	the	wire,	and
hence	to	generate	electrical	energy.	Once	again,	the	principle	of	energy	conservation	is	not	violated.

Questions
Use	the	ideas	in	the	previous	topic	to	explain	what	happens	if	a	you	stop	pushing	the	magnet	towards
the	coil	shown	in	Figure	26.22,	and	b	you	pull	the	magnet	away	from	the	coil.
Draw	a	diagram	to	show	the	directions	of	the	current	caused	by	induced	e.m.f.	and	of	the	opposing
force	if	you	now	try	to	move	the	wire	shown	in	Figure	26.23	upwards	through	the	magnetic	field.

A	general	law	for	induced	e.m.f.
Lenz’s	law	summarises	this	general	principle	of	energy	conservation.	The	direction	of	a	current	caused
by	induced	e.m.f.	or	e.m.f	is	such	that	it	always	produces	a	force	that	opposes	the	motion	that	is	being
used	to	produce	it.	If	the	direction	of	the	e.m.f	were	opposite	to	this,	we	would	be	getting	energy	for
nothing.
Here	is	a	statement	of	Lenz’s	law:
Any	induced	e.m.f.	will	be	established	in	a	direction	so	as	to	produce	effects	that	oppose	the	change	that
is	producing	it.
This	law	can	be	shown	to	be	correct	in	any	experimental	situation.	For	example,	in	Figure	26.3,	a
sensitive	ammeter	connected	in	the	circuit	shows	the	direction	of	the	current	as	the	magnet	is	moved	in
and	out.	If	a	battery	is	later	connected	to	the	coil	to	make	a	larger	and	constant	current	in	the	same
direction,	a	compass	will	show	what	the	poles	are	at	the	end	of	the	solenoid.	If	a	north	pole	is	moved	into
the	solenoid,	then	the	solenoid	itself	will	have	a	north	pole	at	that	end.	If	a	north	pole	is	moved	out	of	the
solenoid,	then	the	solenoid	will	have	a	south	pole	at	that	end.
Faraday’s	law	of	electromagnetic	induction,	and	Lenz’s	law,	may	be	summarised	using	the	equation:

where	E	is	the	magnitude	of	the	induced	e.m.f.	and	the	minus	sign	indicates	that	this	induced	e.m.f.
causes	effects	to	oppose	the	change	producing	it.
The	minus	sign	is	there	because	of	Lenz’s	law	–	it	is	necessary	to	emphasise	the	principle	of	conservation
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of	energy.

KEY	EQUATION

Induced	electromagnetic	force.

Questions
A	bar	magnet	is	dropped	vertically	downwards	through	a	long	solenoid,	which	is	connected	to	an
oscilloscope	(Figure	26.24).	The	oscilloscope	trace	shows	how	the	e.m.f.	induced	in	the	coil	varies
with	time	as	the	magnet	accelerates	downwards.

Figure	26.24:	a	A	bar	magnet	falls	through	a	long	solenoid.	b	The	oscilloscope	trace	shows	how	the
induced	e.m.f.	varies	with	time.

Explain	why	an	e.m.f.	is	induced	in	the	coil	as	the	magnet	enters	it	(section	AB	of	the	trace).
Explain	why	no	e.m.f.	is	induced	while	the	magnet	is	entirely	inside	the	coil	(section	BC).
Explain	why	section	CD	shows	a	negative	trace,	why	the	peak	e.m.f.	is	greater	over	this	section,
and	why	CD	represents	a	shorter	time	interval	than	AB.

You	can	turn	a	bicycle	dynamo	by	hand	and	cause	the	lamps	to	light	up.	Use	the	idea	of	Lenz’s	law	to
explain	why	it	is	easier	to	turn	the	dynamo	when	the	lamps	are	switched	off	than	when	they	are	on.

	
	



26.5	Everyday	examples	of	electromagnetic
induction
An	induced	e.m.f.	can	be	generated	in	a	variety	of	ways,	but	can	be	explained	in	terms	of	Faraday’s	and
Lenz’s	laws.	An	e.m.f.	will	be	induced	whenever	there	is	a	rate	of	change	of	magnetic	flux	linkage	for	a
circuit	or	device.	In	this	topic,	we	will	examine	the	physics	behind	two	devices	–	a	generator	and	a
transformer.

Generators
We	can	generate	electricity	by	spinning	a	coil	in	a	magnetic	field.	This	is	equivalent	to	using	an	electric
motor	backwards.	Figure	26.25	shows	such	a	coil	in	three	different	orientations	as	it	spins.

Figure	26.25:	A	coil	rotating	in	a	magnetic	field.

Notice	that	the	rate	of	change	of	magnetic	flux	linkage	is	maximum	when	the	coil	is	moving	through	the
horizontal	position.	In	this	position,	we	get	a	large	induced	e.m.f.	As	the	coil	moves	through	the	vertical
position,	the	rate	of	change	of	magnetic	flux	is	zero	and	the	induced	e.m.f.	is	zero.
Figure	26.26	shows	how	the	magnetic	flux	linkage	varies	with	time	for	a	rotating	coil.

Figure	26.26:	The	magnetic	flux	linking	a	rotating	coil	as	it	changes.	This	gives	rise	to	an	alternating
e.m.f.	The	orientation	of	the	coil	is	shown	above	the	graphs.

According	to	Faraday’s	and	Lenz’s	laws,	the	induced	e.m.f.	is	equal	to	minus	the	gradient	of	the	flux
linkage	against	time	graph:
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When	the	flux	linking	the	coil	is:
maximum,	the	rate	of	change	of	flux	linkage	is	zero	and	hence	the	induced	e.m.f.	is	zero
zero,	 the	 rate	of	 change	of	 flux	 linkage	 is	maximum	(the	graph	 is	 steepest)	and	hence	 the	 induced
e.m.f.	is	also	maximum.

Hence,	for	a	coil	like	this,	we	get	a	varying	e.m.f.	–	this	is	how	alternating	current	is	generated.	In
practice,	it	is	simpler	to	keep	the	large	coil	fixed	and	spin	an	electromagnet	inside	it	(Figure	26.27).	A
bicycle	generator	is	similar,	but	in	this	case	a	permanent	magnet	is	made	to	spin	inside	a	fixed	coil.

Figure	26.27:	In	a	generator,	an	electromagnet	rotates	inside	a	coil.

Transformers
You	may	have	studied	transformers	before	your	study	of	this	course.
A	simple	transformer	has	a	primary	coil	and	a	secondary	coil,	both	wrapped	around	a	soft	iron	core	(ring).
An	alternating	current	is	supplied	to	the	primary	coil.	This	produces	a	varying	magnetic	flux	in	the	soft
iron	core	(see	Figure	26.28).	The	secondary	coil	is	linked	by	the	same	changing	magnetic	flux	in	the	soft
iron	core,	so	an	e.m.f.	is	induced	at	the	ends	of	this	coil.	According	to	Faraday’s	law,	you	can	increase	the
induced	e.m.f.	at	the	secondary	coil	by	increasing	the	number	of	turns	of	the	secondary	coil.	Having	fewer
turns	on	the	secondary	will	have	the	reverse	effect.
Transformers	are	used	to	transport	electrical	energy	using	overhead	cables.

Figure	26.28:	Faraday’s	law	can	be	used	to	explain	the	output	from	a	transformer.

Questions
Figure	26.29	represents	a	coil	of	wire	ABCD	being	rotated	in	a	uniform	horizontal	magnetic	field.
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Copy	and	complete	the	diagram	to	show	the	direction	of	the	current	caused	by	induced	e.m.f.	in	the
coil,	and	the	directions	of	the	forces	on	sides	AB	and	CD	that	oppose	the	rotation	of	the	coil.

Figure	26.29:	A	coil	rotating	in	a	magnetic	field.

Does	a	bicycle	generator	(Figure	26.7)	generate	alternating	or	direct	current?	Justify	your	answer.
The	peak	e.m.f.	induced	in	a	rotating	coil	in	a	magnetic	field	depends	on	four	factors:	magnetic	flux
density	B,	area	of	the	coil	A,	number	of	turns	N	and	frequency	f	of	rotation.	Use	Faraday’s	law	to
explain	why	the	magnitude	of	the	induced	e.m.f.	must	be	proportional	to	each	of	these	quantities.
Explain	why,	if	a	transformer	is	connected	to	a	steady	(d.c.)	supply,	no	e.m.f.	is	induced	across	the
secondary	coil.

REFLECTION
Without	looking	at	your	textbook,	summarise	the	factors	that	affect	the	e.m.f.	induced	in	a	circuit.
Compare	your	summary	with	a	fellow	learner.
Make	a	deck	of	cards	with	all	the	physical	quantities	in	this	chapter.	Do	the	same	for	the	units	for	each
quantity.	Ask	a	fellow	learner	to	match	the	quantities	with	their	units.
How	can	you	better	support	and	encourage	your	classmates	on	future	activities	and	questions?

	
	



SUMMARY

In	a	magnetic	field	of	magnetic	flux	density	B,	the	magnetic	flux	Φ	passing	through	a	cross-sectional
area	A	is	given	by:

Magnetic	flux	linkage	=	N	×	magnetic	flux	=	NΦ

Magnetic	flux	and	magnetic	flux	linkage	are	both	measured	in	webers	(Wb).	1	Wb	=	1	T	m2.

An	e.m.f.	is	induced	in	a	circuit	whenever	there	is	a	change	in	the	magnetic	flux	linkage.

Faraday’s	law	states	that	the	magnitude	of	the	induced	e.m.f.	is	equal	to	the	rate	of	change	of
magnetic	flux	linkage:

Lenz’s	law	states	that	the	induced	current	or	e.m.f.	is	in	a	direction	so	as	to	produce	effects	that
oppose	the	change	that	is	producing	it.

The	equation	for	both	Faraday’s	and	Lenz’s	laws	may	be	written	as:
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EXAM-STYLE	QUESTIONS

Which	of	the	following	units	is	not	correct	for	magnetic	flux? [1]

kg	m2	s−2	A−1 	

T 	

T	m2 	

Wb 	

A	student	thinks	that	electrical	current	passes	through	the	core	in	a
transformer	to	the	secondary	coil.	Describe	how	you	might	demonstrate	that
this	is	not	true	and	explain	how	an	electrical	current	is	actually	induced	in	the
secondary	coil.	Use	Faraday’s	law	in	your	explanation. [3]

A	square	coil	of	100	turns	of	wire	has	sides	of	length	5.0	cm.	It	is	placed	in	a
magnetic	field	of	flux	density	20	mT,	so	that	the	flux	is	perpendicular	to	the
plane	of	the	coil. 	

Calculate	the	flux	through	the	coil. [2]

The	coil	is	now	pulled	from	the	magnetic	field	in	a	time	of	0.10	s.	Calculate
the	average	e.m.f.	induced	in	it. [3]

	 [Total:	5]

An	aircraft	of	wingspan	40	m	flies	horizontally	at	a	speed	of	300	±	10	m	s−1	in
a	region	where	the	vertical	component	of	the	Earth’s	magnetic	field	is	5.0	×
10−5	T. 	

Calculate	the	magnitude	of	the	e.m.f.	induced	between	the	aircraft’s	wingtips;
in	your	answer,	include	the	absolute	uncertainty. [5]

Figure	28.26	shows	the	magnetic	flux	linkage	and	induced	e.m.f.	as	a	coil
rotates.	Explain	why	the	induced	e.m.f.	is	a	maximum	when	there	is	no	flux
linkage	and	the	induced	e.m.f.	is	zero	when	the	flux	linkage	is	a	maximum. [4]

Explain	what	is	meant	by	a	magnetic	flux	linkage	of	1	Wb. [2]

This	is	a	graph	of	magnetic	flux	density	through	a	240	turn	coil	with	a
cross-sectional	area	1.2	×	10−4	m2	against	time. 	

Figure	26.30
	

Determine	the	maximum	rate	of	change	of	flux	in	the	coil. [2]

Determine	the	maximum	magnitude	of	the	induced	e.m.f.	in	the	coil. [2]

Sketch	a	diagram	to	show	the	induced	e.m.f.	varies	with	time.	Mark
values	on	both	the	e.m.f.	and	time	axes. [2]

	 [Total:	8]

This	diagram	shows	a	square	coil	about	to	enter	a	region	of	uniform	magnetic
field	of	magnetic	flux	density	0.30	T.	The	magnetic	field	is	at	right	angles	to	the
plane	of	the	coil.	The	coil	has	150	turns	and	each	side	is	2.0	cm	in	length.	The
coil	moves	at	a	constant	speed	of	0.50	m	s−1. 	
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Figure	26.31

	

Calculate	the	time	taken	for	the	coil	to	completely	enter	the	region	of
magnetic	field. [1]

Determine	the	magnetic	flux	linkage	through	the	coil	when	it	is	all
within	the	region	of	magnetic	field. [2]

Explain	why	the	magnitude	of	the	induced	e.m.f.	is	constant	while	the	coil
is	entering	the	magnetic	field. [1]

Use	your	answer	to	part	a	to	determine	the	induced	e.m.f.	across	the	ends
of	the	coil. [4]

Explain	the	induced	e.m.f.	across	the	ends	of	the	coil	when	it	is	completely
within	the	magnetic	field. [2]

Sketch	a	graph	to	show	the	variation	of	the	induced	e.m.f.	with	time	from
the	instant	that	the	coil	enters	the	magnetic	field.	Your	time	axis	should	go
from	0	to	0.08	s. [2]

	 [Total:	12]

State	Faraday’s	law	of	electromagnetic	induction. [2]

A	circular	coil	of	diameter	200	mm	has	600	turns	is	shown.	It	is	placed
with	its	plane	perpendicular	to	a	horizontal	magnetic	field	of	uniform	flux
density	50	mT.	The	coil	is	then	rotated	through	90°	about	a	vertical	axis	in
a	time	of	120	ms. 	

Figure	26.32
	

Calculate: 	

the	magnetic	flux	passing	through	the	coil	before	the	rotation [2]

the	change	of	magnetic	flux	linkage	produced	by	the	rotation [2]

the	average	magnitude	of	the	induced	e.m.f.	in	the	coil	during	the
rotation. [2]

	 [Total:	8]

A	bicycle	wheel	is	mounted	vertically	on	a	metal	axle	in	a	horizontal	magnetic
field,	as	shown	in	the	diagram.	Sliding	connections	are	made	to	the	metal	edge
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of	the	wheel	and	to	the	metal	axle. 	

Figure	26.33
	

Explain	why	an	e.m.f.	is	induced	when	the	wheel	rotates. [2]

State	and	explain	two	ways	in	which	this	e.m.f.	can	be	increased. [2]

The	wheel	rotates	five	times	per	second	and	has	a	radius	of	15	cm.	The
magnetic	flux	density	may	be	assumed	to	be	uniform	and	of	value	5.0	×
10−3	T. 	

Calculate: 	

the	area	swept	out	each	second	by	one	spoke [2]

the	induced	e.m.f.	between	the	contacts. [2]

	 [Total:	8]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

define	magnetic	flux	Φ 26.2 	 	 	

recall	and	use:

Φ	=	BA

26.2 	 	 	

understand	and	use	the	concept	of
magnetic	flux	linkage

26.2 	 	 	

understand	and	explain	experiments
that	produce	an	e.m.f.	induced	in
circuits

26.2 	 	 	

recall	and	use	Faraday’s	and	Lenz’s
laws	of	electromagnetic	induction.

26.4,	26.5 	 	 	
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	Chapter	27

Alternating	currents

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
understand	and	use	the	terms	period,	frequency	and	peak	value	as	applied	to	an	alternating	current
or	voltage
use	equations	of	the	form	x	=	x0	sin	ωt	representing	a	sinusoidally	alternating	current	or	voltage

recall	 and	use	 the	 fact	 that	 the	mean	power	 in	a	 resistive	 load	 is	half	 the	maximum	power	 for	 a
sinusoidal	alternating	current

distinguish	between	root-mean-square	(r.m.s.)	and	peak	values	and	recall	and	use	 	and	

	for	a	sinusoidal	alternating	current

distinguish	graphically	between	half-wave	and	full-wave	rectification
explain	the	use	of	a	single	diode	for	the	half-wave	rectification	of	an	alternating	current
explain	 the	 use	 of	 four	 diodes	 (bridge	 rectifier)	 for	 the	 full-wave	 rectification	 of	 an	 alternating
current
analyse	the	effect	of	a	single	capacitor	in	smoothing,	including	the	effect	of	the	value	of	capacitance
and	the	load	resistance.

BEFORE	YOU	START
In	 pairs,	 try	 to	 recall	 and	 explain	 the	 relationship	 for	 power	 dissipation	 in	 terms	 of	 current,
potential	difference	and	resistance	from	Chapter	8.
The	physics	of	alternating	currents	has	similarities	with	simple	harmonic	motion	(see	Chapter	18).
Discuss	what	you	remember	about	period,	frequency	and	angular	frequency.
Write	down	what	you	know	about	 the	behaviour	of	diodes	 in	circuits.	What’s	 the	most	 important
property	of	a	diode?



• Discuss	the	discharge	of	a	capacitor	through	a	resistor.	Can	you	remember	the	factors	that	affect
the	time	constant	of	a	circuit?

DESCRIBING	ALTERNATING	CURRENT
In	many	countries,	mains	electricity	is	a	supply	of	alternating	current	(a.c.).	The	first	mains	electricity
supplies	were	developed	towards	the	end	of	the	19th	century;	at	that	time,	a	great	number	of	different
voltages	and	frequencies	were	used	in	different	places.	In	some	places,	the	supply	was	direct	current
(d.c.).	Nowadays,	this	has	been	standardised	across	much	of	the	world,	with	standard	voltages	of	110	V
or	230	V	(or	similar),	and	frequencies	of	50	Hz	or	60	Hz.
Mains	electricity	is	transported	along	many	kilometres	of	high-voltage	power	lines	(cables).
Transformers	are	used	for	stepping-up	and	stepping-down	alternating	voltages	between	the	power
stations	and	the	consumers	(Figure	27.1).	From	your	prior	knowledge	of	transformers	and	transmission
of	electrical	energy,	can	you	remember	why	it	is	necessary	for	power	lines	to	use	high	voltage?

Figure	27.1:	This	engineer	is	working	on	a	transformer	used	for	increasing	(stepping-up)	the	size	of
the	alternating	voltage	to	help	with	the	transportation	of	electrical	energy.
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27.1	Sinusoidal	current
An	alternating	current	can	be	represented	by	a	graph	such	as	that	shown	in	Figure	27.2.	This	shows	that
the	current	varies	regularly.	During	half	of	the	cycle,	the	current	is	positive,	and	in	the	other	half	it	is
negative.	This	means	that	the	direction	of	the	current	reverses	every	half	cycle.	Whenever	you	use	a
mains	appliance,	the	charges	(free	electrons)	within	the	wire	and	appliance	flow	backwards	and	forwards.
At	any	instant	in	time,	the	current	has	a	particular	magnitude	and	direction	given	by	the	graph.
The	graph	has	the	same	shape	as	the	graphs	used	to	represent	simple	harmonic	motion	(s.h.m.)	(see
Chapter	18),	and	it	can	be	interpreted	in	the	same	way.	In	a	wire	with	a.c.,	the	free	electrons	within	the
wire	move	back	and	forth	with	s.h.m.	The	variation	of	the	current	with	time	is	a	sine	curve,	so	it	is
described	as	sinusoidal.	(In	principle,	any	current	whose	direction	changes	between	positive	and
negative	can	be	described	as	alternating,	but	we	will	only	be	concerned	with	those	that	have	a	regular,
sinusoidal	pattern.)

Figure	27.2:	A	graph	to	represent	a	sinusoidal	alternating	current.

An	equation	for	a.c.
As	well	as	drawing	a	graph,	we	can	write	an	equation	to	represent	alternating	current.	This	equation
gives	us	the	value	of	the	current	I	at	any	time	t:

I	=	I0	sin	ωt

where	I	is	the	current	at	time	t,	I0	is	the	peak	value	of	the	alternating	current	and	ω	is	the	angular
frequency	of	the	supply,	measured	in	rad	s−1	(radians	per	second).	The	peak	value	is	the	maximum
magnitude	of	the	current.	It’s	very	much	like	the	‘amplitude’	of	the	alternating	current,	except	the	unit	is
that	of	current.
This	is	related	to	the	frequency	f	in	the	same	way	as	for	s.h.m.:

ω	=	2πf

and	the	frequency	and	period	are	related	by:

KEY	EQUATION
Alternating	current:

I	=	I0	sin	ωt

Remember	that	your	calculator	must	be	in	the	radian	mode	when	using
this	equation.

Questions
The	following	questions	relate	to	the	graph	in	Figure	27.2.

State	the	value	of	the	current	I	and	its	direction	when	time	t	=	5	ms.
Determine	the	time	the	current	next	has	the	same	value,	but	negative.
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State	the	time	T	for	one	complete	cycle	(the	period	of	the	a.c).
Determine	the	frequency	of	this	alternating	current.

The	following	questions	relate	to	the	graph	in	Figure	27.2.
Determine	the	values	of	I0	and	ω.
Write	an	equation	to	represent	this	alternating	current.

An	alternating	current,	measured	in	amperes	(A),	is	represented	by	the	equation:	I	=	5.0	sin	(120πt)
Determine	the	values	of	I0,	ω,	f	and	T.
Sketch	a	graph	to	represent	the	current.
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27.2	Alternating	voltages
Alternating	current	is	produced	in	power	stations	by	large	generators	like	those	shown	in	Figure	27.3.

Figure	27.3:	Generators	in	the	generating	hall	of	a	large	power	station.

As	you	have	already	seen	in	Chapter	26,	a	generator	consists	of	a	coil	rotating	in	a	magnetic	field.	An
e.m.f.	is	induced	in	the	coil	according	to	Faraday’s	and	Lenz’s	laws	of	electromagnetic	induction.
This	e.m.f.	V	varies	sinusoidally,	and	so	we	can	write	an	equation	to	represent	it	that	has	the	same	form	as
the	equation	for	alternating	current:

V	=	V0	sin	ωt

where	V0	is	the	peak	value	of	the	voltage.	We	can	also	represent	this	graphically,	as	shown	in	Figure
27.4.

Figure	27.4:	An	alternating	voltage.

Question
An	alternating	voltage	V,	in	volt	(V),	is	represented	by	the	equation:
V	=	300	sin	(100πt)

Determine	the	values	of	V0,	ω	and	f	for	this	alternating	voltage.
Calculate	V	when	t	=	0.002	s.	(Remember	that	100πt	is	in	radians	when	you	calculate	this.)
Sketch	a	graph	to	show	two	complete	cycles	of	this	voltage.



Measuring	frequency	and	voltage
An	oscilloscope	can	be	used	to	measure	the	frequency	and	voltage	of	an	alternating	current.	Practical
Activity	27.1	explains	how	to	do	this.	There	are	two	types	of	oscilloscope.	The	traditional	cathode-ray
oscilloscope	(CRO)	uses	an	electron	beam.	The	alternative	is	a	digital	oscilloscope,	which	is	likely	to	be
much	more	compact	and	which	can	store	data	and	display	the	traces	later.

PRACTICAL	ACTIVITY	27.1	MEASUREMENTS	USING	AN	OSCILLOSCOPE
A	CRO	is	an	electron	beam	tube,	as	shown	in	Figure	25.4,	but	with	an	extra	set	of	parallel	plates	to
produce	a	horizontal	electric	field	at	right	angles	to	the	beam	(Figure	27.5).

The	principles	of	a	cathode-ray	oscilloscope	(CRO)
The	signal	into	the	CRO	is	a	repetitively	varying	voltage.	This	is	applied	to	the	y-input,	which	deflects
the	beam	up	and	down	using	the	parallel	plates	Y1	and	Y2	shown	in	Figure	27.5.	The	time-base
produces	a	p.d.	across	the	other	set	of	parallel	plates	X1	and	X2	to	move	the	beam	from	left	to	right
across	the	screen.
When	the	beam	hits	the	screen	of	the	CRO,	it	produces	a	small	spot	of	light.	If	you	look	at	the	screen
and	slow	the	movement	down,	you	can	see	the	spot	move	from	left	to	right,	while	the	applied	signal
moves	the	spot	up	and	down.	When	the	spot	reaches	the	right	side	of	the	screen,	it	flies	back	very
quickly	and	waits	for	the	next	cycle	of	the	signal	to	start	before	moving	to	the	right	once	again.	In	this
way,	the	signal	is	displayed	as	a	stationary	trace	on	the	screen.	There	may	be	many	controls	on	a	CRO,
even	more	than	those	shown	on	the	CRO	illustrated	in	Figure	27.6.

Figure	27.5:	The	construction	of	a	cathode-ray	oscilloscope.	Cathode	rays	 (beams	of	electrons)	are
produced	in	the	electron	gun	and	then	deflected	by	electric	fields	before	they	strike	the	screen.

The	controls
The	X-shift	and	the	Y-shift	controls	move	the	whole	trace	in	the	x-direction	and	the	y-direction,
respectively.	The	two	controls	that	you	must	know	about	are	the	time-base	and	the	Y-gain,	or	Y-
sensitivity.



Figure	27.6:	The	controls	of	a	typical	CRO.

You	can	see	in	Figure	27.6	that	the	time-base	control	has	units	marked	alongside.	Let	us	suppose	that
this	reads	5	ms/cm,	although	it	might	be	5	ms/division.	This	shows	that	1	cm	(or	1	division)	on	the	x-
axis	represents	5	ms.	Varying	the	time-base	control	alters	the	speed	with	which	the	spot	moves	across
the	screen.	If	the	time-base	is	changed	to	1	ms/cm,	then	the	spot	moves	faster	and	each	centimetre
represents	a	smaller	time.
The	Y-gain	control	has	a	unit	marked	in	volts/cm,	or	sometimes	volts/division.	If	the	actual	marking	is	5
V/cm,	then	each	centimetre	on	the	y-axis	represents	5	V	in	the	applied	signal.
It	is	important	to	remember	that	on	the	CRO	screen,	the	x-axis	represents	time	and	the	y-axis
represents	voltage.

Determining	frequency	and	amplitude	(peak	value	of	voltage)
If	you	look	at	the	CRO	trace	shown	in	Figure	27.7,	you	can	see	that	the	amplitude	of	the	waveform,	or
the	peak	value	of	the	voltage,	is	equivalent	to	2	cm	and	the	period	of	the	trace	is	equivalent	to	4	cm.
If	the	Y-gain	or	Y-sensitivity	setting	is	2	V/cm,	then	the	peak	voltage	is	2	×	2	=	4	V.	If	the	time-base
setting	is	5	ms/cm,	then	the	period	is	4	×	5	=	20	ms.
In	the	example:

Figure	27.7:	A	typical	trace	on	the	screen	of	a	CRO.

Questions
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The	Y-sensitivity	and	time-base	settings	are	5	V/cm	and	10	ms/cm.	The	trace	seen	on	the	CRO	screen
is	the	one	shown	in	Figure	27.7.
Determine	the	amplitude,	period	and	frequency	of	the	signal	applied	to	the	Y-input	of	the	CRO.
Sketch	the	CRO	trace	for	a	sinusoidal	voltage	of	frequency	100	Hz	and	amplitude	10	V,	when	the	time-
base	is	10	ms/cm	and	the	Y-sensitivity	is	10	V/cm.

	
	



27.3	Power	and	alternating	current
We	use	mains	electricity	to	supply	us	with	energy.	If	the	current	and	voltage	are	varying	all	the	time,	does
this	mean	that	the	power	is	varying	all	the	time	too?	The	answer	to	this	is	yes.	You	may	have	noticed	that
some	fluorescent	lamps	flicker	continuously,	especially	if	you	observe	them	out	of	the	corner	of	your	eye
or	when	you	move	your	head	quickly	from	one	side	to	the	other.	A	tungsten	filament	lamp	would	flicker
too,	but	the	frequency	of	the	mains	has	been	chosen	so	that	the	filament	does	not	have	time	to	cool	down
noticeably	between	peaks	in	the	supply.

Root-mean-square	(r.m.s.)	values
There	is	a	mathematical	relationship	between	the	peak	value	V0	of	the	alternating	voltage	and	a	direct
voltage	that	delivers	the	same	average	electrical	power.	The	direct	voltage	is	about	70%	of	V0.	(You	might
have	expected	it	to	be	about	half,	but	it	is	more	than	this,	because	of	the	shape	of	the	sine	graph.)	This
steady	direct	voltage	is	known	as	the	root-mean-square	(r.m.s.)	value	of	the	alternating	voltage.	In	the
same	way,	we	can	think	of	the	root-mean-square	value	of	an	alternating	current,	Ir.m.s.

The	r.m.s.	value	of	an	alternating	current	is	that	steady	current	that	delivers	the	same	average	power	as
the	a.c.	to	a	resistive	load.
The	lamps	in	Practical	Activity	27.2	are	the	‘resistive	loads’.	A	full	analysis,	which	we	will	come	to	shortly,
shows	that	Ir.m.s.	is	related	to	I0	by:

This	is	where	the	factor	of	70%	comes	from.	Note	that	this	factor	only	applies	to	sinusoidal	alternating
currents.
We	also	have	r.m.s.	voltage	Vr.m.s.	across	the	resistive	load.	Vr.m.s	is	related	to	the	peak	voltage	V0	by:

KEY	EQUATIONS
Root-mean-square	value:

where	I0	is	the	peak	(maximum)	current.

where	V0	is	the	peak	(maximum)	voltage.

PRACTICAL	ACTIVITY	27.2

Comparing	alternating	current	(a.c.)	and	direct	current	(d.c.)
Because	the	power	supplied	by	an	alternating	current	is	varying	all	the	time,	we	need	to	have	some	way
of	describing	the	average	power	that	is	being	supplied.	To	do	this,	we	compare	an	alternating	current
with	a	direct	current,	and	try	to	find	the	direct	current	that	supplies	the	same	average	power	as	the
alternating	current.
Figure	27.8	shows	how	this	can	be	done	in	practice.	Two	filament	lamps	(our	resistive	loads)	are	placed
side	by	side;	one	is	connected	to	an	a.c.	supply	(on	the	right)	and	the	other	to	a	d.c.	supply	(the
batteries	on	the	left).	The	a.c.	supply	is	adjusted	so	that	the	two	lamps	are	equally	bright,	indicating
that	the	two	supplies	are	providing	energy	at	the	same	average	rate.	The	output	voltages	are	then
compared	on	the	double-beam	oscilloscope.
A	typical	trace	is	shown	in	Figure	27.9.	This	shows	that	the	a.c.	trace	sometimes	rises	above	the	steady
d.c.	trace,	and	sometimes	falls	below	it.	This	makes	sense:	sometimes	the	a.c.	is	delivering	more	power
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than	the	d.c.,	and	sometimes	less,	but	the	average	power	is	the	same	for	both.

Figure	27.8:	Comparing	direct	and	alternating	currents	that	supply	the	same	power.	The	lamps	are
equally	bright.

Figure	27.9:	The	oscilloscope	trace	from	the	experiment	shown	in	Figure	27.8.

Questions
The	alternating	current	(in	ampere,	A)	in	a	resistor	is	represented	by	the	equation:	I	=	2.5	sin	(100πt)
Calculate	the	r.m.s.	value	for	this	alternating	current.
The	mains	supply	to	domestic	consumers	in	many	European	countries	has	an	r.m.s.	value	of	230	V	for
the	alternating	voltage.	(Note	that	it	is	the	r.m.s.	value	that	is	generally	quoted,	not	the	peak	value.)
Calculate	the	peak	value	of	the	alternating	voltage.

Calculating	power
The	importance	of	r.m.s.	values	is	that	they	allow	us	to	apply	equations	from	our	study	of	direct	current	to
situations	where	the	current	is	alternating.	So,	to	calculate	the	average	power	dissipated	in	a	resistor,	we
can	use	the	usual	formulae	for	power:

Remember	that	it	is	essential	to	use	the	r.m.s.	values	of	I	and	V,	as	in	Worked	example	1.	If	you	use	peak
values,	your	answer	will	be	too	great	by	a	factor	of	2.
Where	does	this	factor	of	2	come	from?	Recall	that	r.m.s.	and	peak	values	are	related	by:



1

Step	1

Step	2

9

10
a
b
c
d

So,	if	you	calculate	I2R	using	I0	instead	of	Ir.m.s.,	you	will	introduce	a	factor	of	 	or	2.	The	same	is
true	if	you	calculate	power	using	V0	instead	of	Vr.m.s..	It	follows	that,	for	a	sinusoidal	alternating	current,
peak	power	is	twice	average	power.

WORKED	EXAMPLE

A	20	Ω	resistor	is	connected	to	an	alternating	supply.	The	voltage	across	the	resistor	has	peak	value
25	V.
Calculate	the	average	power	dissipated	in	the	resistor.

Calculate	the	r.m.s.	value	of	the	voltage.

Now	calculate	the	average	power	dissipated.	(Remember	you	must	use	the	r.m.s.	value,	and
not	the	peak	value.)

Note	that,	if	we	had	used	V0	rather	than	Vr.m.s.,	we	would	have	found:

which	is	double	the	correct	answer.

Questions
Calculate	the	average	power	dissipated	in	a	resistor	of	resistance	100	Ω	when	a	sinusoidal	alternating
current	has	a	peak	value	of	3.0	A.
The	sinusoidal	voltage	across	a	1.0	kΩ	resistor	has	a	peak	value	325	V.

Calculate	the	r.m.s.	value	of	the	alternating	voltage.
Use	V	=	IR	to	calculate	the	r.m.s.	current	in	the	resistor.
Calculate	the	average	power	dissipated	in	the	resistor.
Calculate	the	peak	power	dissipated	in	the	resistor.

Explaining	root-mean-square
We	will	now	briefly	consider	the	origin	of	the	term	root-mean-square	and	show	how	the	factor	of	 	in
the	equation	 	comes	about.

The	equation	P	=	I2R	shows	us	that	the	power	P	is	directly	proportional	to	the	square	of	the	current	I.
Figure	27.10	shows	how	we	can	calculate	I2for	an	alternating	current.	The	current	I	varies	sinusoidally,
and	during	half	of	each	cycle	it	is	negative.	However,	I2	is	always	positive	(because	the	square	of	a
negative	number	is	positive).	Notice	that	I2	varies	up	and	down,	and	that	it	has	twice	the	frequency	of	the
current.



Figure	27.10:	An	alternating	current	I	is	alternately	positive	and	negative,	while	I2	is	always	positive.

Now,	if	we	consider	<I2>,	the	average	(mean)	value	of	I2,	we	find	that	its	value	is	half	of	the	square	of	the
peak	current	(because	the	graph	is	symmetrical).	That	is:

To	find	the	r.m.s.	value	of	I,	we	now	take	the	square	root	of	<I2>.
This	gives:

Summarising	this	process:	to	find	the	r.m.s.	value	of	the	current,	we	find	the	root	of	the	mean	of	the
square	of	the	current	–	hence	r.m.s.
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27.4	Rectification
Many	electrical	appliances	work	with	alternating	current.	Some,	like	electrical	heaters,	will	work	equally
well	with	d.c.	or	a.c.	However,	there	are	many	appliances,	such	as	electronic	equipment,	which	require
d.c.	For	these,	the	alternating	mains	voltage	must	be	converted	to	direct	voltage	by	the	process	of
rectification.

Figure	27.11:	Half-wave	rectification	of	a.c.	requires	a	single	diode.

A	simple	way	to	do	this	is	to	use	a	diode,	which	is	a	component	that	will	only	allow	current	in	only	one
direction.	(You	have	already	met	diodes	in	Chapter	10.)	Figure	27.11	shows	a	circuit	for	doing	this.	An
alternating	input	voltage	is	applied	to	a	circuit	with	a	diode	and	a	resistor	in	series.	The	diode	will	only
conduct	during	the	positive	cycles	of	the	input	voltage.	Hence,	there	will	be	a	current	in	the	load	resistor
only	during	these	positive	cycles.	The	output	voltage	Vout	across	the	resistor	will	fluctuate	as	shown	in	the
Vout	against	time	t	graph.	This	graph	is	identical	to	the	input	alternating	voltage,	except	the	negative
cycles	have	been	‘chopped-off’.
This	type	of	rectification	is	known	as	half-wave	rectification.	For	one-half	of	the	time	the	voltage	is	zero,
and	this	means	that	the	power	available	from	a	half-wave	rectified	supply	is	reduced.

The	bridge	rectifier
To	overcome	this	problem	of	reduced	power,	a	bridge	rectifier	circuit	is	used.	This	consists	of	four	diodes
connected	across	the	input	alternating	voltage,	as	shown	in	Figure	27.12.	The	output	voltage	Vout	is	taken
across	the	load	resistor	R.	The	resulting	output	voltage	across	the	load	resistor	R	is	full-wave	rectified.
The	way	in	which	this	works	is	shown	in	Figure	27.13.

During	the	positive	cycles	of	 the	 input	voltage,	A	 is	positive	and	B	 is	negative.	The	diodes	2	and	3
conduct	because	they	are	both	in	forward	bias.	The	diodes	1	and	4	are	in	reverse	bias,	and	therefore
do	 not	 conduct.	 The	 current	 in	 the	 load	 resistor	 R	 will	 be	 downwards.	 Figure	 27.13a	 shows	 the
direction	of	the	current.
During	the	negative	cycles	of	the	input	voltage,	B	is	positive	and	A	is	negative.	The	diodes	4	and	1
conduct	 because	 they	 are	 now	 both	 in	 forward	 bias.	 The	 diodes	 2	 and	 3	 are	 in	 reverse	 bias,	 and
therefore	do	not	conduct.	The	current	 in	 the	 load	resistor	R	will	 still	be	downwards.	Figure	27.13b
shows	the	direction	of	the	current.
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Figure	27.12:	Full-wave	rectification	of	a.c.	using	a	diode	bridge.

Figure	27.13:	Direction	of	current	during	full-wave	rectification	a	for	positive	cycles	and	b	for	negative
cycles.

Note	that	in	both	positive	and	negative	cycles,	the	current	direction	in	the	load	resistor	R	is	always	the
same	(downwards).	This	means	that	the	top	end	of	R	must	always	be	positive.
You	can	construct	a	bridge	rectifier	using	light-emitting	diodes	(LEDs)	that	light	up	when	current	flows
through	them.	By	connecting	this	bridge	to	a	slow	a.c.	supply	(for	instance,	1	Hz	from	a	signal	generator),
you	can	see	the	sequence	in	which	the	diodes	conduct	during	rectification.

Question
Explain	why,	when	terminal	B	in	Figure	27.13	is	positive	(during	the	negative	cycles),	only	diodes	1
and	4	conduct.

Smoothing
In	order	to	produce	steady	d.c.	from	the	‘bumpy’	d.c.	that	results	from	rectification,	a	smoothing
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capacitor	is	necessary	in	the	circuit.	This	capacitor,	of	capacitance	C,	is	in	parallel	with	the	load	resistor
of	resistance	R.	This	is	shown	in	Figure	27.14.	The	idea	is	that	the	capacitor	charges	up	and	maintains	the
voltage	at	a	high	level.	It	discharges	gradually	when	the	rectified	voltage	drops,	but	the	voltage	soon	rises
again	and	the	capacitor	charges	up	again.	The	result	is	an	output	voltage	with	‘ripple’.

Figure	27.14:	A	smoothing	capacitor	is	connected	across	(in	parallel	with)	the	load	resistor.

The	amount	of	ripple	can	be	controlled	by	carefully	choosing	the	capacitance	C	of	the	capacitor	and	the
resistance	R	of	the	load	resistor.	A	capacitor	with	a	large	capacitance	value	discharges	more	slowly	than	a
capacitor	with	a	small	capacitance	value,	so	will	give	a	smaller	ripple.	Similarly,	if	the	resistance	R	of	the
resistor	is	increased,	then	this	too	leads	to	a	slower	discharge	of	the	capacitor.	You	may	have	already	met
the	physics	of	discharging	capacitors	in	Chapter	23.	So,	the	size	of	the	ripple	can	be	reduced	by
increasing	the	time	constant	CR	of	the	capacitor–resistor	circuit.	Ideally,	though	this	is	definitely	not	a
general	rule,	CR	must	be	much	greater	than	the	time	interval	between	the	adjacent	peaks	of	the	output
signal	–	you	want	the	capacitor	to	be	still	discharging	between	the	‘gaps’	between	the	positive	cycles.
This	is	illustrated	in	Worked	example	2.
Note	that,	in	Figures	27.11	to	27.14,	we	have	represented	the	load	on	the	supply	by	a	resistor.	This
represents	any	components	that	are	connected	to	the	supply.	For	example,	a	rectifier	circuit	can	be	used
to	charge	the	battery	of	a	mobile	phone	or	provide	a	direct	voltage	supply	for	small	radio.

WORKED	EXAMPLE

Figure	27.15	shows	the	output	voltage	from	a	half-wave	rectifier.	The	load	resistor	has	resistance
1.2	kΩ.	A	student	wishes	to	smooth	the	output	voltage	by	placing	a	capacitor	across	the	load
resistor.

Figure	27.15:	Output	from	a	half-wave	rectifier.

With	the	help	of	a	calculation,	suggest	if	a	10	pF	capacitor	or	a	500	µF	capacitor	would	be	suitable
for	this	task.

Calculate	the	time	constant	with	the	10	pF	capacitor.

time	constant	=	CR	=	10	×	10−9	×	1.2	×	103	=	1.2	×	10−5	s	(=	0.012	ms)
Compare	the	time	constant	with	the	time	interval	between	the	adjacent	peaks	of	the	output
signal.
The	time	constant	of	0.012	ms	is	very	small	compared	with	time	interval	of	40	ms	between
the	adjacent	peaks	of	the	output.	If	this	capacitor	were	to	be	used,	it	would	discharge	far
too	quickly.	There	would	be	no	smoothing	of	the	output	voltages	–	the	10	pF	capacitor	is	not
suitable.
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Repeat	the	steps	for	the	500	µF	capacitor.

time	constant	=	CR	=	500	×	10−6	×	1.2	×	103	=	0.60	s	(=	600	ms)
Now,	the	time	constant	of	600	ms	is	much	larger	than	40	ms.	This	capacitor	will	not
discharge	completely	between	the	positive	cycles	of	the	half-wave	rectified	signal.	The	500
µF	capacitor	would	be	adequate	for	the	smoothing	task.

Questions
Sketch	the	following	voltage	patterns:

a	sinusoidal	alternating	voltage
the	same	voltage	as	part	a,	but	half-wave	rectified
the	same	voltage	as	part	b,	but	smoothed
the	same	voltage	as	part	a,	but	full-wave	rectified
the	same	voltage	as	part	d,	but	smoothed.

A	student	wires	a	bridge	rectifier	incorrectly	as	shown	in	Figure	27.16.	Explain	what	you	would
expect	to	observe	when	an	oscilloscope	is	connected	across	the	load	resistor	R.
A	bridge	rectifier	circuit	is	used	to	rectify	an	alternating	current	through	a	resistor.	A	smoothing
capacitor	is	connected	across	the	resistor.	Figure	27.17	shows	how	the	current	varies.	Use	sketches
to	show	the	changes	you	would	expect:

if	the	resistance	R	of	the	resistor	is	increased
if	the	capacitance	C	of	the	capacitor	is	decreased.

Figure	27.16:	A	bridge	rectifier	circuit	that	is	wired	incorrectly.	For	Question	13.

Figure	27.17:	A	smoothed,	rectified	current.	For	Question	14.

REFLECTION
Without	looking	at	your	textbook,	summarise	all	the	key	equations	from	this	chapter.
Make	a	list	of	mains	operated	devices	in	your	laboratory.	For	each	device,	determine	the	power,	r.m.s.
current	and	r.m.s.	voltage.
Give	yourself	and	a	classmate	one	minute	to	draw	a	circuit	diagram	for	a	full-wave	rectifier	circuit.
Compare	your	circuit	diagrams.	Which	diagram	was	more	accurate?	How	would	you	make	this	diagram
more	accurate	if	you	were	to	draw	it	in	the	future?

	
	



SUMMARY

A	sinusoidal	alternating	current	can	be	represented	by	I	=	I0	sin	ωt,	where	I0	is	the	peak	value	of	the
current.

The	root-mean-square	(r.m.s.)	value	of	an	alternating	current	is	that	steady	current	that	delivers	the
same	average	power	as	the	a.c.	to	a	resistive	load;	for	a	sinusoidal	a.c.:

The	relationship	between	root-mean-square	(r.m.s.)	voltage	Vr.m.s	and	peak	voltage	V0	is:

The	power	P	dissipated	in	a	resistor	can	be	calculated	using	the	equations:

P	=	VI,	P	=	I2R	and	

where	V	and	I	are	the	r.m.s.	values	of	the	voltage	and	current,	respectively.

A	single	diode	is	used	for	the	half-wave	rectification	of	an	alternating	current.	Four	diodes	(bridge
rectifier)	are	used	for	the	full-wave	rectification	of	an	alternating	current.

A	capacitor	placed	in	parallel	with	a	resistive	load	will	smooth	the	rectified	alternating	voltage.	The
greater	the	time	constant	CR	of	the	capacitor-resistor	network,	the	smaller	is	the	size	of	the	ripple.
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EXAM-STYLE	QUESTIONS

The	maximum	power	dissipated	in	a	resistor	carrying	an	alternating	current	is
10	W. 	

What	is	the	mean	power	dissipated	in	the	resistor? [1]

5.0	W 	

7.1	W 	

10	W 	

14	W 	

The	alternating	current	I	in	ampere	(A)	in	a	filament	lamp	is	represented	by
the	equation: 	

I	=	1.5	sin	(40t). 	

Which	of	the	following	is	correct? [1]

The	angular	frequency	of	the	alternating	current	is	40	rad	s−1. 	

The	frequency	of	alternating	current	is	40	Hz. 	

The	maximum	current	is	3.0	A. 	

The	peak	voltage	is	1.5	V. 	

Write	down	a	general	expression	for	the	sinusoidal	variation	with	time	t	of: 	

an	alternating	voltage	V [1]

an	alternating	current	I	(you	may	assume	that	I	and	V	are	in	phase) [1]

the	power	P	dissipated	due	to	this	current	and	voltage. [1]

	 [Total:	3]

The	alternating	current	I	in	ampere	(A)	in	a	circuit	is	represented	by	the
equation: 	

I	=	2.0	sin	(50πt). 	

State	the	peak	value	of	the	current. [1]

Calculate	the	frequency	of	the	alternating	current. [2]

Sketch	a	graph	to	show	two	cycles	of	the	variation	of	current	with	time.
Mark	the	axes	with	suitable	values. [2]

Calculate	Ir.m.s.,	the	r.m.s.	value	of	current,	and	mark	this	on	your	graph	in
part	c. [1]

Determine	two	values	of	time	t	at	which	the	current	I	=	Ir.m.s.. [3]

	 [Total:	9]

A	heater	of	resistance	6.0	Ω	is	connected	to	an	alternating	current	supply.	The
output	voltage	from	the	supply	is	20	V	r.m.s. 	

Calculate: 	

the	average	power	dissipated	in	the	heater [2]

the	maximum	power	dissipated	in	the	heater [1]

the	energy	dissipated	by	the	heater	in	5.0	minutes. [2]

	 [Total:	5]

An	oscilloscope	is	used	to	display	the	variation	of	voltage	across	a	200	Ω
resistor	with	time.	The	trace	is	shown.	The	time-base	of	the	oscilloscope	is	set
at	5	ms	div−1	and	the	Y-gain	at	0.5	V	div−1. 	



a
b
c
d

7				a

b

i

ii

8

a

b

i
ii

Figure	27.18

	

Determine: 	

the	period	and	hence	the	frequency	of	the	alternating	voltage [2]

the	peak	voltage	and	hence	the	r.m.s.	voltage [2]

the	r.m.s.	current	in	the	resistor [1]

the	mean	power	dissipated	in	the	resistor. [2]

	 [Total:	7]

State	the	relationship	between	the	peak	current	I0	and	the	r.m.s.	current
Irms	for	a	sinusoidally	varying	current. [1]

The	current	in	a	resistor	connected	to	a	steady	d.c.	supply	is	2.0	A.	When
the	same	resistor	is	connected	to	an	a.c.	supply,	the	current	in	it	has	a	peak
value	of	2.0	A.	The	heating	effects	of	the	two	currents	in	the	resistor	are
different. 	

Explain	why	the	heating	effects	are	different	and	state	which	heating
effect	is	the	greater. [2]

Calculate	the	ratio	of	the	power	dissipated	in	the	resistor	by	the	d.c.
current	to	the	power	dissipated	in	the	resistor	by	the	a.c.	current. [2]

	 [Total:	5]

A	sinusoidal	voltage	of	6.0	V	r.m.s.	and	frequency	50	Hz	is	connected	to	a	diode
and	a	resistor	R	of	resistance	400	Ω	as	shown	in	the	diagram. 	

Figure	27.19
	

Sketch	a	graph	showing	the	variation	with	time	of	both	the	supply
waveform	(use	a	dotted	line)	and	the	voltage	across	R	(use	a	solid	line).	Put
numerical	scales	on	both	the	voltage	and	time	axes. [4]

An	uncharged	capacitor	C	is	connected	across	R.	When	the	6.0	V	r.m.s.
supply	is	switched	on,	the	capacitor	charges	fully	during	the	first	quarter
of	a	cycle.	You	may	assume	that	the	p.d.	across	the	diode	is	zero	when	it
conducts.	For	the	next	three-quarters	of	the	first	cycle,	the	diode	stops
conducting	and	the	p.d.	across	R	falls	to	one-half	of	the	peak	value.	During
this	time	the	mean	p.d.	across	R	is	5.7	V.

	

For	the	last	three-quarters	of	the	first	cycle,	calculate: 	

the	time	taken [1]

the	mean	current	in	R [2]
[2]
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the	charge	flowing	through	R
the	capacitance	of	C. [2]

Explain	why	the	diode	stops	conducting	during	part	of	each	cycle	in	part	b. [2]

	 [Total:	13]

The	rectified	output	from	a	circuit	is	connected	to	a	resistor	R	of	resistance
1000	Ω.	Graph	A	shows	the	variation	with	time	t	of	the	p.d.	V	across	the
resistor.	Graph	B	shows	the	variation	of	V	when	a	capacitor	is	placed	across	R
to	smooth	the	output. 	

Figure	27.20
	

Explain	how	the	rectification	is	achieved.	Draw	a	circuit	diagram	to	show	the
components	involved. [6]

Explain	the	action	of	the	capacitor	in	smoothing	the	output. [3]

Using	graph	B	between	t	=	0.005	and	t	=	0.015	s,	determine: 	

the	time	during	which	the	capacitor	is	charging [1]

the	mean	value	of	the	p.d.	across	R [1]

the	average	power	dissipated	in	R. [2]

	 [Total:	13]

Electrical	energy	is	supplied	by	a	high-voltage	power	line	that	has	a	total
resistance	of	4.0	Ω.	At	the	input	to	the	line,	the	root-mean-square	(r.m.s.)
voltage	has	a	value	of	400	kV	and	the	input	power	is	500	MW. 	

Explain	what	is	meant	by	root-mean-square	voltage. [2]

Calculate	the	minimum	voltage	that	the	insulators	that	support	the	line
must	withstand	without	breakdown. [2]

Calculate	the	value	of	the	r.m.s.	current	in	the	power	line. [2]

Calculate	the	power	loss	on	the	line. [2]

Suggest	why	it	is	an	advantage	to	transmit	the	power	at	a	high	voltage. [2]

	 [Total:	10]

A	student	has	designed	a	full-wave	rectifier	circuit. 	

The	output	voltage	for	this	circuit	is	taken	across	a	resistor	of	resistance	120
Ω.	The	variation	of	the	output	voltage	with	time	is	shown. 	

Figure	27.21
	

A	capacitor	is	now	connected	across	the	resistor.	The	graph	shows	the	new
variation	of	the	output	voltage	with	time. 	
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Figure	27.22
	

Explain	the	variation	of	the	output	variation	between	points: 	

AB [1]

BC. [1]

Use	the	second	graph	to	determine	the	value	of	the	capacitance	C. [3]

(You	may	use	the	equation	 	from	Chapter	23.) 	

	 [Total:	5]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	terms	period,	frequency
and	peak	value	as	applied	to	an
alternating	current	or	voltage

26.1,	26.2 	 	 	

use	the	equations	I	=	I0	sin	ωt	and	V	=
V0	sin	ωt	for	sinusoidally	alternating
current	and	voltage,	respectively

26.1,	26.2 	 	 	

understand	that	the	mean	power	in	a
resistive	load	is	half	the	maximum
power	for	a	sinusoidal	alternating
current

27.3 	 	 	

understand	root-mean-square	(r.m.s.)
and	peak	values

27.3 	 	 	

recall	and	use: 27.3 	 	 	

understand	half-wave	and	full-wave
rectification

27.4 	 	 	

explain	how	a	single	diode	produces
half-wave	rectification

27.4 	 	 	

explain	how	four	diodes	(bridge
rectifier)	produce	full-wave	rectification

27.4 	 	 	

understand	smoothing	capacitors,	and
understand	how	smoothing	effects	are
governed	by	capacitance	of	the
smoothing	capacitor	and	the	resistance
of	the	load	resistor.

27.4 	 	 	
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	Chapter	28

Quantum	physics

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
understand	that	electromagnetic	radiation	has	a	particulate	nature
understand	that	a	photon	is	a	quantum	of	electromagnetic	energy
recall	and	use	E	=	hf
use	the	electronvolt	(eV)	as	a	unit	of	energy

understand	that	a	photon	has	momentum	and	that	the	momentum	is	given	by	

understand	 that	 photoelectrons	 may	 be	 emitted	 from	 a	 metal	 surface	 when	 it	 is	 illuminated	 by
electromagnetic	radiation
understand	and	use	the	terms	threshold	frequency	and	threshold	wavelength
explain	photoelectric	emission	in	terms	of	photon	energy	and	work	function	energy

recall	and	use	

explain	why	the	maximum	kinetic	energy	of	photoelectrons	is	independent	of	intensity,	whereas	the
photoelectric	current	is	proportional	to	intensity
understand	 that	 the	 photoelectric	 effect	 provides	 evidence	 for	 a	 particulate	 nature	 of
electromagnetic	radiation,	while	phenomena	such	as	interference	and	diffraction	provide	evidence
for	a	wave	nature
describe	 and	 interpret	 qualitatively	 the	 evidence	 provided	 by	 electron	 diffraction	 for	 the	 wave
nature	of	particles
understand	the	de	Broglie	wavelength	as	the	wavelength	associated	with	a	moving	particle

recall	and	use	

understand	 that	 there	 are	 discrete	 electron	 energy	 levels	 in	 isolated	 atoms	 (such	 as	 atomic
hydrogen)
understand	the	appearance	and	formation	of	emission	and	absorption	line	spectra



•

•

•

recall	and	use	the	relation	hf	=	E1	−	E2.

BEFORE	YOU	START
The	principle	of	conservation	of	energy	is	an	important	idea	in	physics.	Write	down	some	examples
of	this	from	several	topics	in	physics.	Share	your	list	with	a	partner.
In	pairs,	discuss	the	concepts	of	momentum	and	kinetic	energy.

WHAT	IS	LIGHT?
When	the	first	laser	was	made	in	1960,	it	seemed	like	a	clever	idea,	but	it	was	a	long	time	before	it
found	any	useful	application.	Today,	lasers	are	everywhere	–	in	CD	and	DVD	machines,	computer	disc
drives,	supermarket	barcode	scanners–there	are	probably	more	lasers	than	people.	Figure	28.1	shows	a
patient	undergoing	laser	eye	surgery.
The	invention	of	the	laser	was	only	possible	when	scientists	had	cracked	the	mystery	of	the	nature	of
light.
You	already	know	that	light	is	a	wave.	What	experimental	evidence	is	there	for	the	wave-like	behaviour
of	such	waves?	You	will	see	in	this	chapter	that	electromagnetic	waves	have	a	dual	nature	–	they
interact	with	matter	as	‘particles’	and	propagate	through	space	as	a	wave.

Figure	28.1:	This	patient	is	undergoing	laser	eye	surgery,	which	improves	the	focusing	of	the	eye	by
modifying	the	shape	of	the	surface	of	the	eyeball.

	
	



28.1	Modelling	with	particles	and	waves
In	this	chapter,	we	will	study	two	very	powerful	scientific	models	–	particles	and	waves	–	to	see	how	they
can	help	us	to	understand	more	about	both	light	and	matter.	First,	we	will	take	a	closer	look	at	each	of
these	models	in	turn.

Particle	models
In	order	to	explain	the	properties	of	matter,	we	often	think	about	the	particles	of	which	it	is	made	and	the
ways	in	which	they	behave.	We	imagine	particles	as	being	objects	that	are	hard,	have	mass	and	move
about	according	to	the	laws	of	Newtonian	mechanics	(Figure	28.2).	When	two	particles	collide,	we	can
predict	how	they	will	move	after	the	collision,	based	on	knowledge	of	their	masses	and	velocities	before
the	collision.	If	you	have	played	snooker	or	pool,	you	will	have	a	pretty	good	idea	of	how	particles	behave.
Particles	are	a	macroscopic	model.	Our	ideas	of	particles	come	from	what	we	observe	on	a	macroscopic
scale–when	we	are	walking	down	the	street,	or	observing	the	motion	of	stars	and	planets,	or	working	with
trolleys	and	balls	in	the	laboratory.	But	what	else	can	we	explain	using	a	particle	model?
The	importance	of	particle	models	is	that	we	can	apply	them	to	the	microscopic	world,	and	explain	more
phenomena.
We	can	picture	gas	molecules	as	small,	hard	particles,	rushing	around	and	bouncing	haphazardly	off	one
another	and	the	walls	of	their	container.	This	is	the	kinetic	model	of	a	gas	that	we	studied	in	depth	in
Chapter	20.	We	can	explain	the	macroscopic	(larger	scale)	phenomena	of	pressure	and	temperature	in
terms	of	the	masses	and	speeds	of	the	microscopic	particles.	This	is	a	very	powerful	model,	which	has
been	refined	to	explain	many	other	aspects	of	the	behaviour	of	gases.
Table	28.1	shows	how,	in	particular	topics	of	science,	we	can	use	a	particle	model	to	interpret	and	make
predictions	about	macroscopic	phenomena.

Figure	28.2:	Pool	balls	provide	a	good	model	for	the	behaviour	of	particles	on	a	much	smaller	scale.

Topic Model Macroscopic	phenomena

electricity flow	of	electrons current

gases kinetic	theory pressure,	temperature	and
volume	of	a	gas

solids crystalline	materials mechanical	properties

radioactivity nuclear	model	of	the	atom radioactive	decay,	fission	and
fusion	reactions

chemistry atomic	structure chemical	reactions



Table	28.1:	Particle	models	in	science.

Wave	models
Waves	are	something	that	we	see	on	the	sea.	There	are	tidal	waves,	and	little	ripples.	Some	waves	have
foamy	tops,	others	are	breaking	on	the	beach.
Physicists	have	an	idealised	picture	of	a	wave	–	it	is	shaped	like	a	sine	graph.	You	will	not	see	any	waves
quite	this	shape	on	the	sea.	However,	it	is	a	useful	picture,	because	it	can	be	used	to	represent	some
simple	phenomena.	More	complicated	waves	can	be	made	up	of	several	simple	waves,	and	physicists	can
cope	with	the	mathematics	of	sine	waves.	(This	is	the	principle	of	superposition,	which	we	looked	at	in
detail	in	Chapter	13.)
Waves	are	a	way	in	which	energy	is	transferred	from	one	place	to	another.	In	any	wave,	something	is
changing	in	a	regular	way,	while	energy	is	travelling	along.	In	water	waves,	the	surface	of	the	water
moves	up	and	down	periodically	and	energy	is	transferred	horizontally.
Table	28.2	shows	some	phenomena	that	we	explain	in	terms	of	waves.

Phenomenon Varying	quantity

sound pressure	(or	density)

light	(and	other	electromagnetic	waves) electric	field	strength	and	magnetic	flux	density

waves	on	strings displacement

Table	28.2:	Wave	models	in	science.

The	characteristic	properties	of	waves	are	that	they	all	show	reflection,	refraction,	diffraction	and
interference.	Waves	themselves	do	not	have	mass	or	charge.	Since	particle	models	can	also	explain
reflection	and	refraction,	it	is	diffraction	and	interference	that	we	regard	as	the	defining
characteristics	of	waves.	If	we	can	show	diffraction	and	interference,	we	know	that	we	are	dealing	with
waves	(Figure	28.3).

Figure	28.3:	A	diffraction	grating	splits	up	light	into	its	component	colours	and	can	produce	dramatic
effects	in	photographs.

Waves	or	particles?
Wave	models	and	particle	models	are	both	very	useful.	They	can	explain	a	great	many	different
observations.	But	which	should	we	use	in	a	particular	situation?	And	what	if	both	models	seem	to	work



when	we	are	trying	to	explain	something?
This	is	just	the	problem	that	physicists	struggled	with	for	over	a	century,	in	connection	with	light.	Does
light	travel	as	a	wave	or	as	particles?
For	a	long	time,	Newton’s	view	prevailed–light	travels	as	particles.	This	was	set	out	in	1704	in	his	famous
book	Opticks.	He	could	use	this	model	to	explain	both	reflection	and	refraction.	His	model	suggested	that
light	travels	faster	in	water	than	in	air.	In	1801,	Thomas	Young,	an	English	physicist,	demonstrated	that
light	showed	diffraction	and	interference	effects.	Physicists	were	still	very	reluctant	to	abandon	Newton’s
particle	model	of	light.	The	ultimate	blow	to	Newton’s	model	came	from	the	work	carried	out	by	the
French	physicist	Léon	Foucault	in	1853.	His	experiments	on	the	speed	of	light	showed	that	light	travelled
more	slowly	in	water	than	in	air.	Newton’s	model	had	at	last	been	tested	and	it	was	in	direct
contradiction	with	experimental	results.	Most	scientists	had	to	accept	that	light	travelled	through	space
as	a	wave.
	
	



28.2	Particulate	nature	of	light
We	expect	light	to	behave	as	waves,	but	can	light	also	behave	as	particles?	The	answer	is	yes,	and	you	are
probably	already	familiar	with	some	of	the	evidence.
If	you	place	a	Geiger	counter	next	to	a	source	of	gamma	radiation,	you	will	hear	an	irregular	series	of
clicks.	The	counter	is	detecting	γ-rays	(gamma-rays).	But	γ-rays	are	part	of	the	electromagnetic	spectrum.
They	belong	to	the	same	family	of	waves	as	visible	light,	radio	waves,	X-rays	and	so	on.
So,	here	are	waves	giving	individual	or	discrete	clicks,	which	are	indistinguishable	from	the	clicks	given
by	γ-particles	(alpha-particles)	and	γ-particles	(beta-particles).	We	can	conclude	that	γ-rays	behave	like
particles	when	they	interact	with	the	gas	particles	within	a	Geiger	counter.
This	effect	is	most	obvious	with	γ-rays,	because	they	are	at	the	most	energetic	end	of	the	electromagnetic
spectrum.	It	is	harder	to	show	the	same	effect	for	visible	light.

Photons
The	photoelectric	effect,	and	Einstein’s	explanation	of	it,	convinced	physicists	that	light	could	behave	as
a	stream	of	particles.	Before	we	go	on	to	look	at	this	in	detail,	we	need	to	see	how	to	calculate	the	energy
of	photons.
Newton	used	the	word	corpuscle	for	the	particles	that	he	thought	made	up	light.	Nowadays,	we	call
them	photons	and	we	believe	that	all	electromagnetic	radiation	consists	of	photons.	A	photon	is	a	‘packet
of	energy’	or	a	quantum	of	electromagnetic	energy.	Gamma-photons	(γ-photons)	are	the	most	energetic.
According	to	Albert	Einstein,	who	based	his	ideas	on	the	work	of	another	German	physicist,	Max	Planck,
the	energy	E	of	a	photon	in	joules	(J)	is	related	to	the	frequency	f	in	hertz	(Hz)	of	the	electromagnetic
radiation	of	which	it	is	part,	by	the	equation:

E	=	hf

The	constant	h	has	an	experimental	value	equal	to	6.63	×	10−34	J	s.
This	constant	h	is	called	the	Planck	constant.	It	has	units	of	joule	seconds	(J	s),	but	you	may	prefer	to
think	of	this	as	‘joules	per	hertz’.	The	energy	of	a	photon	is	directly	proportional	to	the	frequency	of	the
electromagnetic	waves,	that	is:

Hence,	high-frequency	radiation	means	high-energy	photons.
Notice	that	the	equation	E	=	hf	shows	us	the	relationship	between	a	particle-like	property	(the	photon
energy	E)	and	a	wave-like	property	(the	frequency	f).	It	is	called	the	Einstein	relation	and	applies	to	all
electromagnetic	waves.
The	frequency	f	and	wavelength	λ	of	an	electromagnetic	wave	are	related	to	the	wave	speed	c	by	the	wave
equation	c	=	fλ,	so	we	can	also	write	this	equation	as:

where	h	is	the	Planck	constant,	f	is	frequency	and	λ	is	wavelength.

KEY	EQUATION
Einstein	relation:

It	is	worth	noting	that	the	energy	of	the	photon	is	inversely	proportional	to	the	wavelength.	Hence	the
short-wavelength	X-ray	photon	is	far	more	energetic	than	the	long-wavelength	photon	of	light.

Now,	we	can	work	out	the	energy	of	a	γ-photon.	Gamma-rays	typically	have	frequencies	greater	than	1020

Hz.	The	energy	of	a	γ-photon	is	therefore	greater	than	(6.63	×	10−34	×	1020)	≈	10−13	J.	This	is	a	very
small	amount	of	energy	on	the	human	scale,	so	we	don’t	notice	the	effects	of	individual	γ-photons.
However,	some	astronauts	have	reported	seeing	flashes	of	light	as	individual	cosmic	rays,	high-energy	γ-
photons,	passed	through	their	eyeballs.
The	energy	of	individual	photons	can	be	quite	small,	but	the	rate	at	which	photons	emitted	by	a	source
can	be	enormous.	This	is	illustrated	in	Worked	example	1	for	a	light-emitting	diode.
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WORKED	EXAMPLE

A	light-emitting	diode	(LED)	emits	light	of	wavelength	670	nm.	The	radiant	power	of	the	light	from
the	LED	is	50	mW.
Calculate	the	rate	at	which	photons	are	emitted	from	this	LED.

Calculate	the	energy	E	of	a	single	photon.

(Note:	1	nm	=	10−9	m)
Calculate	the	rate	of	photons	emitted.
The	rate	at	which	the	photons	are	emitted	is	the	equivalent	to	the	number	of	photons
emitted	per	second.

(Note:	1	mW	=	10−3	W)
In	one	second,	there	are	about	1.7	×	1017	photons	emitted	by	the	LED.

Questions
To	answer	questions	1	to	7	you	will	need	these	values:

speed	of	light	in	a	vacuum	c	=	3.00	×	108	m	s−1

Planck	constant	h	=	6.63	×	10−34	J	s
Calculate	the	energy	of	a	high-energy	γ-photon,	of	frequency	1.0	×	1026	Hz.
Visible	light	has	wavelengths	in	the	range	400	nm	(violet)	to	700	nm	(red).	Calculate	the	energy	of	a
photon	of	red	light	and	a	photon	of	violet	light.
Determine	the	wavelength	of	the	electromagnetic	waves	for	each	photon,	a	to	e.	Then	use	Figure	28.4
to	identify	the	region	of	the	electromagnetic	spectrum	to	which	each	belongs.
The	photon	energy	is:

10−12	J
10−15	J
10−18	J
10−20	J
10−25	J

A	1.0	mW	laser	produces	red	light	of	wavelength	6.48	×	10−7	m.	Calculate	how	many	photons	the
laser	produces	per	second.

Figure	28.4:	Wavelengths	of	the	electromagnetic	spectrum.	The	boundaries	between	some	regions
are	fuzzy.
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The	electronvolt	(eV)
The	energy	of	a	photon	is	extremely	small	and	far	less	than	a	joule.	Hence,	the	joule	is	not	a	very
convenient	unit	for	measuring	photon	energies.	You	may	remember	from	Chapter	15	that	we	use	another
energy	unit,	the	electronvolt	(eV),	when	considering	amounts	of	energy	much	smaller	than	a	joule.
To	recap	from	Chapter	15:	when	an	electron	travels	through	a	potential	difference,	energy	is	transferred.
If	an	electron,	which	has	a	charge	of	magnitude	1.60	×	10−19	C,	travels	through	a	potential	difference	of
1	V,	its	energy	change	W	is	given	by:

W	=	QV	=	1.60	×	10−19	×	1	=	1.60	×	10−19	J

We	can	use	this	as	the	electronvolt:
One	electronvolt	(1	eV)	is	the	energy	gained	by	an	electron	travelling	through	a	potential	difference	of
one	volt.
Therefore:

1	eV	=	1.60	×	10−19	J

So	when	an	electron	moves	through	1	V,	1	eV	of	energy	is	gained	or	transferred	to	the	electron.	When	one
electron	moves	through	2	V,	2	eV	of	energy	is	gained.	When	five	electrons	move	through	10	V,	a	total	of
50	eV	is	transferred	and	so	on.

To	convert	from	eV	to	J,	multiply	by	1.60	×	10−19.

To	convert	from	J	to	eV,	divide	by	1.60	×	10−19.

Question
An	electron	travels	through	a	cell	of	e.m.f.	1.2	V.
Calculate	the	energy	is	transferred	to	the	electron.	Give	your	answer	in	both	eV	and	J.
Calculate	the	energy	in	eV	of	an	X-ray	photon	of	frequency	3.0	×	1018	Hz.
With	the	help	of	a	calculation,	identify	the	region	of	the	electromagnetic	spectrum	(Figure	28.4)	a
photon	of	energy	10	eV	belongs.

When	a	charged	particle	is	accelerated	through	a	potential	difference	V,	its	kinetic	energy	increases.	For
an	electron	(charge	e),	accelerated	from	rest,	we	can	write:

We	need	to	be	careful	when	using	this	equation.	It	does	not	apply	when	a	charged	particle	is	accelerated
through	a	large	voltage	to	speeds	approaching	the	speed	of	light	c.	For	this,	we	would	have	to	take
account	of	relativistic	effects.	(The	mass	of	a	particle	increases	as	its	speed	gets	closer	to	3.00	×	108	m	s
−1.)
Rearranging	the	equation	gives	the	electron’s	speed:

This	equation	applies	to	any	type	of	charged	particle,	including	protons	(charge	+e)	and	ions.

Question
A	proton,	initially	at	rest,	is	accelerated	through	a	potential	difference	of	1500	V.	A	proton	has	charge
+	1.60	×	10−19	C	and	mass	1.67	×	10−27	kg.
Calculate:

its	final	kinetic	energy	in	joules	(J)
its	final	speed.

PRACTICAL	ACTIVITY	28.1

Estimating	the	Planck	constant	h
You	can	obtain	an	estimate	of	the	value	of	the	Planck	constant	h	by	means	of	a	simple	experiment.	It
makes	use	of	light-emitting	diodes	(LEDs)	of	different	colours	(Figure	28.5).	You	may	recall	from
Chapter	10	that	an	LED	conducts	in	one	direction	only	(the	forward	direction)	and	that	it	requires	a
minimum	voltage,	the	threshold	voltage,	to	be	applied	in	this	direction	before	it	allows	a	current.	This
experiment	makes	use	of	the	fact	that	LEDs	of	different	colours	require	different	threshold	voltages
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before	they	conduct	and	emit	light.
An	LED	giving	light	of	red	colour	emits	photons	that	are	of	low	energy.	It	requires	a	low	threshold
voltage	to	make	it	conduct.
An	 LED	 giving	 light	 of	 blue	 colour	 emits	 higher-energy	 photons.	 It	 requires	 a	 higher	 threshold
voltage	to	make	it	conduct.

What	is	happening	to	produce	photons	of	light	when	an	LED	conducts?	The	simplest	way	to	think	of	this
is	to	say	that	the	electrical	energy	of	a	single	electron	passing	through	the	diode	is	transferred	to	the
energy	of	a	single	photon.

Figure	28.5:	Light-emitting	diodes	(LEDs)	come	in	different	colours.

Hence,	we	can	write:
energy	transferred	by	electron	=	energy	of	photon

where	V	is	the	threshold	voltage	for	the	LED.	The	values	of	e	and	c	are	known.	Measurements	of	V	and
λ	will	allow	you	to	calculate	h.	So	the	measurements	required	are:

V	–	the	voltage	across	the	LED	when	it	begins	to	conduct	(its	threshold	voltage).	It	is	found	using	a
circuit	like	the	one	shown	in	Figure	28.6a.
λ	 –	 the	 wavelength	 of	 the	 light	 emitted	 by	 the	 LED.	 This	 is	 found	 by	 measurements	 using	 a
diffraction	grating	or	from	the	wavelength	quoted	by	the	manufacturer	of	the	LED.

If	several	LEDs	of	different	colours	are	available,	V	and	λ	can	be	determined	for	each	and	a	graph	of	V
against	 	drawn	(see	Figure	28.6b).	The	graph	passes	through	the	origin	and	has	gradient	 	and,
hence,	h	can	be	estimated.
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Figure	28.6:	a	 A	 circuit	 to	 determine	 the	 threshold	 voltage	 required	 to	make	 an	LED	conduct.	An
ammeter	helps	to	show	when	this	occurs.	b	The	graph	used	to	determine	h	from	this	experiment.

Question
In	an	experiment	to	determine	the	Planck	constant	h,	LEDs	of	different	colours	were	used.	The	p.d.
required	to	make	each	conduct	was	determined,	and	the	wavelength	of	their	light	was	taken	from	the
manufacturer’s	catalogue.	The	results	are	shown	in	Table	28.3.	For	each	LED,	calculate	the
experimental	value	for	h	and,	hence,	determine	an	average	value	for	the	Planck	constant.

Colour	of	LED Wavelength	/	10−9	m Threshold	voltage	/	V
infrared 910 1.35
red 670 1.70
amber 610 2.00
green 560 2.30

Table	28.3:	Results	from	an	experiment	to	determine	h.

	
	



28.3	The	photoelectric	effect
In	the	photoelectric	effect,	light	shines	on	a	metal	surface	and	electrons	are	released	from	it.	The	Greek
word	for	light	is	photo,	hence,	the	word	‘photoelectric’.	The	electrons	removed	from	the	metal	plate	in
this	manner	are	often	known	as	photoelectrons.
The	apparatus	used	to	observe	the	photoelectric	effect	is	shown	in	Practical	Activity	28.2.	Light	from	a
lamp	is	shone	onto	a	negatively	charged	metal	plate	and	some	of	the	electrons	in	the	metal	are	emitted.	A
simple	explanation	is	that	light	is	a	wave	that	carries	energy	and	this	energy	releases	electrons	from	the
metal.	However,	detailed	observations	of	the	effect	at	first	proved	difficult	to	explain,	in	particular,	that
there	is	a	minimum	threshold	frequency	of	light	below	which	no	effect	is	observed.

PRACTICAL	ACTIVITY	28.2

Observing	the	photoelectric	effect
You	can	observe	the	photoelectric	effect	yourself	by	fixing	a	clean	zinc	plate	to	the	top	of	a	gold-leaf
electroscope	(Figure	28.7).	Give	the	electroscope	a	negative	charge	and	the	leaf	deflects.	Now,	shine
electromagnetic	radiation	from	a	mercury	discharge	lamp	on	the	zinc	and	the	leaf	gradually	falls.	(A
mercury	lamp	strongly	emits	ultraviolet	radiation.)	Charging	the	electroscope	gives	it	an	excess	of
electrons.	Somehow,	the	electromagnetic	radiation	from	the	mercury	lamp	helps	electrons	to	escape
from	the	surface	of	the	metal.
Placing	the	mercury	lamp	closer	causes	the	leaf	to	fall	more	rapidly.	This	is	not	very	surprising.
However,	if	you	insert	a	sheet	of	glass	between	the	lamp	and	the	zinc,	the	radiation	from	the	lamp	is	no
longer	effective.	The	gold	leaf	does	not	fall.	Glass	absorbs	ultraviolet	radiation	and	it	is	this	component
of	the	radiation	from	the	lamp	that	is	effective.

Figure	28.7:	A	simple	experiment	to	observe	the	photoelectric	effect.

	
	



28.4	Threshold	frequency	and	wavelength
If	you	try	the	experiment	described	in	Practical	Activity	28.2	with	a	bright	filament	lamp,	you	will	find	it
has	no	effect.	A	filament	lamp	does	not	produce	ultraviolet	radiation.	There	is	a	minimum	frequency	that
the	incident	radiation	must	have	in	order	to	release	electrons	from	the	metal.	This	is	called	the	threshold
frequency.	The	threshold	frequency	is	a	property	of	the	metal	plate	being	exposed	to	electromagnetic
radiation.
The	threshold	frequency	is	defined	as	the	minimum	frequency	required	to	release	electrons	from	the
surface	of	a	metal.
Since	c	=	fλ,	this	implies	that	the	threshold	frequency	has	an	equivalent	longest	wavelength	for	the
liberation	of	electrons	from	the	surface	of	a	metal.	This	is	called	the	threshold	wavelength.
Threshold	wavelength	is	the	longest	wavelength	of	the	incident	electromagnetic	radiation	that	would	eject
electrons	from	the	surface	of	a	metal.
Physicists	found	it	hard	to	explain	why	weak	ultraviolet	radiation	could	have	an	immediate	effect	on	the
electrons	in	the	metal,	but	very	bright	light	of	lower	frequency	had	no	effect.	They	imagined	light	waves
arriving	at	the	metal,	spread	out	over	its	surface	and	they	could	not	see	how	weak	ultraviolet	waves	could
be	more	effective	than	the	intense	visible	waves.	In	1905,	Albert	Einstein	came	up	with	an	explanation
based	on	the	idea	of	photons.
Metals	(such	as	zinc)	have	electrons	that	are	not	very	tightly	held	within	the	metal.	These	are	the
conduction	electrons,	and	they	are	free	to	move	about	within	the	metal.	When	photons	of	electromagnetic
radiation	strike	the	metal,	some	electrons	break	free	from	the	surface	of	the	metal	(Figure	28.8).	They	only
need	a	small	amount	of	energy	(about	10−19	J)	to	escape	from	the	metal	surface.
We	can	picture	the	electrons	as	being	trapped	in	an	energy	‘well’	(Figure	28.9).	A	single	electron	requires
a	minimum	energy	Φ	(Greek	letter	phi)	to	escape	the	surface	of	the	metal.	The	work	function	energy,	or
simply	work	function,	of	a	metal	is	the	minimum	amount	of	energy	required	by	an	electron	to	escape	its
surface.	Energy	is	needed	to	release	the	surface	electrons	because	they	are	attracted	by	the	electrostatic
forces	due	to	the	positive	metal	ions.

Figure	28.8:	The	photoelectric	effect.	When	a	photon	of	ultraviolet	radiation	strikes	the	metal	plate,	its
energy	may	be	sufficient	to	release	an	electron.
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Figure	28.9:	A	single	photon	may	interact	with	a	single	electron	to	release	it.

Einstein	did	not	picture	electromagnetic	waves	interacting	with	all	of	the	electrons	in	the	metal.	Instead,
he	suggested	that	a	single	photon	could	provide	the	energy	needed	by	an	individual	electron	to	escape.
The	photon	energy	would	need	to	be	at	least	as	great	as	Φ.	By	this	means,	Einstein	could	explain	the
threshold	frequency.	A	photon	of	visible	light	has	energy	less	than	Φ,	so	it	cannot	release	an	electron	from
the	surface	of	zinc.
When	a	photon	arrives	at	the	metal	plate,	it	may	be	captured	by	an	electron.	The	electron	gains	all	of	the
photon’s	energy	and	the	photon	no	longer	exists.	Some	of	the	energy	is	needed	for	the	electron	to	escape
from	the	energy	well;	the	rest	is	the	electron’s	kinetic	energy.
Now	we	can	see	that	the	photon	model	works	because	it	models	electromagnetic	waves	as	concentrated
‘packets’	of	energy,	each	one	able	to	release	an	electron	from	the	metal.
Here	are	some	rules	for	the	photoelectric	effect:

Electrons	from	the	surface	of	the	metal	are	removed.
A	single	photon	can	only	 interact,	and	hence	exchange	 its	energy,	with	a	single	electron	 (one-to-one
interaction).
A	 surface	 electron	 is	 removed	 instantaneously	 from	 the	 metal	 surface	 when	 the	 energy	 of	 the
incident	photon	 is	greater	than,	or	equal	to,	 the	work	function	Φ	of	 the	metal.	 (The	frequency	of	 the
incident	radiation	is	greater	than,	or	equal	to,	the	threshold	frequency	of	the	metal.	Alternatively,	the
wavelength	of	the	incident	radiation	is	less	than,	or	equal	to,	the	threshold	wavelength	of	the	metal.)
Energy	must	be	conserved	when	a	photon	interacts	with	an	electron.
Increasing	the	intensity	of	the	incident	radiation	does	not	release	a	single	electron	when	its	frequency
is	less	than	the	threshold	frequency.	The	intensity	of	the	incident	radiation	is	directly	proportional	to
the	rate	at	which	photons	arrive	at	the	plate.	Each	photon	still	has	energy	that	is	less	than	the	work
function.

Photoelectric	experiments	showed	that	the	electrons	released	had	a	range	of	kinetic	energies	up	to	some
maximum	value,	k.e.max.	These	fastest-moving	electrons	are	the	ones	that	were	least	tightly	held	in	the
metal.
Imagine	a	single	photon	interacting	with	a	single	surface	electron	and	freeing	it.	According	to	Einstein:

where	hf	is	the	energy	of	the	photon,	Φ	is	the	work	function	of	the	metal	and	 	is	the	maximum
kinetic	energy	of	the	emitted	photoelectron.
This	equation,	known	as	Einstein’s	photoelectric	equation.	It	can	also	be	written	as:

KEY	EQUATION
Einstein’s	photoelectric	equation:

The	photoelectric	equation	can	be	understood	as	follows:
We	start	with	a	photon	of	energy	hf.
It	is	absorbed	by	an	electron.
Some	of	the	energy	(Φ)	is	used	in	escaping	from	the	metal.	The	rest	remains	as	kinetic	energy	of	the
electron.
If	 the	photon	 is	absorbed	by	an	electron	 that	 is	 lower	 in	 the	energy	well,	 the	escaping	electron	will
have	less	kinetic	energy	than	k.e.max	(Figure	28.10).

What	happens	when	the	incident	radiation	has	a	frequency	equal	to	the	threshold	frequency	f0	of	the
metal?
The	kinetic	energy	of	an	electron	is	zero.	Hence,	according	to	Einstein’s	photoelectric	equation:



Hence,	the	threshold	frequency	f0	is	given	by	the	expression:

and,	the	threshold	wavelength	γ0	is	given	by	the	expression:

What	happens	when	the	incident	radiation	has	frequency	less	than	the	threshold	frequency?	A	single
photon	can	still	give	up	its	energy	to	a	single	electron,	but	this	electron	cannot	escape	from	the	attractive
forces	of	the	positive	metal	ions.	The	energy	absorbed	from	the	photons	appears	as	kinetic	energy	of	the
electrons.	These	electrons	lose	their	kinetic	energy	to	the	metal	ions	when	they	collide	with	them.	This
warms	up	the	metal.	This	is	why	a	metal	plate	placed	close	to	a	table	lamp	gets	hot.
Different	metals	have	different	threshold	frequencies,	and	hence	different	work	functions.	For	example,
alkali	metals	such	as	sodium,	potassium	and	rubidium	have	threshold	frequencies	in	the	visible	region	of
the	electromagnetic	spectrum.	The	conduction	electrons	in	zinc	are	more	tightly	bound	within	the	metal
and	so	its	threshold	frequency	is	in	the	ultraviolet	region	of	the	spectrum.

Figure	28.10:	A	more	tightly	bound	electron	needs	more	energy	to	release	it	from	the	metal.

Table	28.4	summarises	the	observations	of	the	photoelectric	effect.

Observation Comments

Emission	of	electrons	happens	as	soon	as	the
electromagnetic	radiation	is	incident	on	the	metal.

A	single	photon	interacts	with	a	single	electron.

If	the	energy	of	the	incident	photon	is	equal	to,	or
greater	than,	the	work	function	of	the	metal,	the
electrons	will	be	ejected	instantaneously.

Even	weak	(low-intensity)	electromagnetic	radiation
is	effective.

Low-intensity	means	smaller	rate	of	photons
incident	on	the	metal	surface.	The	energy	of	each
photon	depends	on	the	frequency	or	wavelength	–
not	the	intensity.

As	long	as	each	photon	has	energy	equal	to,	or
greater	than,	the	work	function	of	the	metal,	the
electrons	will	be	ejected.

Low	intensity	would	imply	smaller	rate	of	emission
of	electrons.

Increasing	intensity	of	electromagnetic	radiation
increases	rate	at	which	electrons	leave	metal.

Greater	intensity	means	greater	rate	of	photons
incident	on	the	metal	surface.	If	the	electrons	are
collected	as	part	of	an	external	circuit,	then	the
photoelectric	current	would	be	directly	proportional
to	the	intensity	of	the	incident	radiation	–	this	is
provided	the	threshold	frequency	of	the	metal	has
been	exceeded.
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Increasing	intensity	has	no	effect	on	kinetic
energies	of	electrons.

Greater	intensity	does	not	mean	more	energetic
photons,	so	electrons	cannot	have	more	kinetic
energy.	The	maximum	kinetic	energy	of	the
electrons	is	given	by	 ;	it	is
independent	of	intensity.

A	minimum	threshold	frequency	is	needed	for	the
emission	of	electrons.

Electrons	will	be	emitted	from	the	metal	surface
when	the	incident	radiation	has	frequency	equal	to
or	greater	than	the	threshold	frequency.

Increasing	frequency	of	electromagnetic	radiation
increases	maximum	kinetic	energy	of	electrons.

Higher	frequency	means	more	energetic	photons;
so	electrons	gain	more	kinetic	energy	and	can	move
faster.	Once	again,	you	can	use	
to	explain	the	observation.

Table	28.4:	The	success	of	the	photon	model	in	explaining	the	photoelectric	effect.

Questions
You	will	need	these	values	to	answer	questions	10	to	13:

speed	of	light	in	a	vacuum	c	=	3.00	×	108	m	s−1

Planck	constant	h	=	6.63	×	10−34	J	s

mass	of	electron	me	=	9.11	×	10−31	kg

elementary	charge	e	=	1.60	×	10−19	C

Photons	of	energies	1.0	eV,	2.0	eV	and	3.0	eV	strike	a	metal	surface	whose	work	function	is	1.8	eV.
State	which	of	these	photons	could	cause	the	release	of	an	electron	from	the	metal.
Calculate	the	maximum	kinetic	energies	of	the	electrons	released	in	each	case.	Give	your	answers
in	eV	and	in	J.

Table	28.5	shows	the	work	functions	of	several	different	metals.
State	which	metal	requires	the	highest	frequency	of	electromagnetic	waves	to	release	electrons.
State	which	metal	will	release	electrons	when	the	lowest	frequency	of	electromagnetic	waves	is
incident	on	it?
Calculate	the	threshold	frequency	for	zinc.
Calculate	the	threshold	wavelength	for	potassium.

Metal Work	function	Φ	/	J Work	function	Φ	/	eV
caesium 3.0	×	10−19 1.9

calcium 4.3	×	10−19 2.7

gold 7.8	×	10−19 4.9

potassium 3.2	×	10−19 2.0

zinc 6.9	×	10−19 4.3

Table	28.5:	Work	functions	of	several	different	metals.

Electromagnetic	waves	of	wavelength	2.4	×	10−7	m	are	incident	on	the	surface	of	a	metal	whose	work
function	is	2.8	×	10−19	J.

Calculate	the	energy	of	a	single	photon.
Calculate	the	maximum	kinetic	energy	of	electrons	released	from	the	metal.
Determine	the	maximum	speed	of	the	emitted	photoelectrons.

When	electromagnetic	radiation	of	wavelength	2000	nm	is	incident	on	a	metal	surface,	the	maximum
kinetic	energy	of	the	electrons	released	is	found	to	be	4.0	×	10−20	J.
Calculate	the	work	function	of	the	metal	in	joules	(J).
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Step	1

28.5	Photons	have	momentum	too

Figure	 28.11:	 Comet	 Hyakutake.	 The	 tail	 of	 a	 comet	 is	 evidence	 that	 photons	 of	 sunlight	 have
momentum.

The	photoelectric	effect	provides	evidence	for	the	particle-like	behaviour	of	photons.	Is	there	any	other
evidence	for	this	type	of	behaviour	of	electromagnetic	radiation?	In	1619,	German	mathematician	and
astronomer	Johann	Kepler	suggested	that	the	long	tail	of	a	comet	points	away	from	the	Sun	because
sunlight	exerts	pressure	on	this	tail.	Figure	28.11	shows	the	tail	of	the	Comet	Hyakutake	in	the	night	sky.
Kepler	was	almost	correct.	In	1905,	Albert	Einstein,	as	part	of	his	Special	Theory	of	Relativity,	showed
that	a	photon	travelling	in	a	vacuum	has	momentum,	even	though	it	has	no	mass.	The	steady	stream	of
momentum-carrying	photons	in	sunlight	is	responsible	for	exerting	pressure	(or	force)	on	objects	in
space.	Satellites	orbiting	the	Earth	–	or	space	probes	sent	to	explore	the	planets	in	our	Solar	System	–
have	to	take	account	of	tiny	pressures	exerting	by	colliding	photons.	A	satellite	orbiting	the	Earth	would
experience	a	pressure	of	about	9	µN	m−2	from	sunlight.
Einstein	showed	that	the	momentum	p	of	a	photon	is	related	to	its	energy	E	by	the	equation:

where	c	is	the	speed	of	light	in	a	vacuum.
The	energy	E	of	a	photon	can	be	written	either	as:

Worked	example	2	shows	how	you	can	estimate	the	pressure	exerted	by	photons	hitting	a	metal	plate.

WORKED	EXAMPLES

A	2.0	mW	laser	beam	is	incident	normally	on	a	fixed	metal	plate.	The	cross-sectional	area	of	the
beam	is	4.0	×	10−6	m2.	The	light	from	the	laser	has	frequency	4.7	×	1014	Hz.
Calculate	the	momentum	of	the	photon,	and	the	pressure	exerted	by	the	laser	beam	on	the	metal
plate.	You	may	assume	that	the	photons	are	all	absorbed	by	the	plate.

Calculate	the	momentum	of	each	photon.

(Note:	the	units	can	either	be	written	as	kg	m	s–1	or	N	s.)



Step	2

Step	3

Step	4

Calculate	the	number	of	photons	incident	on	the	plate	per	second.

Calculate	the	force	exerted	on	the	plate	by	assuming	we	can	use	Newton’s	second	law.
Consider	a	time	interval	of	1.0	s.

Calculate	the	pressure.

This	is	a	tiny	pressure	and	would	not	be	noticeable	on	the	fixed	metal	plate.	However,	if	this	plate
was	in	deep-space,	it	would,	over	a	period	of	time,	show	some	movement.

	
	



28.6	Line	spectra
We	will	now	look	at	another	phenomenon	that	we	can	explain	in	terms	of	light	as	photons.	We	rely	a	great
deal	on	light	to	inform	us	about	our	surroundings.	Using	our	eyes	we	can	identify	many	different	colours.
Scientists	take	this	further	by	analysing	light,	by	splitting	it	up	into	a	spectrum.	The	technical	term	for	the
splitting	of	light	into	its	components	is	dispersion.	You	will	be	familiar	with	the	ways	in	which	this	can	be
done,	using	a	prism	or	a	diffraction	grating	(Figure	28.12).
The	spectrum	of	white	light	shows	that	it	consists	of	a	range	of	wavelengths,	from	about	400	nm	(violet)
to	about	700	nm	(red),	as	in	Figure	28.13.	This	is	a	continuous	spectrum.

Figure	28.12:	White	 light	 is	split	up	 into	a	continuous	spectrum	when	 it	passes	 through	a	diffraction
grating.

Figure	28.13:	Spectra	of	white	light.

It	is	more	interesting	to	look	at	the	spectrum	from	a	hot	gas.	If	you	look	at	a	lamp	that	contains	a	gas
such	as	neon	or	sodium,	you	will	see	that	only	certain	colours	are	present.	Each	colour	has	a	unique
wavelength.	If	the	source	is	narrow	and	it	is	viewed	through	a	diffraction	grating,	a	line	spectrum	is
seen.
Figure	28.14a–c	show	the	line	spectra	of	hot	gases	of	the	elements	mercury,	helium	and	cadmium.	Each
element	has	a	spectrum	with	a	unique	collection	of	wavelengths.	Line	spectra	can	therefore	be	used	to
identify	elements.	This	is	exactly	what	the	British	astronomer	William	Huggins	did	when	he	deduced



which	elements	are	the	most	common	in	the	stars.

Figure	28.14:	Spectra	of	light	from	a	mercury,	b	helium	and	c	cadmium	vapour.

These	line	spectra,	which	show	the	composition	of	light	emitted	by	hot	gases,	are	called	emission	line
spectra.
There	is	another	kind	of	spectra,	called	absorption	line	spectra,	which	are	observed	when	white	light	is
passed	through	cool	gases.	After	the	light	has	passed	through	a	diffraction	grating,	the	continuous	white
light	spectrum	is	found	to	have	black	lines	across	it	(Figure	28.15).	Certain	wavelengths	have	been
absorbed	as	the	white	light	passed	through	the	cool	gas.

Figure	28.15:	 An	 absorption	 line	 spectrum	 formed	when	white	 light	 is	 passed	 through	 cool	mercury
vapour.

Absorption	line	spectra	are	found	when	the	light	from	stars	is	analysed.	The	interior	of	the	star	is	very	hot
and	emits	white	light	of	all	wavelengths	in	the	visible	range.	However,	this	light	has	to	pass	through	the
cooler	outer	layers	of	the	star.	As	a	result,	certain	wavelengths	are	absorbed.	Figure	28.16	shows	the
spectrum	for	the	Sun.



Figure	 28.16:	 The	 Sun’s	 spectrum	 shows	 dark	 lines.	 These	 dark	 lines	 arise	 when	 light	 of	 specific
wavelengths	coming	from	the	Sun’s	hot	interior	is	absorbed	by	its	cooler	atmosphere.
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28.7	Explaining	the	origin	of	line	spectra
From	the	description	in	the	previous	topic,	we	can	see	that	the	atoms	of	a	given	element	(e.g.,	helium)
can	only	emit	or	absorb	light	of	certain	wavelengths.
Different	elements	emit	and	absorb	different	wavelengths.	How	can	this	be?	To	understand	this,	we	need
to	establish	two	points:

First,	as	with	the	photoelectric	effect,	we	are	dealing	with	light	(an	electromagnetic	wave)	interacting
with	 matter.	 Hence,	 we	 need	 to	 consider	 light	 as	 consisting	 of	 photons.	 For	 light	 of	 a	 single
wavelength	λ	and	frequency	f,	the	energy	E	of	each	photon	is	given	by	the	equation:

Second,	when	light	interacts	with	matter,	it	is	the	electrons	that	absorb	the	energy	from	the	incoming
photons.	When	the	electrons	lose	energy,	light	is	emitted	by	matter	in	the	form	of	photons.

What	does	the	appearance	of	the	line	spectra	tell	us	about	electrons	in	atoms?	They	can	only	absorb,	or
emit,	photons	of	certain	energies.	From	this	we	deduce	that	electrons	in	atoms	can	themselves	only	have
certain	fixed	values	of	energy.	This	idea	seemed	very	odd	to	scientists	a	hundred	years	ago.	Figure	28.17
shows	a	diagram	of	the	permitted	energy	levels	(or	energy	states)	of	the	electron	of	a	hydrogen	atom.
An	electron	in	a	hydrogen	atom	can	have	only	one	of	these	values	of	energy.	It	cannot	have	an	energy	that
is	between	these	energy	levels.
The	energy	levels	of	the	electron	are	similar	to	the	rungs	of	a	ladder.	The	energy	levels	have	negative
values	because	external	energy	has	to	be	supplied	to	remove	an	electron	from	the	atom.	The	negative
energy	shows	that	the	electron	is	trapped	within	the	atom	by	the	attractive	forces	of	the	atomic	nucleus.
An	electron	with	zero	energy	is	free	from	the	atom.

Figure	28.17:	Some	of	the	energy	levels	of	the	hydrogen	atom.

The	energy	of	the	electron	in	the	atom	is	said	to	be	quantised.	This	is	one	of	the	most	important
statements	of	quantum	physics.
Now	we	can	explain	what	happens	when	an	atom	emits	light.	One	of	its	electrons	falls	from	a	high	energy
level	to	a	lower	one	(Figure	28.18a).	The	electron	makes	a	transition	to	a	lower	energy	level.	It	is
important	to	note	that,	even	on	this	microscopic	scale,	energy	must	be	conserved.	The	loss	of	energy	of
the	electron	leads	to	the	emission	of	a	single	photon	of	light.	The	one-to-one	interaction	rule	of	quantum
physics	is	paramount	–	a	single	electron	is	responsible	for	producing	a	single	photon.	The	energy	of	this
photon	is	exactly	equal	to	the	energy	difference	between	the	two	energy	levels.	If	the	electron	makes	a
transition	from	a	higher	energy	level,	the	energy	loss	of	the	electron	is	larger	and	this	leads	to	the
emission	of	a	more	energetic	photon.	The	distinctive	energy	levels	of	an	atom	mean	that	the	energy	of	the
photons	emitted,	and	hence	the	wavelengths	emitted,	will	be	unique	to	that	atom.	This	explains	why	only
certain	wavelengths	are	present	in	the	emission	line	spectrum	of	a	hot	gas.



Atoms	of	different	elements	have	different	line	spectra	because	they	have	different	spacings	between
their	energy	levels.	It	is	not	within	the	scope	of	this	book	to	discuss	why	this	is.
Similarly,	we	can	explain	the	origin	of	absorption	line	spectra.	White	light	consists	of	photons	of	many
different	energies.	For	a	photon	to	be	absorbed,	it	must	have	exactly	the	right	energy	to	lift	an	electron
from	one	energy	level	to	another	higher	energy	level	(Figure	28.18b).	This	‘excited’	electron,	at	the
higher	energy	level,	will	eventually	make	a	transition	to	a	lower	energy	level	–	but	this	time,	the	photon
will	be	re-emitted	in	any	direction,	and	not	necessarily	in	the	original	direction	of	the	white	light.	This
leads	to	lower	intensity	for	photons	of	a	specific	wavelength.	White	light	photons	with	energy	not
matching	the	difference	between	the	energy	levels	will	carry	on	moving	in	the	original	direction.	The	net
result	of	all	this	is	a	dark	absorption	line	seen	against	the	background	of	a	continuous	spectrum.

Figure	28.18:	a	When	an	electron	drops	to	a	lower	energy	level,	it	emits	a	single	photon.	b	A	photon
must	have	just	the	right	energy	if	it	is	to	be	absorbed	by	an	electron.
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28.8	Photon	energies
When	an	electron	changes	its	energy	from	one	level	E1	to	another	E2,	it	either	emits	or	absorbs	a	single
photon.	The	energy	of	the	photon	hf	is	simply	equal	to	the	difference	in	energies	between	the	two	levels:

or

Referring	back	to	the	energy	level	diagram	for	hydrogen	(Figure	28.17),	you	can	see	that,	if	an	electron
falls	from	the	second	level	to	the	lowest	energy	level	(known	as	the	ground	state),	it	will	emit	a	photon
of	energy:

We	can	calculate	the	frequency	f	and	wavelength	λ	of	the	emitted	electromagnetic	radiation.
The	frequency	is:

The	wavelength	is:

This	is	a	wavelength	in	the	ultraviolet	region	of	the	electromagnetic	spectrum.

KEY	EQUATIONS
The	energy	of	a	photon,	absorbed	or	emitted,	as	a	result	of	an	electron
making	a	transition	between	two	energy	levels	E1	and	E2:

Questions
Figure	28.19	shows	part	of	the	energy	level	diagram	for	the	electrons	in	an	imaginary	atom.	The
arrows	represent	three	transitions	between	the	energy	levels.	For	each	of	these	transitions:

calculate	the	energy	of	the	photon
calculate	the	frequency	and	wavelength	of	the	electromagnetic	radiation	(emitted	or	absorbed)
state	whether	the	transition	contributes	to	an	emission	line	in	the	spectrum	or	an	absorption	line
in	the	spectrum.
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Figure	 28.19:	 Electron	 energy	 level	 diagram,	 showing	 three	 electron	 transitions	 a,	 b	 and	 c.	 For
Question	14.

Figure	28.20	shows	another	energy	level	diagram.	In	this	case,	energy	is	given	in	electronvolts	(eV).
The	list	shows	the	energies	of	some	photons:
6.0	eV		9.0	eV		11	eV		20	eV		25	eV		34	eV		45	eV
State	and	explain	which	of	these	photons	will	be	absorbed	by	the	electrons.

Figure	28.20:	An	energy	level	diagram.	For	Question	15.

The	line	spectrum	for	a	particular	type	of	atom	is	found	to	include	the	following	wavelengths:
83	nm					50	nm					25	nm

Calculate	the	corresponding	photon	energies	in	eV.
Sketch	the	energy	levels	that	could	give	rise	to	these	photons.	On	the	diagram,	indicate	the
corresponding	electron	transitions	responsible	for	these	three	spectral	lines.
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28.9	The	nature	of	light:	waves	or	particles?
It	is	clear	that,	in	order	to	explain	the	photoelectric	effect,	we	must	use	the	idea	of	light	(and	all
electromagnetic	radiation)	as	particles.	Similarly,	photons	explain	the	appearance	of	line	spectra.
However,	to	explain	diffraction,	interference	and	polarisation	of	light,	we	must	use	the	wave	model.	How
can	we	sort	out	this	dilemma?
We	have	to	conclude	that	sometimes	light	shows	wave-like	behaviour;	at	other	times	it	behaves	as
particles	(photons).	In	particular,	when	light	is	absorbed	by	a	metal	surface,	it	behaves	as	particles.
Individual	photons	are	absorbed	by	individual	electrons	in	the	metal.	In	a	similar	way,	when	a	Geiger
counter	detects	γ-radiation,	we	hear	individual	γ-photons	being	absorbed	in	the	tube.
So	what	is	light?	Is	it	a	wave	or	a	particle?	Physicists	have	come	to	terms	with	the	dual	nature	of	light.
This	duality	is	referred	to	as	the	wave–particle	duality	of	light.	In	simple	terms:
Light	 interacts	 with	 matter	 (e.g.,	 electrons)	 as	 a	 particle	 –	 the	 photon.	 The	 evidence	 for	 this	 is
provided	by	the	photoelectric	effect.
Light	 propagates	 through	 space	 as	 a	 wave.	 The	 evidence	 for	 this	 comes	 from	 the	 diffraction	 and
interference	of	light	using	slits.

	
	



28.10	Electron	waves
Light	has	a	dual	nature.	(In	fact,	it	is	not	only	light,	but	all	electromagnetic	waves	that	have	this	dual
nature.)	Is	it	possible	that	particles	such	as	electrons	also	have	a	dual	nature?	This	interesting	question
was	first	considered	by	Louis	de	Broglie	(pronounced	‘de	Broy’)	in	1924	(Figure	28.21).

Figure	28.21:	Louis	de	Broglie	provided	an	alternative	view	of	how	particles	behave.

De	Broglie	imagined	that	electrons	would	travel	through	space	as	a	wave.	He	proposed	that	the	wave-like
property	of	a	particle	like	the	electron	can	be	represented	by	its	wavelength	λ,	which	is	related	to	its
momentum	p	of	the	particle	by	the	equation:

where	h	is	the	Planck	constant.	The	wavelength	λ	is	often	referred	to	as	the	de	Broglie	wavelength.	The
waves	associated	with	the	electron	are	referred	to	as	matter	waves.
The	momentum	p	of	a	particle	is	the	product	of	its	mass	m	and	its	velocity	v.	Therefore,	the	de	Broglie
equation	may	also	be	written	as:

The	Planck	constant	h	is	the	same	constant	that	appears	in	the	equation	E	=	hf	for	the	energy	of	a
photon.	It	is	fascinating	how	the	Planck	constant	h	is	tangled	with	the	behaviour	of	both	matter	as	waves
(e.g.	electrons)	and	electromagnetic	waves	as	‘particles’	(photons).
The	wave	property	of	the	electron	was	eventually	confirmed	in	1927	by	researchers	in	America	and	in
England.	The	Americans,	Clinton	Davisson	and	Edmund	Germer,	showed	experimentally	that	electrons
were	diffracted	by	crystals	of	nickel.	The	diffraction	of	electrons	confirmed	their	wave-like	property.	In
England,	George	Thomson	fired	electrons	into	thin	sheets	of	metal	in	a	vacuum	tube.	He,	too,	provided
evidence	that	electrons	were	diffracted	by	the	metal	atoms.
Louis	de	Broglie	received	the	1929	Nobel	Prize	in	Physics.	Clinton	Davisson	and	George	Thomson	shared
the	Nobel	Prize	in	Physics	in	1937.

Electron	diffraction
We	can	reproduce	the	same	diffraction	results	in	the	laboratory	using	an	electron	diffraction	tube	(Figure
28.22).
In	an	electron	diffraction	tube,	the	electrons	from	the	heated	filament	are	accelerated	to	high	speeds	by
the	large	potential	difference	between	the	negative	heater	(cathode)	and	the	positive	electrode	(anode).	A
beam	of	electrons	passes	through	a	thin	sample	of	polycrystalline	graphite.	It	is	made	up	of	many	tiny
crystals,	each	of	which	consists	of	large	numbers	of	carbon	atoms	arranged	in	uniform	atomic	layers.	The
electrons	emerge	from	the	graphite	film	and	produce	diffraction	rings	on	the	phosphor	screen.	The
diffraction	rings	are	similar	to	those	produced	by	light	(a	wave)	passing	through	a	small	circular	hole.	The
rings	cannot	be	explained	if	electrons	behaved	as	particles.	Diffraction	is	a	property	of	waves.	Hence,	the



rings	can	only	be	explained	if	the	electrons	travel	through	the	graphite	film	as	a	wave.	The	electrons	are
diffracted	by	the	individual	carbon	atoms	and	the	spacing	between	the	layers	of	carbon	atoms.	The	atomic
layers	of	carbon	behave	like	a	diffraction	grating	with	many	slits.	The	electrons	show	diffraction	effects
because	their	de	Broglie	wavelength	λ	is	similar	to	the	spacing	between	the	atomic	layers.

Figure	 28.22:	When	 a	 beam	 of	 electrons	 passes	 through	 a	 graphite	 film,	 as	 in	 this	 vacuum	 tube,	 a
diffraction	pattern	is	produced	on	the	phosphor	screen.

This	experiment	shows	that	electrons	appear	to	travel	as	waves.	If	we	look	a	little	more	closely	at	the
results	of	the	experiment,	we	find	something	even	more	surprising.	The	phosphor	screen	gives	a	flash	of
light	for	each	electron	that	hits	it.	These	flashes	build	up	to	give	the	diffraction	pattern	(Figure	28.23).
But	if	we	see	flashes	at	particular	points	on	the	screen,	are	we	not	seeing	individual	electrons	–	in	other
words,	are	we	not	observing	particles?

Figure	 28.23:	 The	 speckled	 diffraction	 pattern	 shows	 that	 it	 arises	 from	 many	 individual	 electrons
striking	the	screen.

PRACTICAL	ACTIVITY	28.3

Investigating	electron	diffraction
If	you	have	access	to	an	electron	diffraction	tube	(Figure	28.24),	you	can	see	for	yourself	how	a	beam	of
electrons	is	diffracted.	The	electron	gun	at	one	end	of	the	tube	produces	a	beam	of	electrons.	By
changing	the	voltage	between	the	anode	and	the	cathode,	you	can	change	the	energy	of	the	electrons,
and	hence	their	speed.	The	beam	strikes	a	graphite	target,	and	a	diffraction	pattern	appears	on	the
screen	at	the	other	end	of	the	tube.
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Figure	28.24:	 Electrons	 are	 accelerated	 from	 the	 cathode	 to	 the	 anode;	 they	 form	 a	 beam	 that	 is
diffracted	as	it	passes	through	the	graphite	film.

You	can	use	an	electron	diffraction	tube	to	investigate	how	the	wavelength	of	the	electrons	depends	on
their	speed.	Qualitatively,	you	should	find	that	increasing	the	anode–cathode	voltage	makes	the	pattern
of	diffraction	rings	shrink.	The	electrons	have	more	kinetic	energy	(they	are	faster);	the	shrinking
pattern	shows	that	their	wavelength	has	decreased.	You	can	find	the	wavelength	λ	of	the	electrons	by
measuring	the	angle	θ	at	which	they	are	diffracted:

where	d	is	the	spacing	of	the	atomic	layers	of	graphite.
You	can	find	the	speed	of	the	electrons	from	the	anode–cathode	voltage	V:

WORKED	EXAMPLE

Calculate	the	de	Broglie	wavelength	of	an	electron	travelling	through	space	at	a	speed	of	1.0	×	107
m	s−1.	State	whether	or	not	these	electrons	can	be	diffracted	by	solid	materials.	(Atomic	spacing	in
solid	materials	~	10−10	m.)

According	to	the	de	Broglie	equation,	we	have:

The	mass	of	an	electron	is	9.11	×	10−31	kg.	Hence:

Electrons	travelling	at	107	m	s−1	have	a	de	Broglie	wavelength	of	order	of	magnitude	10−10	m	–
this	is	comparable	the	atomic	spacing.	Hence,	the	electrons	can	be	diffracted	by	matter.

Question
X-rays	are	used	to	find	out	about	the	spacings	of	atomic	planes	in	crystalline	materials.

Describe	how	beams	of	electrons	could	be	used	for	the	same	purpose.
How	might	electron	diffraction	be	used	to	identify	a	sample	of	a	metal?

People	waves
The	de	Broglie	equation	applies	to	all	matter;	anything	that	has	mass.	It	can	also	be	applied	to	objects	like
golf	balls	and	people!

Imagine	a	65	kg	person	running	at	a	speed	of	3.0	m	s−1	through	an	opening	of	width	0.80	m.	According	to
the	de	Broglie	equation,	the	wavelength	of	this	person	is:
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This	wavelength	is	very	small	indeed	compared	with	the	size	of	the	gap,	hence	no	diffraction	effects
would	be	observed.	People	cannot	be	diffracted	through	everyday	gaps.	The	de	Broglie	wavelength	of	this
person	is	much	smaller	than	any	gap	the	person	is	likely	to	try	to	squeeze	through!	For	this	reason,	we	do
not	use	the	wave	model	to	describe	the	behaviour	of	people;	we	get	much	better	results	by	regarding
people	as	large	particles.

Question
A	beam	of	electrons	is	accelerated	from	rest	through	a	p.d.	of	1.0	kV.

What	is	the	energy	(in	eV)	of	each	electron	in	the	beam?
Calculate	the	speed,	and	hence	the	momentum	(mv),	of	each	electron.
Calculate	the	de	Broglie	wavelength	of	each	electron.
Would	you	expect	the	beam	to	be	significantly	diffracted	by	a	metal	film	in	which	the	atoms	are
separated	by	a	spacing	of	0.25	×	10−9	m?

Probing	matter
All	moving	particles	have	a	de	Broglie	wavelength.	The	structure	of	matter	can	be	investigated	using	the
diffraction	of	particles.	Diffraction	of	slow-moving	neutrons	(known	as	thermal	neutrons)	from	nuclear
reactors	is	used	to	study	the	arrangements	of	atoms	in	metals	and	other	materials.	The	wavelength	of
these	neutrons	is	about	10−10	m,	which	is	roughly	the	separation	between	the	atoms.
Diffraction	of	slow-moving	electrons	is	used	to	explore	the	arrangements	of	atoms	in	metals	(Figure
28.25)	and	the	structures	of	complex	molecules	such	as	DNA	(Figure	28.26).	It	is	possible	to	accelerate
electrons	to	the	right	speed	so	that	their	wavelength	is	similar	to	the	spacing	between	atoms,	around
10−10	m.

Figure	28.25:	Electron	diffraction	pattern	for	an	alloy	of	titanium	and	nickel.	From	this	pattern,	we	can
deduce	the	arrangement	of	the	atoms	and	their	separations.
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Figure	28.26:	The	structure	of	the	giant	molecule	DNA,	deduced	from	electron	diffraction.

High-speed	electrons	from	particle	accelerators	have	been	used	to	determine	the	diameter	of	atomic
nuclei.	This	is	possible	because	high-speed	electrons	have	wavelengths	of	order	of	magnitude	10−15	m.
This	wavelength	is	similar	to	the	size	of	atomic	nuclei.	Electrons	travelling	close	to	the	speed	of	light	are
being	used	to	investigate	the	internal	structure	of	the	nucleus.	These	electrons	have	to	be	accelerated	by
voltages	up	to	109	V.

The	nature	of	the	electron:	wave	or	particle?
The	electron	has	a	dual	nature,	just	like	electromagnetic	waves.	This	duality	is	referred	to	as	the	wave–
particle	duality	of	the	electron.	In	simple	terms:

An	 electron	 interacts	 with	 matter	 as	 a	 particle.	 The	 evidence	 for	 this	 is	 provided	 by	 Newtonian
mechanics.
An	 electron	 travels	 through	 space	 as	 a	 wave.	 The	 evidence	 for	 this	 comes	 from	 the	 diffraction	 of
electrons.

	
	



28.11	Revisiting	photons
It	is	worth	finishing	this	topic	on	quantum	physics	by	further	examining	the	photon.	A	photon	has
momentum	p	and	energy	E.	The	two	key	equations	for	a	photon	are:

Therefore,

This	equation	is	identical	to	the	de	Broglie	equation	for	momentum	of	particle	and	its	wavelength.	So,	it
appears	that	the	equation	can	be	used	for	the	particle-like	(photon)	behaviour	of	electromagnetic
radiation	and	the	wave-like	behaviour	of	particles.	The	de	Broglie	equation	is	an	intriguing	equation	of
quantum	physics.

REFLECTION
Without	looking	at	your	textbook,	summarise	all	the	key	equations	containing	the	Planck	constant	h,
and	the	key	points	of	the	photelectric	effect.
Compare	your	summary	with	a	fellow	learner.	Did	you	miss	out	any	key	ideas?
If	you	were	the	teacher,	what	comments	would	you	make	about	your	summary?
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SUMMARY

For	electromagnetic	waves	of	frequency	f	and	wavelength	λ,	each	photon	has	energy	E	given	by:

where	h	is	the	Planck	constant.

One	electronvolt	is	the	energy	transferred	when	an	electron	travels	through	a	potential	difference	of	1
V:
1	eV	=	1.60	×	10−19	J

A	particle	of	charge	e	accelerated	through	a	voltage	V	has	kinetic	energy	given	by:

The	photoelectric	effect	is	an	example	of	a	phenomenon	explained	in	terms	of	the	particle-like
(photon)	behaviour	of	electromagnetic	radiation.

Einstein’s	photoelectric	equation	is:

where	Φ	=	work	function	of	the	metal.

The	threshold	frequency	is	the	minimum	frequency	of	the	incident	electromagnetic	radiation	that	will
release	an	electron	from	the	metal	surface.

The	threshold	wavelength	is	the	longest	wavelength	of	the	incident	electromagnetic	radiation	that
will	release	an	electron	from	the	metal	surface.

Electron	diffraction	is	an	example	of	a	phenomenon	explained	in	terms	of	the	wave-like	behaviour	of
matter.

The	de	Broglie	wavelength	λ	of	a	particle	is	related	to	its	momentum	p	by	the	de	Broglie	equation:

where	p	=	momentum	of	the	particle	=	mv.

Both	electromagnetic	radiation	(such	as	light)	and	matter	(such	as	electrons)	exhibit	wave–particle
duality;	that	is,	they	show	both	wave-like	and	particle-like	behaviours,	depending	on	the
circumstances.	In	wave–particle	duality:

interaction	is	explained	in	terms	of	particles
propagation	through	space	is	explained	in	terms	of	waves.

Photons	have	no	mass,	but	they	have	momentum.	The	momentum	p	of	a	photon	of	energy	E	is	given	by
the	equation:

Line	spectra	arise	for	isolated	atoms	(the	electrical	forces	between	such	atoms	is	negligible).

The	energy	of	an	electron	in	an	isolated	atom	is	quantised.	The	electron	is	allowed	to	exist	in	specific
energy	states	known	as	energy	levels.

An	electron	loses	energy	when	it	makes	a	transition	from	a	higher	energy	level	to	a	lower	energy
level.	A	photon	of	electromagnetic	radiation	is	emitted	because	of	this	energy	loss.	The	result	is	an
emission	line	spectrum.

Absorption	line	spectra	arise	when	a	photon	of	electromagnetic	radiation	is	absorbed	by	electrons	in
isolated	atoms.	An	electron	absorbs	a	photon	of	the	correct	energy	to	allow	it	to	make	a	transition	to	a
higher	energy	level.

The	frequency	f	and	the	wavelength	λ	of	the	emitted	or	absorbed	radiation	are	related	to	the	energy
levels	E1	and	E2	by	the	equations:
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EXAM-STYLE	QUESTIONS

In	which	of	the	following	can	you	use	the	term	work	function	in	your
explanation? [1]

Diffraction	of	electrons	by	graphite 	

Interference	of	light	from	a	diffraction	grating 	

Photoelectric	effect 	

Reflection	of	light 	

A	researcher	is	carrying	out	an	experiment	on	the	photoelectric	effect.
Electromagnetic	radiation	of	different	frequencies	is	incident	on	a	metal	and
the	maximum	kinetic	energy	of	the	emitted	electrons	is	determined. 	

The	researcher	plots	a	straight-line	graph	of	maximum	kinetic	energy	of	the
electrons	k.emax	against	the	frequency	f	of	the	radiation. 	

Which	row	is	correct? [1]

	 Gradient	of	graph y-intercept	of	graph

A the	Planck	constant work	function	of	metal

B threshold	frequency the	Planck	constant

C threshold	wavelength threshold	frequency

D work	function	of	metal threshold	wavelength

Table	28.6
	

Calculate	the	energy	of	a	photon	of	frequency	4.0	×	1018	Hz. [2]

The	microwave	region	of	the	electromagnetic	spectrum	is	considered	to	have
wavelengths	ranging	from	5	mm	to	50	cm.	Calculate	the	range	of	energy	of
microwave	photons. [3]

In	a	microwave	oven,	the	photons	are	used	to	warm	food.	Each	photon	has
energy	1.02	×	10−5	eV. 	

Calculate	the	energy	of	each	photon	in	joule	(J). [1]

Calculate	the	frequency	of	the	photons. [1]

Calculate	the	wavelength	of	the	photons. [1]

	 [Total:	3]

Alpha-particles	of	energy	5.0	MeV	are	emitted	in	the	radioactive	decay	of
radium.	Express	this	energy	in	joules. [1]

Electrons	in	an	cathode-ray	tube	are	accelerated	through	a	potential
difference	of	10	kV.	Calculate	their	energy: 	

in	electronvolts [1]

in	joules. [1]

In	a	nuclear	reactor,	neutrons	are	slowed	to	energies	of	6	×	10−21	J.
Calculates	this	in	eV. [1]

	 [Total:	4]

A	helium	nucleus	(charge	=	+3.2	×	10−19	C;	mass	=	6.8	×	10−27	kg)	is
accelerated	through	a	potential	difference	of	7500	V. 	

Calculate: 	

its	kinetic	energy	in	electronvolts [2]

its	kinetic	energy	in	joules [1]

its	speed. [2]

	 [Total:	5]

Ultraviolet	light	with	photons	of	energy	2.5	×	10−18	J	is	shone	onto	a	zinc
plate.	The	work	function	of	zinc	is	4.3	eV. 	
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Calculate	the	maximum	energy	with	which	an	electron	can	be	emitted	from	the
zinc	plate.	Give	your	answer	in: 	

eV [3]

J. [1]

	 [Total:	4]

Calculate	the	minimum	frequency	of	electromagnetic	radiation	that	will	cause
the	emission	of	photoelectrons	from	the	surface	of	gold. [2]

(Work	function	for	gold	=	4.9	eV.) 	

The	diagram	shows	five	of	the	energy	levels	in	a	helium	ion.	The	lowest	energy
level	is	known	as	the	ground	state. 	

Figure	28.27
	

Determine	the	energy,	in	joules,	that	is	required	to	completely	remove	the
remaining	electron,	originally	in	its	ground	state,	from	the	helium	ion. [2]

Determine	the	frequency	of	the	radiation	that	is	emitted	when	the	electron
drops	from	the	level	n	=	3	to	n	=	2.	State	the	region	of	the	electromagnetic
spectrum	in	which	this	radiation	lies. [3]

Without	further	calculation,	describe	qualitatively	how	the	frequency	of	the
radiation	emitted	when	the	electron	drops	from	the	level	n	=	2	to	n	=	1
compares	with	the	energy	of	the	radiation	emitted	when	it	drops	from	n	=
3	to	n	=	2. [2]

	 [Total:	7]

The	spectrum	of	sunlight	has	dark	lines.	These	dark	lines	are	due	to	the
absorption	of	certain	wavelengths	by	the	cooler	gases	in	the	atmosphere	of	the
Sun. 	

One	particular	dark	spectral	line	has	a	wavelength	of	590	nm.	Calculate
the	energy	of	a	photon	with	this	wavelength. [2]

The	diagram	shows	some	of	the	energy	levels	of	an	isolated	atom	of
helium. 	



i
ii

iii

12

a

b				i

ii

iii

13		a				i

ii

Figure	28.28
	

Explain	the	significance	of	the	energy	levels	having	negative	values. [1]

Explain,	with	reference	to	the	energy	level	diagram,	how	a	dark	line	in
the	spectrum	may	be	due	to	the	presence	of	helium	in	the	atmosphere
of	the	Sun. [2]

All	the	light	absorbed	by	the	atoms	in	the	Sun’s	atmosphere	is	re-
emitted.	Suggest	why	a	dark	spectral	line	of	wavelength	of	590	nm	is
still	observed	from	the	Earth. [1]

	 [Total:	6]

The	diagram	shows	three	of	the	energy	levels	in	an	isolated	hydrogen	atom.
The	lowest	energy	level	is	known	as	the	ground	state. 	

Figure	28.29
	

Explain	what	happens	to	an	electron	in	the	ground	state	when	it	absorbs
the	energy	from	a	photon	energy	21.8	×	10−19	J. [1]

Explain	why	a	photon	is	emitted	when	an	electron	makes	a	transition
between	energy	levels	n	=	3	and	n	=	2. [2]

Calculate	the	wavelength	of	electromagnetic	radiation	emitted	when	an
electron	makes	a	jump	between	energy	levels	n	=	3	and	n	=	2. [3]

In	the	diagram,	each	energy	level	is	labelled	with	its	‘principal
quantum	number’	n.	Use	the	energy	level	diagram	to	show	that	the
energy	E	of	an	energy	level	is	inversely	proportional	to	n2. [4]

	 [Total:	10]

Explain	what	is	meant	by	the	wave–particle	duality	of	electromagnetic
radiation. [2]

Explain	how	the	photoelectric	effect	gives	evidence	for	this
phenomenon. [2]

The	diagram	shows	the	maximum	kinetic	energy	E	of	the	emitted
photoelectrons	as	the	frequency	f	of	the	incident	radiation	on	a	sodium
plate	is	varied. 	

Figure	28.30
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Explain	why	there	are	no	photoelectrons	emitted	when	the	frequency	of
the	incident	light	is	less	than	5.6	×	1014	Hz. [2]

Determine	the	work	function	for	sodium.	Explain	your	answer. [3]

Use	the	graph	to	determine	the	value	of	the	Planck	constant.	Explain	your
answer. [3]

	 [Total:	12]

State	what	is	meant	by	the	de	Broglie	wavelength	of	an	electron. [2]

The	diagram	shows	the	principles	of	an	electron	tube	used	to	demonstrate
electron	diffraction. 	

Figure	28.31
	

Calculate	the	kinetic	energy	E	(in	joules)	of	the	electrons	incident	on
the	graphite	film. [1]

Show	that	the	momentum	of	an	electron	is	equal	to	 	where	me
is	the	mass	of	an	electron,	and	hence	calculate	the	momentum	of	an
electron.	(me	=	9.11	×	10–31	kg) [3]

Calculate	the	de	Broglie	wavelength	of	the	electrons. [2]

Explain	how	the	wavelengths	of	neutrons	and	electrons	moving	with	the
same	energy	would	compare. [3]

	 [Total:	11]

Describe	the	importance	of	the	Planck	constant	h	in	describing	the
behaviour	of	electromagnetic	radiation	and	of	electrons. [2]

Light	of	wavelength	550	nm	is	incident	normally	on	a	metal	plate.	The
intensity	of	the	light	is	800	W	m−2.	All	the	incident	light	is	absorbed	by	the
metal	plate.	The	plate	has	dimensions	5.0	cm	×	5.0	cm. 	

Explain	how	the	light	hitting	the	plate	exerts	force	on	the	plate. [3]

Calculate	the	momentum	of	each	photon	of	light. [2]

Calculate	the	force	exerted	on	the	plate	due	to	the	light. [5]

	 [Total:	12]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work

Almost
there

Ready	to
move	on

understand	that	electromagnetic	radiation
interacts	with	matter	as	photons

28.2 	 	 	

understand	that	a	photon	is	a	quantum	of
electromagnetic	energy	and	its	energy	is
given	by:	E	=	hf

28.2 	 	 	

use	the	electronvolt	(eV)	as	a	unit	of	energy,
where:	1	eV	=	1.60	×	10–19	J

28.2 	 	 	

understand	photoelectric	effect 28.2,	28.3 	 	 	

understand	the	terms	threshold	frequency,
threshold	wavelength	and	work	function

28.4 	 	 	

use	Einstein’s	photoelectric	equation: 28.4 	 	 	

understand	why	the	maximum	kinetic
energy	of	photoelectrons	is	independent	of
intensity,	whereas	the	photoelectric	current
is	proportional	to	intensity

28.4 	 	 	

understand	that	the	photoelectric	effect
provides	evidence	for	a	particulate	nature
of	electromagnetic	radiation

28.4 	 	 	

understand	that	a	photon	has	momentum,
given	by:

28.5 	 	 	

understand	that	diffraction	provides
evidence	for	the	wave-like	behaviour	of
particles	(electrons)

28.9,	28.10 	 	 	

understand	that	a	moving	particle	has	a	de
Broglie	wavelength	given	by:

28.10 	 	 	

understand	that	there	are	discrete	electron
energy	levels	in	isolated	atoms	(such	as
atomic	hydrogen)

28.7 	 	 	

understand	the	appearance	and	formation
of	emission	and	absorption	line	spectra

28.6,	28.7 	 	 	

recall	and	use	the	relationship:
hf	=	E1	−	E2

28.8 	 	 	

	
	



•

•
•
•
•
•

•

•

•
•
•
•

•

•

	Chapter	29

Nuclear	physics

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:

understand	the	equivalence	between	energy	and	mass	as	represented	by	E	=	mc2	and	recall	and
use	this	equation
represent	simple	nuclear	reactions	by	nuclear	equations
define	and	use	the	terms	mass	defect	and	binding	energy
sketch	the	variation	of	binding	energy	per	nucleon	with	nucleon	number
explain	what	is	meant	by	nuclear	fusion	and	nuclear	fission
explain	the	relevance	of	binding	energy	per	nucleon	to	nuclear	reactions,	including	nuclear	fusion
and	nuclear	fission

calculate	the	energy	released	in	nuclear	reactions	using	E	=	Δmc2

understand	 that	 fluctuations	 in	 count	 rate	provide	evidence	 for	 the	 random	nature	of	 radioactive
decay
understand	that	radioactive	decay	is	both	spontaneous	and	random
define	activity	and	decay	constant,	and	recall	and	use	A	=	λN
define	half-life
use	

understand	 the	 exponential	 nature	 of	 radioactive	 decay,	 and	 sketch	 and	 use	 the	 relationship	x	=
x0e–λτ,	where	x	could	represent	activity,	number	of	undecayed	nuclei	or	received	count	rate.

BEFORE	YOU	START
Background	 knowledge	 of	 radioactivity	 from	 Chapter	 15	 would	 be	 useful	 in	 the	 study	 of	 this
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chapter.	In	pairs,	write	a	summary	of	what	you	know.
Try	 to	 remember,	 then	 write	 down,	 the	 particles	 that	 make	 up	 the	 nucleus	 and	 the	 forces	 the
particles	experience.
Discuss	why	it	is	sensible	to	express	the	mass	of	particles	in	atomic	mass	units	(u).

ENERGY	AND	THE	NUCLEUS
The	existence	of	every	living	organism	on	the	surface	of	the	Earth,	including	humans,	depends	on	the
light	and	heat	from	the	Sun.	Without	the	Sun,	our	planet	would	be	a	lifeless	rock	in	space.
The	Sun	warms	our	oceans,	stirs	our	atmosphere,	creates	our	climate	and,	most	importantly	of	all,
gives	energy	to	the	plants	that	provide	food	and	oxygen	for	life	on	Earth.
How	does	the	Sun	produce	its	energy?	The	Sun	is	an	active	hot	ball	of	gas;	it	converts	mass	into	energy.
The	Sun	generates	about	1026	W	of	radiant	power	by	converting	more	than	a	billion	kilograms	of
matter	into	energy	every	second.	You	do	not	need	to	worry	about	the	Sun	dying	out	soon	–	it	has	lots	of
mass!	The	mass	of	the	Sun	is	about	1030	kg.	Can	you	estimate	the	lifetime	of	the	Sun?
In	this	chapter,	we	will	examine	how	nuclear	reactions	produce	energy.	We	will	also	look	at	the	stability
of	nuclei,	and	how	we	can	model	the	decay	of	unstable	nuclei	with	mathematical	equations.

Figure	29.1:	Our	understanding	of	nuclear	physics	is	important	to	all	life	on	Earth.
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29.1	Balanced	equations
When	an	unstable	nucleus	undergoes	radioactive	decay,	the	nucleus	before	the	decay	is	often	referred	to
as	the	parent	nucleus	and	the	new	nucleus	formed	after	the	decay	process	is	known	as	the	daughter
nucleus.
Radioactive	decay	processes	can	be	represented	by	balanced	equations.	As	with	all	equations
representing	nuclear	processes,	both	nucleon	number	A	and	proton	number	Z	are	conserved.

In	α	decay,	the	nucleon	number	decreases	by	4	and	the	proton	number	decreases	by	2.

In	β−	decay,	the	nucleon	number	is	unchanged	and	the	proton	number	increases	by	1.
In	β+	decay,	the	nucleon	number	is	unchanged	and	the	proton	number	decreases	by	1.
In	gamma	decay,	there	is	no	change	in	either	nucleon	number	or	proton	number.

The	emission	of	α-	and	β-particles	can	be	shown	on	a	graph	of	nucleon	number	A	plotted	against	proton
number	Z,	as	shown	in	Figure	29.2.	The	graph	will	appear	different	if	neutron	number	is	plotted	against
proton	number.

Figure	29.2:	Emission	of	α-	and	β-particles.

WORKED	EXAMPLES

Radon	is	a	radioactive	gas.	The	isotope	of	radon-222	decays	by	α	emission	to	become	a	nucleus	of
polonium	(Po).	Here	is	the	equation	for	the	decay	of	a	single	isotope	of	radon-222:

Show	that	A	and	Z	are	conserved.
Compare	the	nucleon	and	proton	numbers	on	both	sides	of	the	equation	for	the	decay:
nucleon	number	A:	222	=	218	+	4
proton	number	Z: 86	=	84	+	2
Hint:	Remember	that	in	α	decay,	A	decreases	by	four	and	Z	decreases	by	two.	Don’t	confuse
nucleon	number	A	with	neutron	number	N.
In	this	case,	radon-222	is	the	parent	nucleus	and	polonium-218	is	the	daughter	nucleus.
A	carbon-14	nucleus	(parent)	decays	by	β−	emission	to	become	an	isotope	of	nitrogen	(daughter).
Here	is	the	equation	that	represents	this	decay:

Show	that	both	nucleon	number	and	proton	number	are	conserved.
Compare	the	nucleon	and	proton	numbers	on	both	sides	of	the	equation	for	the	decay:
nucleon	number	A:	14	=	14	+	0
proton	number	Z: 6	=	7	−	1
Hint:	Remember	that	in	β−	decay,	A	remains	the	same	and	Z	increases	by	1.
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Questions
Study	the	decay	equations	given	in	Worked	examples	1	and	2,	and	write	balanced	equations	for	the
following:

A	nucleus	of	radon-220	 	decays	by	α	emission	to	form	an	isotope	of	polonium,	Po.

A	nucleus	of	a	sodium	isotope	 	decays	by	β−	emission	to	form	an	isotope	of	magnesium,
Mg.

Copy	and	complete	this	equation	for	the	β−	decay	of	a	nucleus	of	argon:

	
	



29.2	Mass	and	energy
In	Chapter	15,	we	saw	that	energy	is	released	when	the	nucleus	of	an	unstable	atom	decays.	How	can	we
calculate	the	amount	of	energy	released	by	radioactive	decay?	To	find	the	answer	to	this,	we	need	to	think
first	about	the	masses	of	the	particles	involved.
We	will	start	by	considering	a	stable	nucleus,	C.	This	consists	of	six	protons	and	six	neutrons.	Fortunately
for	us	(because	we	have	a	lot	of	this	form	of	carbon	in	our	bodies),	this	is	a	very	stable	nuclide.	This	means
that	the	nucleons	are	bound	tightly	together	by	the	strong	nuclear	force.	It	takes	a	lot	of	energy	to	pull
them	apart.
Figure	29.3	shows	the	results	of	an	imaginary	experiment	in	which	we	have	done	just	that.	On	the	left-
hand	side	of	the	balance	is	a	single	 	nucleus.	On	the	right-hand	side	are	six	protons	and	six	neutrons,
the	result	of	dismantling	the	nucleus.	The	surprising	thing	is	that	the	balance	is	tipped	to	the	right.	The
separate	nucleons	have	greater	mass	than	the	nucleus	itself.	This	means	that	the	law	of	conservation	of
mass	appears	to	have	been	broken.	Have	we	violated	what	was	thought	to	be	a	fundamental	law	of	nature,
something	that	was	held	to	be	true	for	hundreds	of	years?

Figure	29.3:	The	mass	of	a	nucleus	is	less	than	the	total	mass	of	its	component	protons	and	neutrons.

Notice	that,	in	dismantling	the	 	nucleus,	we	have	had	to	do	work	against	the	strong	nuclear	force.	The
nucleons	attract	one	another	with	the	strong	nuclear	force	when	we	try	to	pull	them	apart.	So,	we	have
put	energy	into	the	nucleus	to	pull	it	apart,	and	this	energy	increases	the	potential	energy	of	the	individual
nucleons.	We	can	think	of	the	nucleons	within	the	nucleus	as	sitting	in	a	deep	potential	well	that	results
from	the	strong	nuclear	forces	that	hold	the	nucleus	together.	When	we	separate	nucleons,	we	lift	them
out	of	this	potential	well,	giving	them	more	nuclear	potential	energy.	This	potential	well	is	similar	to	that
formed	by	the	electric	field	around	the	nucleus;	it	is	this	well	in	which	the	atomic	electrons	sit,	but	it	is
much,	much	deeper.	This	explains	why	it	is	much	easier	to	remove	an	electron	from	an	atom	than	to
remove	a	nucleon	(proton	or	neutron)	from	the	nucleus.
The	problem	of	changing	mass	remains.	To	solve	this	problem,	Einstein	made	the	revolutionary
hypothesis	about	energy	and	mass	–	to	him,	they	were	equivalent.	This	is	not	an	easy	idea.	When	bodies
are	in	a	higher	energy	state	they	have	more	mass	than	in	a	lower	energy	state.	A	bucket	of	water	at	the
top	of	a	hill	will	have	more	mass	than	when	it	is	at	the	bottom	because	energy	has	been	transferred	to	it	in
carrying	it	up	the	hill.	A	tennis	ball	travelling	at	50	m	s−1	will	have	more	mass	than	the	same	tennis	ball
when	stationary.	In	everyday	life,	the	amount	of	extra	mass	is	so	small	that	it	is	not	noticeable.	However,
the	large	changes	in	energy	that	occur	in	nuclear	physics	and	high-energy	physics	make	the	changes	in
mass	significant.	Indeed,	the	increase	in	mass	of	particles,	such	as	electrons,	as	they	are	accelerated	to
speeds	near	to	the	speed	of	light	is	a	well-established	experimental	fact.
Another	way	to	express	this	is	to	treat	mass	and	energy	as	aspects	of	the	same	thing.	Rather	than	having
separate	laws	of	conservation	of	mass	and	conservation	of	energy,	we	can	combine	these	two.	The	total
amount	of	mass	and	energy	in	a	system	is	constant.	There	may	be	conversions	from	one	to	the	other,	but
the	total	amount	of	‘mass–energy’	remains	constant.

Einstein’s	mass–energy	equation
Albert	Einstein	produced	his	famous	mass–energy	equation,	which	links	energy	E	and	mass	m:

E	=	mc2

where	c	is	the	speed	of	light	in	a	vacuum	(free-space).	The	value	of	c	is	approximately	3.00	×	108	m	s−1,
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but	its	precise	value	has	been	fixed	as	c	=	299	792	458	m	s−1.
Generally,	we	will	be	concerned	with	the	changes	in	mass	owing	to	changes	in	energy,	when	the	equation
becomes:

ΔE	=	Δmc2

where	ΔE	is	the	change	in	energy	corresponding	to	a	change,	Δm	in	mass	and	c	is	the	speed	of	light	in	a
vacuum.

KEY	EQUATION

ΔE	=	Δmc2

You	may	find	this	equation	written	in	different	forms:

According	to	Einstein’s	equation:
the	mass	of	a	system	increases	when	energy	is	supplied	to	it
the	mass	of	a	system	decreases	when	energy	is	released	from	it.

Now,	if	we	know	the	total	mass	of	particles	before	a	nuclear	reaction	and	their	total	mass	after	the
reaction,	we	can	work	out	how	much	energy	is	released.	Table	29.1	gives	the	mass	in	kilograms	of	each	of
the	particles	shown	in	Figure	29.3.	Notice	that	this	is	described	as	the	rest	mass	of	the	particle;	that	is,
its	mass	when	it	is	stationary.	The	mass	of	a	particle	will	be	greater	when	it	is	moving	because	of	its
increase	in	energy.	Nuclear	masses	are	measured	to	a	high	degree	of	precision	using	mass	spectrometers,
often	to	seven	or	eight	significant	figures.

Particle Rest	mass	/	10−27	kg

1.672	623

1.674	929

	nucleus 19.926	483

Table	 29.1:	 Rest	masses	 of	 some	 particles.	 It	 is	 worth	 noting	 that	 the	mass	 of	 the	 neutron	 is	 slightly
larger	than	that	of	the	proton	(roughly	0.1%	greater).

We	can	use	the	mass	values	to	calculate	the	mass	that	is	released	as	energy	when	nucleons	combine	to
form	a	nucleus.	So,	for	our	particles	in	Figure	29.3,	we	have:

When	six	protons	and	six	neutrons	combine	to	form	the	nucleus	of	carbon-12,	there	is	a	very	small	loss	of
mass	Δm,	known	as	the	mass	defect.
The	mass	defect	of	a	nucleus	is	equal	to	the	difference	between	the	total	mass	of	the	individual	separate
nucleons	and	the	mass	of	the	nucleus.
The	loss	in	mass	implies	that	energy	is	released	in	this	process.	The	energy	released	ΔE	is	given	by
Einstein’s	mass–energy	equation.	Therefore:
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This	may	seem	like	a	very	small	amount	of	energy,	but	it	is	a	lot	on	the	atomic	scale.	For	comparison,	the
amount	of	energy	released	in	a	chemical	reaction	involving	a	single	carbon	atom	would	typically	be	of	the
order	of	10−18	J,	more	than	a	million	times	smaller.
Now	look	at	Worked	example	3.

WORKED	EXAMPLES

Use	the	following	data	to	determine	the	minimum	energy	required	to	split	a	nucleus	of	oxygen-16	
	into	its	separate	nucleons.	Give	your	answer	in	joules	(J).

mass	of	proton	=	1.672	623	×	10−27	kg
mass	of	neutron	=	1.674	929	×	10−27	kg
mass	of	 	nucleus	=	26.551	559	×	10−27	kg
speed	of	light	c	=	3.00	×	108	m	s−1

Find	the	difference	Δm	in	kg	between	the	mass	of	the	oxygen	nucleus	and	the	mass	of	the
individual	nucleons.	The	 	nucleus	has	8	protons	and	8	neutrons.

There	is	an	increase	in	the	mass	of	this	system,	therefore,	external	energy	must	be
supplied	for	the	splitting	of	the	oxygen-16	nucleus	into	its	totally	free	nucleons.
Use	Einstein’s	mass–energy	equation	to	determine	the	energy	supplied:

ΔE	=	Δmc2

The	value	is	the	minimum	energy.	If	the	energy	were	to	be	greater	than	this	value,	the
surplus	energy	would	appear	as	kinetic	energy	of	the	nucleons.

Mass–energy	conservation
Einstein	pointed	out	that	his	equation	ΔE	=	Δmc2	applied	to	all	energy	changes,	not	just	nuclear
processes.	So,	for	example,	it	applies	to	chemical	changes	too.	If	we	burn	some	carbon,	we	start	off	with
carbon	and	oxygen.	At	the	end,	we	have	carbon	dioxide	and	energy.	If	we	measure	the	mass	of	the	carbon
dioxide,	we	find	that	it	is	very	slightly	less	than	the	mass	of	the	carbon	and	oxygen	at	the	start	of	the
experiment.	The	total	potential	energy	of	the	system	will	be	less	than	at	the	start	of	the	experiment,	hence
the	mass	is	less.	In	a	chemical	reaction	such	as	this,	the	change	in	mass	is	very	small,	less	than	a
microgram	if	we	start	with	1	kg	of	carbon	and	oxygen.	Compare	this	with	the	change	in	mass	that	occurs
during	the	fission	of	1	kg	of	uranium,	described	later.	The	change	in	mass	in	a	chemical	reaction	is	a
much,	much	smaller	proportion	of	the	original	mass,	which	is	why	we	don’t	notice	it.

Questions
The	Sun	releases	vast	amounts	of	energy.	Its	power	output	is	4.0	×	1026	W.	Estimate	how	much	its
mass	decreases	each	second	because	of	this	energy	loss.

Calculate	the	energy	released	if	a	 	nucleus	is	formed	from	separate	stationary	protons	and
neutrons.	The	masses	of	the	particles	are	given	in	Table	29.2.
Calculate	also	the	energy	released	per	nucleon.

Particle Mass	/	10−27	kg
1.672	623
1.674	929
6.644	661

Table	29.2:	Masses	of	some	particles.

The	rest	mass	of	a	golf	ball	is	150	g.
Calculate	its	increase	in	mass	when	it	is	travelling	at	50	m	s−1.	What	is	this	as	a	percentage	of	its	rest
mass?
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Another	unit	of	mass
When	calculating	energy	values	using	ΔE	=	Δmc2,	it	is	essential	to	use	values	of	mass	in	kg,	the	SI	unit	of
mass.	However,	the	mass	of	a	nucleus	is	very	small,	perhaps	10−25	kg,	and	these	numbers	are	awkward.
As	an	alternative,	atomic	and	nuclear	masses	are	often	given	in	a	different	unit,	the	atomic	mass	unit
(symbol	u).	You	have	already	met	this	alternative	unit	for	mass	in	Chapter	15.
The	conversion	factor	for	atomic	mass	unit	u	to	kilogram	(kg)	is:

1	u	=	1.660	538	921(73)	×	10−27	kg

To	convert	the	mass	of	a	particle	from	u	to	kg,	you	just	multiply	by	the	conversion	factor	shown–usually
1.6605	×	10−27	is	sufficiently	accurate.
Table	29.3	shows	the	masses	of	proton,	neutron	and	some	nuclides	in	u.	It	is	worth	noting	that	the	mass	in
u	is	close	to	the	nucleon	number	A.	For	example,	the	mass	of	uranium-235	nucleus	is	235	u.

Nuclide Symbol Mass	/	u

proton 1.007	276

neutron 1.008	665

helium-4 4.002	602

carbon-12 12.000	000

potassium-40 39.963	998

uranium-235 235.043	930

Table	29.3:	Masses	of	some	particles	in	u.	Some	have	been	measured	to	several	more	decimal	places	than
are	shown	here.

Questions
The	mass	of	an	atom	of	 	is	55.934	937	u.	Calculate	its	mass	in	kg.

The	mass	of	an	atom	of	 	is	2.656	015	×	10−26	kg.	Calculate	its	mass	in	u.
Table	29.3	gives	the	masses	(in	u)	of	several	particles.
(Avogadro	constant	NA	=	6.02	×	1023	mol−1.)
Use	the	table	to	determine	to	three	significant	figures:

the	mass	in	kg	of	a	helium-4	nucleus
the	mass	in	gram	(g)	of	1.0	mole	of	uranium-235	nuclei.
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29.3	Energy	released	in	radioactive	decay
Unstable	nuclei	may	emit	α-	and	β-particles	with	large	amounts	of	kinetic	energy.	We	can	use	Einstein’s
mass–energy	equation	ΔE	=	Δmc2	to	explain	the	origin	of	this	energy.	Take,	for	example,	the	decay	of	a
nucleus	of	uranium-238.	It	decays	by	emitting	an	α-particle	and	changes	into	an	isotope	of	thorium:

The	uranium	nucleus	is	in	a	high-energy,	relatively	unstable	state.	It	emits	the	α-particle	and	the
remaining	thorium	nucleus	is	in	a	lower,	more	stable	energy	state.	There	is	a	decrease	in	the	mass	of	the
system.	That	is,	the	combined	mass	of	the	thorium	nucleus	and	the	α-particle	is	less	than	the	mass	of	the
uranium	nucleus.	According	to	Einstein’s	mass–energy	equation,	this	difference	in	mass	Δm	is	equivalent
to	the	energy	released	as	kinetic	energy	of	the	products.	Using	the	most	accurate	values	available:

The	minus	sign	shows	a	decrease	in	mass,	hence,	according	to	the	equation	ΔE	=	Δmc2,	energy	is
released	in	the	decay	process:

This	is	an	enormous	amount	of	energy	for	a	single	decay.	One	mole	of	uranium-238,	which	has	6.02	×
1023	nuclei,	has	the	potential	to	emit	total	energy	equal	to	about	1011	J.
We	can	calculate	the	energy	released	in	all	decay	reactions,	including	β	decay,	using	the	same	ideas.

Question
A	nucleus	of	beryllium-10	 	decays	into	an	isotope	of	boron	by	β−	emission.	The	chemical
symbol	for	boron	is	B.

Write	a	nuclear	decay	equation	for	the	nucleus	of	beryllium-10.
Calculate	the	energy	released	in	this	decay	and	state	its	form.

(Mass	of	 	nucleus	=	1.662	38	×	10−26	kg;	mass	of	boron	isotope	=	1.662	19	×	10−26	kg;	mass	of
electron	=	9.109	56	×	10−31	kg.)
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29.4	Binding	energy	and	stability
We	can	now	begin	to	see	why	some	nuclei	are	more	stable	than	others.	If	a	nucleus	is	formed	from
separate	nucleons,	energy	is	released.	In	order	to	pull	the	nucleus	apart,	energy	must	be	put	in;	in	other
words,	work	must	be	done	against	the	strong	nuclear	force	that	holds	the	nucleons	together.	The	more
energy	involved	in	this,	the	more	stable	the	nucleus.
The	minimum	energy	needed	to	completely	pull	a	nucleus	apart	into	its	separate	nucleons	is	known	as	the
binding	energy	of	the	nucleus.
Take	care:	this	is	not	energy	stored	in	the	nucleus.	On	the	contrary,	it	is	the	energy	that	must	be	put	in	to
the	nucleus	in	order	to	pull	it	apart.	In	the	example	of	 	discussed	earlier,	we	calculated	the	binding
energy	from	the	mass	difference	between	the	mass	of	the	 	nucleus	and	the	masses	of	the	separate
protons	and	neutrons.
In	order	to	compare	the	stability	of	different	nuclides,	we	need	to	consider	the	binding	energy	per
nucleon.
We	can	determine	the	binding	energy	per	nucleon	for	a	nuclide	as	follows:

Determine	the	mass	defect	for	the	nucleus.
Use	Einstein’s	mass–energy	equation	to	determine	the	binding	energy	of	the	nucleus	by	multiplying
the	mass	defect	by	c2.
Divide	the	binding	energy	of	the	nucleus	by	the	number	of	nucleons	to	calculate	the	binding	energy
per	nucleon.

Figure	29.4	shows	the	variation	of	binding	energy	per	nucleon	with	nucleon	number	A	for	nuclei.	The	red
dot	represents	the	plot	for	the	iron-56	nuclide,	which	is	from	Worked	example	4.	The	greater	the	value	of
the	binding	energy	per	nucleon,	the	more	tightly	bound	are	the	nucleons	that	make	up	the	nucleus.	The
most	striking	observation	is	that	not	all	nuclides	are	the	same	–	some	nuclides	are	more	tightly	bound
than	others.

Figure	29.4:	 This	 graph	 shows	 the	 binding	 energy	 per	 nucleon	 for	 a	 number	 of	 nuclei.	 The	 nucleus
becomes	more	stable	as	binding	energy	per	nucleon	increases.

If	you	further	examine	this	graph,	you	will	see	that	the	general	trend	is	for	light	nuclei	to	have	low
binding	energies	per	nucleon.	Note,	however,	that	helium	has	a	much	higher	binding	energy	than	its
place	in	the	Periodic	Table	might	suggest.	The	high	binding	energy	per	nucleon	means	that	it	is	very
stable.	Other	common	stable	nuclei	include	 ,	which	can	be	thought	of,	respectively,	as	three
and	four	α-particles	bound	together	(Figure	29.5).



4

Step	1

Step	2

Step	3

9				a
b

10
a
b
c

Figure	29.5:	More	stable	nuclei	are	formed	when	‘α-particles’	are	bound	together.	In	 ,	the
‘α-particles’	do	not	remain	separate,	as	shown	here;	rather,	the	protons	and	neutrons	are	tightly	packed
together.

For	nuclides	with	A	>	20	approximately,	there	is	not	much	variation	in	binding	energy	per	nucleon.	The
greatest	value	of	binding	energy	per	nucleon	is	found	for	 .	This	isotope	of	iron	requires	the	most
energy	per	nucleon	to	dismantle	it	into	separate	nucleons;	hence	iron-56	is	the	most	stable	isotope	in
nature.

WORKED	EXAMPLES

Use	the	following	data	to	calculate	the	binding	energy	per	nucleon	for	the	nuclide	 .
mass	of	neutron	=	1.675	×	10−27	kg
mass	of	proton	=	1.673	×	10−27	kg
mass	of	 	nucleus	=	9.288	×	10−26	kg

Calculate	the	mass	defect.

Calculate	the	binding	energy	of	the	nucleus	using	Einstein’s	mass-energy	Zequation.

Calculate	the	binding	energy	per	nucleon.

Have	another	look	at	Figure	29.4.	The	value	matches	with	the	plot	of	iron-56.

Questions
Explain	why	hydrogen	 	(proton)	cannot	appear	on	the	graph	shown	in	Figure	29.4.
Use	Figure	29.4	to	estimate	the	binding	energy	of	the	nuclide	 .

The	mass	of	a	 	nucleus	is	1.33	×	10−26	kg.	For	the	nucleus	of	 ,	determine:
the	mass	defect	in	kg
the	binding	energy	of	the	nucleus	in	MeV
the	binding	energy	(in	MeV)	per	nucleon	for	the	nucleus.

Binding	energy,	fission	and	fusion
We	can	use	the	binding	energy	graph	to	help	us	decide	which	nuclear	processes	–	fission,	fusion,
radioactive	decay	–	are	likely	to	occur	(Figure	29.6).

Fission
Fission	is	the	process	in	which	a	massive	nucleus	splits	to	form	two	smaller	fragments	(rather	than
simply	emitting	α-	or	β-radiation).
The	isotope	of	uranium-235	can	split	spontaneously,	but	such	an	event	is	very	rare.	However,	in	a	process
known	as	induced	fission,	uranium-235	can	be	made	split	by	absorbing	a	slow-moving	neutron.	A	typical
nuclear	reaction	is	shown:
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The	uranium-235	nucleus	captures	the	neutron	and	becomes	a	highly	unstable	nucleus	of	uranium-236.	In
a	very	short	period	of	time,	typically	a	few	microseconds,	the	fission	of	uranium-236	results	in	barium-
142,	krypton-92	and	two	fast-moving	neutrons.	Energy	is	released	in	the	reaction	as	kinetic	energy
because	the	total	mass	of	the	system	decreases.	This	is	what	we	would	expect	from	Einstein’s	mass-
energy	equation.	There	is	now	another	alternative	way	of	interpreting	this	reaction.	If	we	look	at	Figure
29.6,	we	see	that	these	two	fragments	have	greater	binding	energy	per	nucleon	than	the	original	uranium
nucleus.	Hence,	if	the	uranium	nucleus	splits	in	this	way,	energy	will	be	released.	The	total	binding
energy	of	 	and	 ,	is	greater	than	the	binding	energy	of	 –the	difference	is	the	energy
released.	(Note:	the	neutron	is	a	lone	nucleon,	so	it	has	zero	binding	energy.)

Figure	29.6:	Both	fusion	and	fission	are	processes	that	tend	to	increase	the	binding	energy	per	nucleon
of	the	particles	involved.

Fusion
Fusion	is	the	process	by	which	two	very	light	nuclei	join	together	to	form	a	heavier	nucleus.	This	is	the
process	by	which	energy	is	released	in	the	Sun,	when	hydrogen	nuclei	fuse	to	form	helium	nuclei.	When
two	light	nuclei	join	together,	the	final	binding	energy	of	the	nucleus	formed	is	greater	than	the	total
binding	energy	of	the	fusing-nuclei	–	once	again,	the	difference	is	the	energy	released	in	the	fusion
reaction.	The	high	binding	energy	of	the	 	nuclide	means	that	it	is	rare	for	these	nuclei	to	fuse.
The	following	fusion	reaction	is	one	of	the	many	taking	place	inside	the	core	of	stars,	including	our	Sun:

A	deuterium	nucleus	 	joins	together	with	a	proton	 ,	to	make	the	helium-3	nucleus.	The	binding
energy	of	deuterium	nucleus	is	2.2	MeV,	and	the	binding	energy	of	helium-3	nucleus	is	7.7	MeV.	The
energy	released	in	this	fusion	reaction	is	5.5	MeV,	which	is	the	difference	in	the	two	binding	energies.	It
is	worth	noting	that	the	binding	energy	per	nucleon	of	the	helium-3	nucleus	is	greater	that	of	the
deuterium	nucleus	–	fusion	increases	the	binding	energy	per	nucleon,	as	shown	on	Figure	29.6.

Questions
Use	the	binding	energy	graph	(Figure	29.6)	to	suggest	why	fission	is	unlikely	to	occur	with	‘light
nuclei’	(A	<	20)	and	why	fusion	is	unlikely	to	occur	for	heavier	nuclei	(A	>	40).
Use	the	information	given	in	the	fusion	section,	to	determine	the	binding	energy	(in	MeV)	per	nucleon
of	each	particle	in	the	following	fusion	reaction:

Comment	on	your	answers.
	
	





29.5	Randomness	and	radioactive	decay
Listen	to	a	counter	connected	to	a	Geiger–Müller	(GM)	tube	that	is	detecting	the	radiation	from	a	weak
source,	so	that	the	count	rate	is	about	one	count	per	second.	Each	count	represents	the	detection	of	a
single	α-particle	or	a	β-particle	or	a	γ-ray	photon.	You	will	notice	that	the	individual	counts	do	not	come
regularly.
The	counter	beeps	or	clicks	in	a	random,	irregular	manner.	If	you	try	to	predict	when	the	next	clicks	will
come,	you	are	unlikely	to	be	right.
You	can	see	the	same	effect	if	you	have	a	ratemeter,	which	can	measure	faster	rates	(Figure	29.7).	The
needle	fluctuates	up	and	down.	Usually,	a	ratemeter	has	a	control	for	setting	the	‘time	constant’–the	time
over	which	the	meter	averages	out	the	fluctuations.	Usually,	this	can	be	set	to	1	s	or	5	s.	The	fluctuations
are	smoothed	out	more	on	the	5	s	setting.

Figure	29.7:	The	time	constant	of	this	ratemeter	can	be	adjusted	to	smooth	out	rapid	fluctuations	in	the
count	rate.

Figure	29.8	shows	a	graph	of	count	rate	against	time,	with	a	smoothing	of	a	few	seconds.	The	count	rate
decreases	with	time	as	the	number	of	radioactive	nuclei	that	are	left	decreases.	The	fluctuations	either
side	are	caused	by	the	randomness	of	the	decay.

Figure	29.8:	Count	rate	showing	randomness	of	decay.

So,	it	is	apparent	that	radioactive	decay	is	a	random,	irregular	phenomenon.	But	is	it	completely
unpredictable?	Well,	not	really.	We	can	measure	the	average	rate	of	decay.	We	might	measure	the	number
of	counts	detected	in	1000	s,	and	then	calculate	the	average	number	per	second.	We	cannot	be	sure	about
this	average	rate	either,	because	the	number	of	counts	in	1000	s	will	fluctuate,	too.	All	of	our
measurements	of	radioactive	decay	are	inherently	uncertain	and	imprecise	but,	by	taking	averages	over	a
sufficiently	long	time	period,	we	can	reduce	or	smooth	out	the	random	fluctuations	to	reveal	the
underlying	pattern.
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Spontaneous	decay
Radioactive	decay	occurs	within	the	unstable	nucleus	of	an	atom.	A	nucleus	emits	radiation	and	becomes
the	nucleus	of	an	atom	of	a	different	element.	We	cannot	predict,	for	a	particular	nucleus,	when	it	will
happen.	If	we	sit	and	stare	at	an	individual	nucleus,	we	cannot	see	any	change	that	will	tell	us	that	it	is
getting	ready	to	decay.	And	if	it	doesn’t	decay	in	the	first	hour	when	we	are	watching	it,	we	cannot	say
that	it	is	any	more	likely	to	decay	in	the	next	hour.	What	is	more,	we	cannot	affect	the	probability	of	an
individual	nucleus	decaying,	for	example,	by	changing	its	temperature.
This	is	slightly	odd,	because	it	goes	against	our	everyday	experience	of	the	way	things	around	us	change.
We	observe	things	changing.	They	gradually	age,	die,	rot	away.	But	this	is	not	how	things	are	on	the	scale
of	atoms	and	nuclei.	Many	of	the	atoms	of	which	we	are	made	have	existed	for	billions	of	years,	and	will
still	exist	long	after	we	are	gone.	The	nucleus	of	an	atom	does	not	age.
If	we	look	at	a	very	large	number	of	atoms	of	a	radioactive	substance,	we	will	see	that	the	number	of
undecayed	nuclei	gradually	decreases.	However,	we	cannot	predict	when	an	individual	nucleus	will
decay.	Each	nucleus	‘makes	up	its	own	mind’	when	to	decay,	independently	from	its	neighbours.	This	is
because	neighbouring	nuclei	do	not	interact	with	one	another	(unlike	neighbouring	atoms).	The	nucleus	is
a	tiny	fraction	of	the	size	of	the	atom,	and	the	nuclear	forces	do	not	extend	very	far	outside	the	nucleus.
So,	one	nucleus	cannot	affect	a	neighbouring	nucleus	by	means	of	the	nuclear	force.	Being	inside	a
nucleus	is	a	bit	like	living	in	a	house	in	the	middle	of	nowhere;	you	can	just	see	out	into	the	garden,	but
everything	is	darkness	beyond	and	the	next	house	is	1000	km	away.
The	fact	that	individual	nuclei	decay	independently	of	their	neighbours	and	of	environmental	factors,
accounts	for	the	random	pattern	of	clicks	that	we	hear	from	a	Geiger	counter	and	the	fluctuations	of	the
needle	on	the	ratemeter.	Radioactive	decay	is	both	spontaneous	and	random.
Nuclear	decay	is	spontaneous	because:

the	decay	of	a	particular	nucleus	is	not	affected	by	the	presence	of	other	nuclei
the	decay	of	nuclei	cannot	be	affected	by	chemical	reactions	or	external	factors	such	as	temperature
and	pressure.

Nuclear	decay	is	random	because:
it	is	impossible	to	predict	when	a	particular	nucleus	in	a	sample	is	going	to	decay
each	nucleus	in	a	sample	has	the	same	chance	of	decaying	per	unit	time.
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29.6	The	mathematics	of	radioactive	decay
We	have	seen	that	radioactive	decay	is	a	random,	spontaneous	process.	Because	we	cannot	say	when	an
individual	nucleus	will	decay,	we	have	to	start	thinking	about	very	large	numbers	of	nuclei.	Even	a	tiny
speck	of	radioactive	material	will	contain	more	than	1015	nuclei.	Then	we	can	talk	about	the	average
number	of	nuclei	that	we	expect	to	decay	in	a	particular	time	interval;	in	other	words,	we	can	find	out	the
average	decay	rate.	Although	we	cannot	make	predictions	for	individual	nuclei,	we	can	say	that	certain
types	of	nuclei	are	more	likely	to	decay	than	others.	For	example,	a	nucleus	of	carbon-12	is	stable;
carbon-14	decays	gradually	over	thousands	of	years;	carbon-15	nuclei	last,	on	average,	a	few	seconds.
So,	because	of	the	spontaneous	nature	of	radioactive	decay,	we	have	to	make	measurements	on	very	large
numbers	of	nuclei	and	then	calculate	averages.	One	quantity	we	can	determine	is	the	probability	that	an
individual	nucleus	will	decay	in	a	particular	time	interval.	For	example,	suppose	we	observe	one	million
nuclei	of	a	particular	isotope.	After	one	hour,	200	000	have	decayed.	Then	the	probability	that	an
individual	nucleus	will	decay	in	one	hour	is	0.2	or	20%,	since	20%	of	the	nuclei	have	decayed	in	this	time.
(Of	course,	this	is	only	an	approximate	value,	since	we	might	repeat	the	experiment	and	find	that	only
199	000	decay	because	of	the	random	nature	of	the	decay.	The	more	times	we	repeat	the	experiment,	the
more	reliable	our	answer	will	be.)
We	can	now	define	the	decay	constant:
The	probability	that	an	individual	nucleus	will	decay	per	unit	time	interval	is	called	the	decay	constant,
λ.
For	the	example,	we	have:

decay	constant	λ	=	0.20	h−1

Note	that,	because	we	are	measuring	the	probability	of	decay	per	unit	time	interval,	λ	has	units	of	h−1	(or
s−1,	day−1,	year−1,	etc.).
The	activity	A	of	a	radioactive	sample	is	the	rate	at	which	nuclei	decay	or	disintegrate.
Activity	is	measured	in	decays	per	second	(or	h−1,	day−1).	An	activity	of	one	decay	per	second	is	one
becquerel	(1	Bq):

1	Bq	=	1	s−1

Clearly,	the	activity	of	a	sample	depends	on	the	decay	constant	λ	of	the	isotope	under	consideration.	The
greater	the	decay	constant	(the	probability	that	an	individual	nucleus	decays	per	unit	time	interval),	the
greater	is	the	activity	of	the	sample.	It	also	depends	on	the	number	of	undecayed	nuclei	N	present	in	the
sample.
For	a	sample	of	N	undecayed	nuclei,	we	have:

A	=	−λN

where	λ	is	the	decay	constant	of	the	isotope	and	N	is	the	number	of	undecayed	nuclei.

KEY	EQUATION
Activity	A	is	given	by:

A	=	−λN

Activity	A	is	equal	to	rate	of	decay	of	nuclei;	therefore	A	=	λN.

The	minus	sign	indicates	that	the	number	of	undecayed	nuclei	decreases	with	time.	We	can	omit	this
minus	sign	if	we	just	want	to	determine	the	magnitude	of	the	activity.	So,	in	calculations,	we	can	just	use
A	=	λN.
We	can	also	think	of	the	activity	as	the	number	of	α-	or	β-particles	emitted	from	the	source	per	unit	time.
Hence,	we	can	also	write	the	activity	A	as:

where	ΔN	is	equal	to	the	number	of	emissions	(or	decays)	in	a	small	time	interval	of	Δt.

WORKED	EXAMPLE

A	radioactive	source	emits	β-particles.	The	source	has	an	activity	of	2.8	×	107	Bq.	Estimate	the
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number	of	β-particles	emitted	in	a	time	interval	of	2.0	minutes.	State	one	assumption	made.
Write	down	the	given	quantities	in	SI	units.

A	=	2.8	×	107	Bq					Δt	=	120	s
Determine	the	number	of	β-particles	emitted.

We	have	assumed	that	the	activity	remains	constant	over	a	period	of	2.0	minutes.

A	sample	consists	of	1000	undecayed	nuclei	of	a	nuclide	whose	decay	constant	is	0.20	s−1.
Determine	the	initial	activity	of	the	sample.	Estimate	the	activity	of	the	sample	after	1.0	s.

Since	activity	A	=	λN,	we	have:

A	=	0.20	×	1000	=	200	s−1	=	200	Bq
After	1.0	s,	we	might	expect	800	nuclei	to	remain	undecayed.
The	activity	of	the	sample	would	then	be:

A	=	0.2	×	800	=	160	s−1	=	160	Bq
(In	fact,	it	would	be	slightly	higher	than	this.	Since	the	rate	of	decay	decreases	with	time	all	the
time,	less	than	200	nuclei	would	decay	during	the	first	second.)

Count	rate
Although	we	are	often	interested	in	finding	the	activity	of	a	sample	of	radioactive	material,	we	cannot
usually	measure	this	directly.	This	is	because	we	cannot	easily	detect	all	of	the	radiation	emitted.	Some
will	escape	past	our	detectors,	and	some	may	be	absorbed	within	the	sample	itself.	A	(Geiger–Muller)	GM
tube	placed	in	front	of	a	radioactive	source	therefore	only	detects	a	fraction	of	the	activity.	The	further	it
is	from	the	source,	the	smaller	the	count	rate.	Therefore,	our	measurements	give	a	received	count	rate	R
that	is	significantly	lower	than	the	activity	A.	If	we	know	how	efficient	our	detecting	system	is,	we	can
deduce	A	from	R.	If	the	level	of	background	radiation	is	significant,	then	it	must	be	subtracted	to	give	the
corrected	count	rate.

Questions
A	sample	of	carbon-15	initially	contains	500	000	undecayed	nuclei.	The	decay	constant	for	this
isotope	of	carbon	is	0.30	s−1.
Calculate	the	initial	activity	of	the	sample.
A	small	sample	of	radium	gives	a	received	count	rate	of	20	counts	per	minute	in	a	detector.	It	is
known	that	the	counter	detects	only	10%	of	the	decays	from	the	sample.	The	sample	contains	1.5	×
109	undecayed	nuclei.	Calculate	the	decay	constant	of	this	form	of	radium.
A	radioactive	sample	is	known	to	emit	α-,	β-	and	γ-radiations.
Suggest	four	reasons	why	the	count	rate	measured	by	a	Geiger	counter	placed	next	to	this	sample
would	be	lower	than	the	activity	of	the	sample.

	
	



29.7	Decay	graphs	and	equations
The	activity	of	a	radioactive	substance	gradually	diminishes	as	time	goes	by.	The	atomic	nuclei	emit
radiation	and	become	different	substances.	The	pattern	of	radioactive	decay	is	an	example	of	a	very
important	pattern	found	in	many	different	situations,	a	pattern	called	exponential	decay.	Figure	29.9
shows	the	decay	graphs	for	three	different	isotopes,	each	with	a	different	rate	of	decay.

Figure	29.9:	Some	radioactive	materials	decay	faster	than	others.

Although	the	three	graphs	look	different,	they	all	have	something	in	common	–	their	shape.	They	are
curved	lines	having	a	special	property.	If	you	know	what	is	meant	by	the	half-life	of	an	isotope,	then	you
will	understand	what	is	special	about	the	shape	of	these	curves.
The	half-life	 	of	an	isotope	is	the	mean	time	taken	for	half	of	the	active	nuclei	in	a	sample	to	decay.

In	a	time	equal	to	one	half-life,	the	activity	of	the	sample	will	also	halve.	This	is	because	activity	is	directly
proportional	to	the	number	of	undecayed	nuclei	(A	∝	N).	It	takes	the	same	amount	of	time	again	for	half	of
the	remainder	of	the	nuclei	to	decay,	and	a	third	half-life	for	half	of	the	new	remainder	to	decay	(Figure
29.10).

Figure	29.10:	All	radioactive	decay	graphs	have	the	same	characteristic	shape.

In	principle,	the	graph	never	reaches	zero;	it	just	gets	closer	and	closer.	In	practice,	when	only	a	few
undecayed	nuclei	remain,	the	graph	will	cease	to	be	a	smooth	curve	(because	of	the	random	nature	of	the
decay)	and	it	will	eventually	reach	zero.	We	use	the	idea	of	half-life	because	we	cannot	say	when	a	sample
will	have	completely	decayed.

Mathematical	equations	for	radioactive	decay
We	can	write	an	equation	to	represent	the	graph	shown	in	Figure	29.10.	If	we	start	with	N0	undecayed
nuclei,	then	the	number	N	that	remain	undecayed	after	time	t	is	given	by:

N	=	N0	e−λt
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In	this	equation,	λ	is	the	decay	constant	of	an	isotope,	as	before.	(You	may	also	see	this	written	as	N	=	N0
exp	(−λt).)	Note	that	you	must	take	care	with	units.	If	λ	is	in	s−1,	then	the	time	t	must	be	in	s.
The	symbol	e	represents	the	number	e	=	2.71828…,	a	special	number	in	the	same	way	that	π	is	a	special
number.	You	will	need	to	be	able	to	use	the	ex	button	on	your	calculator	to	solve	problems	involving	e.

PRACTICAL	ACTIVITY	31.1

Determining	half-life
If	you	are	to	determine	the	half-life	of	a	radioactive	substance	in	the	laboratory,	you	need	to	choose
something	that	will	not	decay	too	quickly	or	too	slowly.	In	practice,	the	most	suitable	isotope	is
protactinium-234,	which	decays	by	emitting	β−-radiation.	This	is	available	in	a	bottle	containing	a
solution	of	a	uranium	compound	(uranyl(VI)	nitrate)	(Figure	29.11).	By	shaking	the	bottle,	you	can
separate	the	protactinium	into	the	top	layer	of	solvent	in	the	bottle.	The	counter	allows	you	to	measure
the	decay	of	the	protactinium.
After	recording	the	number	of	counts	in	consecutive	10-second	intervals	over	a	period	of	a	few	minutes,
you	can	then	draw	a	graph,	and	use	it	to	find	the	half-life	of	protactinium-234.

Figure	29.11:	Practical	arrangement	for	observing	the	decay	of	protactinium-234.

The	activity	A	of	a	sample	is	directly	proportional	to	the	number	of	undecayed	nuclei	N.	Hence	the	activity
of	the	sample	decreases	exponentially:

A	=	A0	e−λt					(A0	is	the	activity	at	time	t	=	0.)

Usually,	we	measure	the	corrected	count	rate	R	in	the	laboratory	rather	than	the	activity	or	the	number	of
undecayed	nuclei.	Since	the	count	rate	is	a	fraction	of	the	activity,	it	too	decreases	exponentially	with	time:

R	=	R0	e−λt					(R0	is	the	corrected	count	rate	at	time	t	=	0.)

KEY	EQUATION

x	=	x0	e−λt

where	x	can	represent	activity	A,	number	of	undecayed	nuclei	N	or
received	count	rate	R.
(λ	is	the	decay	constant	and	x	is	the	quantity	left	at	time	t.)

Now	look	at	Worked	examples	7	and	8.

WORKED	EXAMPLES

Suppose	we	start	an	experiment	with	1.0	×	1015	undecayed	nuclei	of	an	isotope	for	which	λ	is	equal
to	0.02	s−1.	Determine	the	number	of	undecayed	nuclei	after	20	s.

In	this	case,	we	have	N0	=	1.0	×	1015,	λ	=	0.02	s−1	and	t	=	20	s.	Substituting	in	the	equation
gives:

N	=	1.0	×	1015	e−0.02	×	20

Use	the	ex	button	and	calculate	N.

N	=	1.0	×	1015	e−0.02	×	20	=	6.7	×	1014
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A	sample	initially	contains	1000	undecayed	nuclei	of	an	isotope	whose	decay	constant	λ	=	0.10	min
−1.	Draw	a	graph	to	show	how	the	sample	will	decay	over	a	period	of	10	minutes.

We	have	N0	=	1000	and	λ	=	0.10	min−1.	Hence,	we	can	write	the	equation	for	this	decay:

N	=	1000	e−0.10	×	t

Calculate	values	of	the	number	N	of	undecayed	nuclei	at	intervals	of	1.0	min	(60	s);	this
gives	Table	29.4	and	the	graph	shown	in	Figure	29.12.

t	/	min 0 1.0 2.0 3.0 4.0 5.0

N 1000 905 819 741 670 607

t	/	min 6.0 7.0 8.0 9.0 10.0 	

N 549 497 449 407 368 	

Table	29.4:	For	Worked	example	8.

Figure	29.12:	Radioactive	decay	graph.

Questions
The	isotope	nitrogen-13	has	a	half-life	of	10	min.	A	sample	initially	contains	8.0	×	1010	undecayed
nuclei.

Write	down	an	equation	to	show	how	the	number	undecayed	N	depends	on	time	t.
Calculate	how	many	undecayed	nuclei	will	remain	after	10	min,	and	after	20	min.
Determine	how	many	nuclei	will	decay	during	the	first	30	min.

A	sample	of	an	isotope	for	which	λ	=	0.10	s−1	contains	5.0	×	109	undecayed	nuclei	at	the	start	of	an
experiment.	Determine:

the	number	of	undecayed	nuclei	after	50	s
its	activity	after	50	s.

The	value	of	λ	for	protactinium-234	is	9.6	×	10−3	s−1.	Table	29.5	shows	the	number	of	undecayed
nuclei	N	in	a	sample.
Copy	and	complete	Table	29.5.	Draw	a	graph	of	N	against	t,	and	use	it	to	find	the	half-life	 	of
protactinium-234.

t	/	s 0 20 40 60 80 100 120 140
N 400 330 	 	 	 	 	 	

Table	29.5:	Data	for	Question	18.
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29.8	Decay	constant	λ	and	half-life	
An	isotope	that	decays	rapidly	has	a	short	half-life	 .	Its	decay	constant	must	be	large,	since	the
probability	per	unit	time	of	an	individual	nucleus	decaying	must	be	high.	What	is	the	connection	between
the	decay	constant	and	the	half-life?

If	ex	=	y,	then	x	=	ln	y

In	a	time	equal	to	one	half-life	 ,	the	number	of	undecayed	nuclei	is	halved.	Hence	the	equation:

becomes:

Therefore:

The	half-life	of	an	isotope	and	the	decay	constant	are	inversely	proportional	to	each	other.	That	is:

Thus,	if	we	know	either	 	or	λ,	we	can	calculate	the	other.	For	a	nuclide	with	a	very	long	half-life,	we
might	not	wish	to	sit	around	waiting	to	measure	the	half-life;	it	is	easier	to	determine	λ	by	measuring	the
activity	(and	using	A	=	λN)	and	use	that	to	determine	 .

Note	that	the	units	of	λ	and	 	must	be	compatible;	for	example,	λ	in	s−1	and	 	in	s.

KEY	EQUATION
Half-life	and	decay	constant	are	related	as	follows:

Questions
Figure	29.13	shows	the	decay	of	an	isotope	of	caesium,	 .	Use	the	graph	to	determine	the	half-life
of	this	nuclide	in	years,	and	hence	find	the	decay	constant	in	year−1.
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Figure	29.13:	Decay	graph	for	an	isotope	of	caesium.	For	Question	19.

The	decay	constant	of	a	particular	isotope	is	3.0	×	10−4	s−1.	Calculate	how	long	it	will	take	for	the
activity	of	a	sample	of	this	substance	to	decrease	to	one-eighth	of	its	initial	value.
The	isotope	 	decays	with	a	half-life	of	7.4	s.

Calculate	the	decay	constant	for	this	nuclide.
A	sample	of	N	initially	contains	5000	nuclei.	Calculate	how	many	will	remain	after	a	time	of:

14.8	s
20.0	s.

A	sample	contains	an	isotope	of	half-life	 .

Show	that	the	fraction	f	of	nuclei	in	the	sample	that	remain	undecayed	after	a	time	t	is	given	by
the	equation:

Calculate	the	fraction	f	after	each	of	the	following	times:

REFLECTION
Without	looking	at	your	textbook,	list	all	equations	that	contain	decay	constant	λ.
What	information	can	you	get	from	the	gradient	of	a	graph	of	N	against	t?
Have	a	competition	with	a	classmate.	Use	the	internet	for	about	5	mins	to	find	an	isotope	with	the
shortest	half-life	and	the	longest	half-life.
What	did	this	competition	reveal	about	you	as	a	learner?

	
	



SUMMARY

Nuclear	reactions	can	be	represented	by	equations	of	the	form:

Einstein’s	mass–energy	equation	ΔE	=	Δmc2	relates	mass	changes	to	energy	changes.

The	mass	defect	is	equal	to	the	difference	between	the	mass	of	the	separate	nucleons	and	that	of	the
nucleus.

The	mass	of	nuclear	particles	may	be	measured	in	atomic	mass	unit	(u),	where:

1	u	≈	1.660	×	10−27	kg

The	binding	energy	of	a	nucleus	is	the	minimum	energy	required	to	break	up	the	nucleus	into
separate	nucleons.

The	binding	energy	per	nucleon	indicates	the	relative	stability	of	different	nuclides.

The	variation	of	binding	energy	per	nucleon	shows	that	energy	is	released	when	light	nuclei	undergo
fusion	and	when	heavier	nuclei	undergo	fission,	because	these	processes	increase	the	binding	energy
per	nucleon	and,	hence,	result	in	more	stable	nuclides.

Nuclear	decay	is	a	spontaneous	and	random	process.	This	unpredictability	means	that	count	rates
tend	to	fluctuate,	and	we	have	to	measure	average	quantities.

The	half-life	 	of	an	isotope	is	the	mean	time	taken	for	half	of	the	active	nuclei	in	a	sample	to	decay.

The	decay	constant	λ	is	the	probability	that	an	individual	nucleus	will	decay	per	unit	time	interval.

The	activity	A	of	a	sample	is	related	to	the	number	of	undecayed	nuclei	in	the	sample	N	by:	A	=	λN

The	decay	constant	and	half-life	are	related	by	the	equation:

We	can	represent	the	exponential	decrease	of	a	quantity	with	time	t	by	an	equation	of	the	form:

x	=	x0	e−λt

where	x	can	be	activity	A,	count	rate	R	or	number	of	undecayed	nuclei	N.
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EXAM-STYLE	QUESTIONS

Which	expression	is	correct	for	determining	the	energy	(in	electronvolt	eV)
produced	from	a	mass	change	of	1	u? [1]

1.0	×	(3.00	×	108)2 	

1.66	×	10−27	×	(3.00	×	108)2 	

1.66	×	10−27	×	(3.00	×	108)2	×	1.60	×	10−19 	

	

A	student	determines	the	half-life	of	an	isotope	to	be	66	±	5	s. 	

What	is	the	absolute	uncertainty	in	the	decay	constant? [1]

8.0	×	10−4	s−1 	

1.1	×	10−3	s−1 	

5.3	×	10−2	s−1 	

7.6	×	10−2	s−1 	

An	antiproton	is	identical	to	a	proton	except	that	it	has	negative	charge.	When
a	proton	and	an	antiproton	collide,	they	are	annihilated	and	two	photons	are
formed.	In	annihilation,	all	the	mass	of	the	particles	is	converted	into	energy. 	

Calculate	the	energy	released	in	the	reaction. [3]

Calculate	the	energy	released	if	1	mole	of	protons	and	1	mole	of
antiprotons	were	annihilated	by	this	process. [3]

(Mass	of	a	proton	=	mass	of	an	antiproton	=	1.67	×	10−27	kg.) 	

	 [Total:	6]

Calculate	the	mass	that	would	be	annihilated	to	release	1	J	of	energy. [2]

In	a	nuclear	reactor,	the	mass	converted	to	energy	takes	place	at	a	rate	of	70
μg	s−1.	Calculate	the	maximum	power	output	from	the	reactor	assuming	that	it
is	100%	efficient. [3]

The	equation	shows	the	radioactive	decay	of	radon-222. 	

	

Calculate	the	total	energy	output	from	this	decay	and	state	what	forms	of
energy	are	produced. [6]

(Mass	of	 	=	221.970	u,	mass	of	 	=	217.963	u,	mass	of	 α	=	4.002u,
1	u	is	the	unified	atomic	mass	unit	=	1.660	×	10−27	kg.) 	

(Hint:	find	the	mass	defect	in	u,	then	convert	to	kg.) 	

A	carbon-12	atom	consists	of	six	protons,	six	neutrons	and	six	electrons.	The
unified	atomic	mass	unit	(u)	is	defined	as	 	the	mass	of	the	carbon-12	atom. 	

Calculate: 	

the	mass	defect	in	kilograms [2]

the	binding	energy [2]

the	binding	energy	per	nucleon. [2]

(Mass	of	a	proton	=	1.007	276	u,	mass	of	a	neutron	=	1.008	665	u,	mass	of
an	electron	=	0.000	548	u.) 	

	 [Total:	6]

The	fusion	reaction	that	holds	most	promise	for	the	generation	of	electricity	is
the	fusion	of	tritium	 	and	deuterium	 .	The	following	equation	shows	the
process: 	

	

Calculate: 	

the	change	in	mass	in	the	reaction [3]

the	energy	released	in	the	reaction [2]

α
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the	energy	released	if	one	mole	of	deuterium	were	reacted	with	one	mole
of	tritium. [2]

(Mass	of	 	=	3.015	500	u,	mass	of	 	=	2.013	553	u,	mass	of	 	=
4.001	50	u;	mass	of	 	=	1.007	276	u.) 	

	 [Total:	7]

The	initial	activity	a	sample	of	1	mole	of	radon-220	is	8.02	×	1021	s−1.
Calculate: 	

the	decay	constant	for	this	isotope [3]

the	half-life	of	the	isotope. [2]

	 [Total:	5]

The	graph	of	count	rate	against	time	for	a	sample	containing	indium-116	is
shown. 	

Figure	29.14
	

Use	the	graph	to	determine	the	half-life	of	the	isotope. [2]

Calculate	the	decay	constant. [2]

	 [Total:	4]

The	proportions	of	different	isotopes	in	rocks	can	be	used	to	date	the	rocks.
The	half-life	of	uranium-238	is	4.9	×	109	years.	A	sample	has	99.2%	of	the
proportion	of	this	isotope	compared	with	newly	formed	rock. 	

Calculate	the	decay	constant	in	y−1	for	this	isotope	of	uranium. [2]

Calculate	the	age	of	the	rock	in	years. [3]

	 [Total:	5]

The	table	shows	the	received	count	rate	when	a	sample	of	the	isotope
vanadium-52	decays. 	

Time	/	min 0 1 2 3 4 5 6 7 8

Count
rate	/	s-1

187 159 134 110 85 70 60 56 40

Table	29.6
	

Sketch	a	graph	of	the	count	rate	against	the	time. [2]

Comment	on	the	scatter	of	the	points. [1]

From	the	graph,	determine	the	half-life	of	the	isotope. [1]

Describe	the	changes	to	the	graph	that	you	would	expect	if	you	were	given
a	larger	sample	of	the	isotope. [2]

	 [Total:	6]

This	question	is	about	the	nucleus	of	uranium-235	( ),	which	has	a	mass	of
3.89	×	10−25	kg. 	
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State	the	number	of	protons	and	neutrons	in	this	nucleus. [1]

The	radius	r	of	a	nucleus	is	given	by	the	equation: 	

	

where	A	is	the	nucleon	number	of	the	nucleus. 	

Calculate	the	density	of	the	 	nucleus. [3]

Explain	why	the	total	mass	of	the	nucleons	is	different	from	the	mass	of	the
U	nucleus. [2]

Without	calculations,	explain	how	you	can	determine	the	binding	energy
per	nucleon	for	the	uranium-235	nucleus	from	its	mass	and	the	masses	of	a
proton	and	a	neutron. [4]

	 [Total:	10]

Explain	what	is	meant	by	nuclear	fusion	and	explain	why	it	only	occurs	at
very	high	temperatures. [3]

The	main	reactions	that	fuel	the	Sun	are	the	fusion	of	hydrogen	nuclides	to
form	helium	nuclides.	However,	other	reactions	do	occur.	In	one	such
reaction,	known	as	the	triple	alpha	process,	three	helium	nuclei	collide	and
fuse	to	form	a	carbon-12	nucleus. 	

Explain	why	temperatures	higher	than	those	required	for	the	fusion	of
hydrogen	are	needed	for	the	triple	alpha	process. [1]

Calculate	the	energy	released	in	the	triple	alpha	process. [3]

(Mass	of	a	helium	 	nucleus	=	4.001	506	u,	mass	of	a	carbon	
nucleus	=	12.000	000	u,	1	u	=	1.660	×	10−27kg.) 	

	 [Total:	7]

The	isotope	of	polonium, ,	decays	by	the	emission	of	an	α-particle	with	a
half-life	of	183	s. 	

In	an	accident	at	a	reprocessing	plant	some	of	this	isotope,	in	the	form	of
dust,	is	released	into	the	atmosphere. 	

Explain	why	a	spillage	in	the	form	of	a	dust	is	far	more	dangerous	to	health
than	a	liquid	spillage. [2]

It	is	calculated	that	2.4	g	of	the	isotope	is	released	into	the	atmosphere.
The	molar	mass	of	polonium	is	218	g	mol−1.

	

Calculate	the	initial	activity	of	the	released	polonium. [4]

It	is	felt	that	it	would	safe	to	re-enter	the	laboratory	when	the	activity	falls
to	background,	about	10	Bq. 	

Calculate	how	many	hours	must	pass	before	it	is	safe	to	re-enter	the
laboratory. [3]

	 [Total:	9]

A	nuclear	reactor	is	fuelled	by	fission	of	uranium.	The	output	from	the	reactor
is	200	MW.	The	following	equation	describes	a	typical	fission	reaction:

	

State	and	explain	into	what	form	the	majority	of	the	energy	released	in	the
reaction	is	transformed. [2]

Calculate	the	energy	released	in	the	reaction.	The	kinetic	energy	of	the
captured	neutron	is	negligible. [2]

Assume	that	the	energy	released	in	this	fission	is	typical	of	all	fissions
of	U-236.	Calculate	how	many	fissions	occur	each	second. [1]

Calculate	the	mass	of	uranium-235	that	is	required	to	run	the	reactor
for	1	year. [3]

(Mass	of	 	=	3.90	×	10−25	kg,	mass	of	 	=	1.44	×	10−25	kg,	mass	of	
	=	2.42	×	10−25	kg,	mass	of	neutron	=	1.67	×	10−27	kg,	1	year	=	3.15	×

107	s,	molar	mass	of	uranium-235	=	235	g	mol−1.) 	

	 [Total:	8]

	



	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	Einstein’s	mass-energy
equation:
E	=	mc2

29.2 	 	 	

understand	the	terms	mass	defect	and
binding	energy

29.2,	29.4 	 	 	

understand	the	significance	of	the
binding	energy	per	nucleon	against
nucleon	number	graph

29.4 	 	 	

understand	fission	and	fusion 29.4 	 	 	

calculate	the	energy	released	in	nuclear
reactions	using	ΔE	=	Δmc2

29.3 	 	 	

understand	that	radioactive	decay	is
both	spontaneous	and	random

29.5 	 	 	

understand	the	terms	activity,	decay
constant	and	half-life

29.6,	29.7 	 	 	

use	the	equations: 29.6,	29.7,
29.8

	 	 	

understand	the	exponential	decay	of
activity,	undecayed	nuclei	and	count
rate.

29.6,	29.7 	 	 	
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	Chapter	30

Medical	imaging

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
explain	how	X-ray	beams	are	produced	and	controlled
explain	how	ultrasound	is	produced	and	detected
explain	how	ultrasound	images	are	produced,	revealing	internal	structures
describe	how	conventional	and	CT	scan	X-ray	images	are	produced
explain	the	principles	of	positron	emission	tomography.

BEFORE	YOU	START
This	chapter	brings	together	many	strands	that	you	have	met	during	the	course.	Working	with	a
partner,	make	a	few	key	notes	to	remind	yourself	about	the	following:	magnetic	and	electric	fields,
nuclear	decay	equations,	matter	and	antimatter	annihilation,	energy	and	momentum	of	photons,
exponential	decay.

APPLYING	PHYSICS
In	this	book,	you	have	learned	many	important	ideas	from	physics.	You	may	have	noticed	that	the	same
big	ideas	keep	reappearing	–	for	example,	the	idea	of	a	field	of	force	(magnetic,	electric,	gravitational),
or	the	idea	of	energy	transmitted	as	waves,	or	the	idea	that	matter	is	made	of	particles	with	forces
acting	between	them.	This	is	an	important	characteristic	of	physics;	ideas	that	are	used	in	one	area
prove	to	be	useful	in	another.	Hopefully,	you	will	see	many	of	these	connections	now	that	you	are
approaching	the	end	of	your	course.
Physics	is	also	useful.	It	is	applied	in	many	areas	of	life.	In	this	chapter,	we	look	at	one	of	these	areas:
medical	imaging.	This	topic	covers	a	range	of	techniques	that	doctors	use	to	see	inside	our	bodies.	The
best	known	is	X-rays,	good	for	showing	up	bones	(Figure	30.1),	and	the	subject	of	the	first	part	of	this
chapter.	The	sections	that	follow	will	look	at	the	physics	behind	two	other	medical	diagnostic



techniques:	ultrasound	scanning	and	PET	scanning.	In	this	chapter,	you	will	make	use	of	several
important	aspects	of	physics	that	you	have	studied	earlier	in	the	course,	including	sound	as	a	wave,
electromagnetic	radiation,	the	behaviour	of	charged	particles,	magnetic	fields	and	the	annihilation	of
matter	and	antimatter.
Many	modern	techniques	use	ionising	radiation	(X-rays,	γ-rays).	It	is	well	known	that	ionising	radiation
affects	living	tissue.	Why	is	it	justifiable	to	expose	patients	to	this	radiation	knowing	that	there	is	the
potential	for	harm?	Why	is	it	justifiable	to	expose	radiographers	to	the	radiation?	What	precautions	are
taken?

Figure	30.1:	A	radiographer	and	a	doctor	examine	X-ray	images	of	a	patient’s	leg.
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30.1	The	nature	and	production	of	X-rays
X-rays	are	a	form	of	electromagnetic	radiation.	They	belong	to	the	short-wavelength,	high-frequency	end
of	the	electromagnetic	spectrum,	beyond	ultraviolet	radiation	(Figure	30.2).

X-rays	have	wavelengths	in	the	range	10−8	m	to	10−13	m	and	are	effectively	the	same	as	gamma-rays	(γ-
rays);	the	difference	is	the	way	they	are	produced:

X-rays	are	produced	when	fast-moving	electrons	are	rapidly	decelerated.	As	the	electrons	slow	down,
their	kinetic	energy	is	transformed	to	photons	of	electromagnetic	radiation.
γ-rays	are	produced	by	radioactive	decay.	Following	alpha	(α)	or	beta	(β)	emission,	a	gamma	photon	is
often	emitted	by	the	decaying	nucleus	(see	Chapter	15).

Figure	 30.2:	 The	 electromagnetic	 spectrum;	 X-rays	 and	 γ-rays	 lie	 at	 the	 high-frequency,	 short-
wavelength	end	of	the	spectrum.

As	with	all	electromagnetic	radiation,	we	can	think	of	X-rays	either	as	waves	or	as	photons	(see	Chapter
28).	X-rays	travel	in	straight	lines	through	a	uniform	medium.

X-ray	tube
Figure	30.3a	shows	a	patient	undergoing	a	pelvic	X-ray	to	check	for	bone	degeneration.	The	X-ray
machine	is	above	the	patient;	it	contains	the	X-ray	tube	that	produces	the	X-rays	that	pass	downwards
through	the	patient’s	body.
In	the	early	years	of	X-ray	diagnosis	the	pictures	were	captured	on	photographic	film.	Increasingly,	the
images	(as	shown	in	Figure	30.3b)	are	detected	electronically.	This	has	the	major	advantages	of	being
able	to	view	the	image	immediately	and	also	the	images	being	rapidly	sent	via	the	internet	(or	a	hospital
intranet)	to	other	doctors	for	second	opinions.
Figure	30.4	shows	the	principles	of	the	modern	X-ray	tube.	The	tube	itself	is	evacuated,	and	contains	two
electrodes:
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Figure	30.3:	a	A	general-purpose	X-ray	system.	b	A	typical	X-ray	image	produced	by	such	a	machine,
showing	the	region	around	the	pelvis.

Cathode	–	the	heated	filament	acts	as	the	cathode	(negative)	from	which	electrons	are	emitted.
Anode	–	the	rotating	anode	(positive)	is	made	of	a	hard	metal	such	as	tungsten.	(The	anode	metal	is
often	referred	to	as	the	‘target	metal’.)

Figure	30.4:	A	simplified	diagram	of	an	X-ray	tube.

An	external	power	supply	produces	a	voltage	of	up	to	200	kV	between	the	two	electrodes.	This
accelerates	a	beam	of	electrons	across	the	gap	between	the	cathode	and	the	anode.	The	kinetic	energy	of
an	electron	arriving	at	the	anode	is	200	keV.	When	the	electrons	strike	the	anode	at	high	speed,	they	lose
some	of	their	kinetic	energy	in	the	form	of	X-ray	photons,	which	emerge	in	all	directions.	Part	of	the	outer
casing,	the	window,	is	thinner	than	the	rest	and	allows	X-rays	to	emerge	into	the	space	outside	the	tube.
The	width	of	the	X-ray	beam	can	be	controlled	using	metal	tubes	beyond	the	window	to	absorb	X-rays.
This	produces	a	parallel-sided	beam	called	a	collimated	beam.
Only	a	small	fraction,	about	1%,	of	the	kinetic	energy	of	the	electrons	is	converted	to	X-rays.	Most	of	the
incident	energy	is	transferred	to	the	anode,	which	becomes	hot.	This	explains	why	the	anode	rotates;	the
region	that	is	heated	turns	out	of	the	beam	so	that	it	can	cool	down	by	radiating	heat	to	its	surroundings.
Some	X-ray	tubes	have	water	circulating	through	the	anode	to	remove	this	excess	thermal	energy.
When	an	electron	strikes	the	anode,	it	will	be	attracted	towards	the	nucleus	of	an	atom	in	the	anode.	This
will	cause	it	to	change	both	speed	and	direction–in	other	words,	it	decelerates.	A	decelerating	electron
(or	any	other	charged	particle)	loses	energy	by	emitting	electromagnetic	radiation.	The	result	is	a	single
X-ray	photon	or,	more	usually,	several	photons.	The	electron	interacts	with	more	nuclei	until	it	has	lost	all
its	energy	and	it	comes	to	a	halt.
The	energy	E	gained	by	the	electron	when	it	is	accelerated	through	a	potential	difference	of	V	between
the	cathode	and	the	anode	is	given	by	E	=	eV.	This	is	the	maximum	energy	that	an	X-ray	photon	can	have,
and	so	the	maximum	X-ray	frequency	fmax	that	can	be	produced	can	be	calculated	using	the	formula	E	=
hf.	So:

Questions
Summarise	the	energy	changes	that	take	place	in	an	X-ray	tube.
An	X-ray	tube	is	operated	with	a	potential	difference	of	80	kV	between	the	cathode	and	the
tungsten	anode.	Calculate	the	kinetic	energy	(in	electronvolts	and	joules)	of	an	electron	arriving
at	the	anode.	Estimate	the	impact	speed	of	such	an	electron	(assume	that	the	electron	is	non-
relativistic).

Determine	the	minimum	wavelength	of	X-rays	emitted	from	an	X-ray	tube	operated	at	a	voltage	of	120
kV.

X-rays	of	a	whole	range	of	energies	are	produced.	The	lowest	energy	X-rays	will	not	have	sufficient
energy	to	penetrate	through	the	body,	so	will	have	no	effect	on	the	resulting	image.	However,	they	will
contribute	to	the	overall	X-ray	dose	that	the	patient	receives.	These	X-rays	must	be	filtered	out;	this	is



done	using	aluminium	absorbers	across	the	window	of	the	tube.

Controlling	intensity
The	intensity	of	an	X-ray	beam	is	a	measure	of	the	energy	passing	through	unit	area	(see	the	next	topic).
To	increase	the	intensity	of	a	beam,	the	current	in	the	X-ray	tube	must	be	increased.	Since	each	electron
that	collides	with	the	anode	produces	X-rays,	a	greater	current	(more	electrons	per	second)	will	produce
a	beam	of	greater	intensity	(more	X-ray	photons	per	second).	A	more	intense	beam	means	that	the	X-ray
image	will	be	formed	in	a	shorter	time.
	
	



30.2	X-ray	attenuation
As	you	can	see	if	you	look	back	to	Figure	30.1,	bones	look	white	in	an	X-ray	photograph.	This	is	because
they	are	good	absorbers	of	X-rays,	so	that	little	radiation	arrives	at	the	photographic	film	to	cause
blackening.	Flesh	and	other	soft	tissues	are	less	absorbing,	so	the	film	is	blackened.	Modern	X-ray
systems	use	digital	detectors	instead	of	photographic	films.	The	digital	images	are	easier	to	process,	store
and	transmit	using	computers.
X-rays	are	a	form	of	ionising	radiation;	that	is,	they	ionise	the	atoms	and	molecules	of	the	materials	they
pass	through.	In	the	process,	the	X-rays	transfer	some	or	all	of	their	energy	to	the	material,	and	so	a
beam	of	X-rays	is	gradually	absorbed	as	it	passes	through	a	material.
The	gradual	decrease	in	the	intensity	of	a	beam	of	X-rays	as	it	passes	through	matter	is	called
attenuation.	We	will	now	look	at	the	pattern	of	attenuation	of	X-rays	as	they	travel	through	matter.

Decreasing	intensity
Given	that	intensity	is	the	rate	of	energy	transfer	per	unit	cross-sectional	area,	we	can	see	that	intensity
is	related	to	power	by	the	equation:

where	P	is	power	and	A	is	the	cross-sectional	area	normal	to	the	radiation.	The	unit	of	intensity	is	Wm−2.
The	intensity	of	a	collimated	beam	of	X-rays	decreases	as	it	passes	through	matter.	Picture	a	beam
entering	a	block	of	material.	Suppose	that,	after	it	has	passed	through	1	cm	of	material,	its	intensity	has
decreased	to	half	its	original	value.	Then,	after	it	has	passed	through	2	cm,	the	intensity	will	have
decreased	to	one	quarter	of	its	original	value	(half	of	a	half),	and	then,	after	3	cm,	it	will	be	reduced	to
one	eighth.	You	should	recognise	this	pattern	 	as	a	form	of	exponential	decay.

We	can	write	an	equation	to	represent	the	attenuation	of	X-rays	as	they	pass	through	a	uniform	material
as	follows:

I	=	I0	e−μx

where	I0	is	the	initial	intensity	(before	absorption),	x	is	the	thickness	of	the	material,	I	is	the	transmitted
intensity	and	µ	is	the	attenuation	(or	absorption)	coefficient	of	the	material.	Figure	30.5	shows	this
pattern	of	absorption.	It	also	shows	that	bone	is	a	better	absorber	of	X-rays	than	flesh;	it	has	a	higher
attenuation	coefficient.	(The	attenuation	coefficient	also	depends	on	the	energy	of	the	X-ray	photons.)

Figure	30.5:	The	absorption	of	X-rays	follows	an	exponential	pattern.

KEY	EQUATION

I	=	I0	e−μx

Attenuation	of	X-rays	as	they	pass	through	a	uniform	material.

The	unit	of	the	attenuation	coefficient	µ	is	m−1	(or	cm−1	etc.).
Now	look	at	Worked	example	1.
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Half	thickness
If	we	compare	the	graphs	(or	equations)	for	the	attenuation	of	X-rays	as	they	pass	through	a	material	with
the	decay	of	a	radioactive	nuclide	or	with	the	discharge	of	a	capacitor	we	see	that	they	are	all	exponential
decays.	From	Chapter	29,	you	should	become	familiar	with	the	concept	of	the	half-life	of	a	radioactive
isotope	(the	time	taken	for	half	the	nuclei	in	any	sample	of	the	isotope	to	decay).	In	a	similar	manner,	we
refer	to	the	half-thickness	of	an	absorbing	material.	This	is	the	thickness	of	material	that	will	reduce	the
transmitted	intensity	of	an	X-ray	beam	of	a	particular	frequency	to	half	its	original	value.

WORKED	EXAMPLE

The	attenuation	(absorption)	coefficient	of	bone	is	600	m−1	for	X-rays	of	energy	20	keV.	A	beam	of
such	X-rays	has	an	intensity	of	20	W	m−2.	Calculate	the	intensity	of	the	beam	after	passing	through
a	4.0	mm	thickness	of	bone.

Write	down	the	quantities	that	you	are	given;	make	sure	that	the	units	are	consistent.

I0	=	20	W	m−2

x	=	4.0	mm	=	0.004	m

µ	=	600	m−1

Substitute	in	the	equation	for	intensity	and	solve.
Hint:	Calculate	the	exponent	(the	value	of−µx)	first.

So,	the	intensity	of	the	X-ray	beam	will	have	been	reduced	to	about	10%	of	its	initial	value	after
passing	through	just	4.0	mm	of	bone.

Questions
Use	the	equation	I	=	I0	e−μx	to	show	that	the	half-thickness	x½	is	related	to	the	attenuation	coefficient
µ	by:

An	X-ray	beam	transfers	400	J	of	energy	through	an	area	of	5.0	cm2	each	second.	Calculate	its
intensity	in	W	m−2.
An	X-ray	beam	of	initial	intensity	50	W	m−2	is	incident	on	soft	tissue	of	attenuation	coefficient	1.2	cm
−1.	Calculate	its	intensity	after	it	has	passed	through	a	5.0	cm	thickness	of	tissue.
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30.3	Improving	X-ray	images
The	X-ray	systems	in	use	in	hospitals	and	clinics	today	are	highly	developed	pieces	of	technology.	They	do
not	simply	show	bones	against	a	background	of	soft	tissue.	They	can	also	show	very	fine	detail	in	the	soft
tissue,	including	the	arrangement	of	blood	vessels.
Two	aims	of	radiographers	are:

to	reduce	as	much	as	possible	the	patient’s	exposure	to	harmful	X-rays
to	improve	the	contrast	of	the	image,	so	that	the	different	tissues	under	investigation	show	up	clearly
in	the	image.

Reducing	dosage
X-rays,	like	all	ionising	radiation,	can	damage	living	tissue,	causing	mutations	that	can	lead	to	the	growth
of	cancerous	tissue.	It	is	therefore	important	that	the	dosage	is	kept	to	a	minimum.
A	radiographer	may	choose	to	record	the	X-ray	image	on	film	or	digitally.	X-rays	are	only	weakly	absorbed
by	photographic	film,	so,	historically,	patients	had	to	be	exposed	to	long	and	intense	doses	of	X-rays.	Today,
intensifier	screens	are	used.	These	are	sheets	of	a	material	that	contains	phosphor,	a	substance	that
emits	visible	light	when	it	absorbs	X-ray	photons.	The	film	is	sandwiched	between	two	intensifier	screens.
Each	X-ray	photon	absorbed	results	in	several	thousand	light	photons,	which	then	blacken	the	film.	This
reduces	the	patient’s	exposure	by	a	factor	of	100	to	500.
In	digital	systems,	image	intensifiers	are	also	used	(Figure	30.6).	The	incoming	X-rays	strike	a	phosphor
screen,	producing	visible	light	photons.	These	then	release	electrons	(by	the	photoelectric	effect)	from	the
photocathode.	The	electrons	are	accelerated	and	focused	by	the	positively	charged	anode	so	that	they
strike	a	screen,	which	then	gives	out	visible	light.	The	image	on	this	screen	can	be	viewed	via	a	television
camera.	At	the	same	time,	the	image	can	be	stored	electronically.	Digital	systems	have	the	advantage	that
images	can	be	easily	stored,	shared	and	viewed.

Figure	30.6:	An	X-ray	image	intensifier.

Image	intensifiers	are	particularly	useful	in	a	technique	called	fluoroscopy.	A	continuous	X-ray	beam	is
passed	through	the	patient	onto	a	fluorescent	screen	where	a	real-time	image	is	formed.	Using	an	image
intensifier	ensures	that	the	patient	is	not	exposed	to	dangerous	levels	of	X-rays	over	a	long	period.

Improving	contrast
Good	contrast	is	said	to	be	achieved	if	there	is	a	clear	difference	in	the	blackening	of	the	photographic	film
as	the	X-ray	passes	through	different	types	of	tissue.	The	contrast	is	largely	determined	by	the	hardness	of
the	X-rays.	Bone	is	a	good	absorber	of	the	radiation.	If	the	doctor	is	diagnosing	a	break	in	a	bone,	he	or	she
will	use	hard	X-rays.	In	contrast,	investigation	of	the	tissue	of	the	breast,	where	the	tissue	is	a	poor
absorber,	will	require	a	longer	exposure,	using	much	softer	(long-wavelength,	low-frequency)	X-rays.
As	we	have	seen,	different	tissues	show	up	differently	in	X-ray	images.	In	particular,	bone	can	readily	be
distinguished	from	soft	tissue	such	as	muscle	because	it	is	a	good	absorber	of	X-rays.	However,	it	is	often
desirable	to	show	up	different	soft	tissues	that	absorb	X-rays	equally.	In	order	to	do	this,	contrast	media
are	used.
A	contrast	medium	is	a	substance,	such	as	iodine	or	barium,	which	is	a	good	absorber	of	X-rays.	The
patient	may	swallow	a	barium-containing	liquid	(a	‘barium	meal’),	or	have	a	similar	liquid	injected	into	the
tissue	of	interest.	This	tissue	is	then	a	better	absorber	of	X-rays	and	its	edges	show	up	more	clearly	on	the
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final	image.
Figure	30.7	shows	an	X-ray	image	of	the	intestine	of	a	patient	who	has	been	given	a	barium	meal.	The
large	pale	areas	show	where	the	barium	has	accumulated.	Other	parts	of	the	intestine	have	become
smeared	with	barium,	and	this	means	that	the	outline	of	the	tissue	shows	up	clearly.
Contrast	media	are	elements	with	high	values	of	atomic	number	Z.	This	means	that	their	atoms	have	many
electrons	with	which	the	X-rays	interact,	so	they	are	more	absorbing.	Soft	tissues	mostly	consist	of
compounds	of	hydrogen,	carbon	and	oxygen	(low	Z	values),	while	bone	has	the	heavier	elements	calcium
and	phosphorus,	and	contrast	media	have	even	higher	Z	values	–	see	Table	30.1.

Figure	30.7:	X-ray	image	of	a	patient’s	intestine	after	taking	a	barium	meal.	Barium	shows	up	as	pale	in
this	image,	which	has	also	been	artificially	coloured	to	highlight	features	of	interest.

Substance Elements	(Z	values) Average	Z

soft	tissue H	(1),	C	(6),	O	(8) 7

bone H	(1),	C	(6),	O	(8),	P	(15),	Ca	(20) 14

contrast	media I	(53),	Ba	(56) 55

Table	30.1:	Proton	(atomic)	numbers	of	the	constituents	of	different	tissues,	and	of	contrast	media.

Questions
The	data	in	Table	30.2	shows	how	the	attenuation	coefficient	µ	depends	on	the	energy	of	the	X-rays	in
bone	and	muscle.	When	making	a	diagnostic	X-ray	image,	it	is	desirable	that	bone	should	be	clearly
distinguished	from	muscle.	Use	the	data	in	Table	30.2	to	explain	why	it	would	be	best	to	use	lower
energy	(50	keV)	X-rays	for	this	purpose.

Maximum	X-ray	energy Bone:	µ	/	cm−1 Muscle:	µ	/	cm−1

4.0	MeV 0.087 0.049
250	keV 0.32 0.16
100	keV 0.60 0.21
50	keV 3.32 0.54

Table	30.2:	Data	for	Questions	7	and	8.

When	low-energy	X-rays	are	used,	the	attenuation	coefficient	µ	is	(roughly)	proportional	to	the	cube	of
the	proton	number	Z	of	the	absorbing	material.	Use	the	data	in	Table	30.2	to	show	that	bone	absorbs
X-rays	eight	times	as	strongly	as	muscle.
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30.4	Computerised	axial	tomography
A	conventional	X-ray	image	has	an	important	limitation.	Because	an	X-ray	is	essentially	a	two-dimensional
shadow	image,	it	shows	the	bones,	organs,	and	so	on	at	different	depths	within	the	body	superimposed	on
each	other.	For	example,	in	Figure	30.8,	it	is	difficult	to	distinguish	the	bones	of	the	front	and	back	of	the
ribcage.	This	can	be	overcome	by	taking	several	images	at	different	angles.	An	experienced	radiographer
can	then	study	these	images	and	deduce	what	is	going	on	inside	the	patient.

Figure	30.8:	This	chest	X-ray	shows	the	difficulty	of	distinguishing	one	bone	from	another	when	they
overlap.

An	ingenious	technique	for	extending	this	approach	was	invented	by	Geoffrey	Hounsfield	and	his
colleagues	at	EMI	in	the	UK	in	1971.	They	developed	the	computerised	axial	tomography	scanner
(CAT	scanner	or	CT	scanner).	Figure	30.9	illustrates	the	principle	of	a	modern	scanner.

The	patient	lies	in	a	vertical	ring	of	X-ray	detectors.
The	X-ray	tube	rotates	around	the	ring,	exposing	the	patient	to	a	fan-shaped	beam	of	X-rays	from	all
directions.
Detectors	opposite	the	tube	send	electronic	records	to	a	computer.
The	computer	software	builds	up	a	three-dimensional	image	of	the	patient.
The	radiographer	can	view	images	of	‘slices’	through	the	patient	on	the	computer	screen.

Figure	30.9:	Operation	of	a	modern	CT	scanner.	The	X-ray	 tube	rotates	around	 the	patient	while	 the
detectors	are	stationary.

CT	scanners	have	undergone	many	developments	since	they	were	first	invented.	In	a	fifth-generation
scanner,	the	patient’s	bed	slides	slowly	through	the	ring	of	detectors	as	the	X-ray	tube	rotates.	The	tube
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thus	traces	out	a	spiral	path	around	the	patient,	allowing	information	to	be	gathered	about	the	whole
body.
Figure	30.10	shows	a	child	undergoing	a	CT	scan.	On	the	monitor	you	can	see	a	cross-section	of	the
patient’s	head.

Figure	30.10:	A	boy	undergoes	a	CT	scan	in	an	investigation	of	an	eye	condition.

This	technique	is	called	computerised	axial	tomography	because	it	relies	on	a	computer	to	control	the
scanning	motion	and	to	gather	and	manipulate	the	data	to	produce	images;	because	the	X-ray	tube
rotates	around	an	axis	and	because	it	produces	images	of	slices	through	the	patient	–	the	Greek	word
tomos	means	slice.

Advantages	of	a	CT	scan
Although	single	X-ray	images	still	have	many	uses	(and	they	can	be	made	very	quickly),	CT	scans	have	a
number	of	advantages:

They	produce	images	that	show	three-dimensional	relationships	between	different	tissues.
They	can	distinguish	tissues	with	quite	similar	densities	(attenuation	coefficients).

So,	for	example,	a	CT	scan	can	show	up	the	precise	position,	shape	and	size	of	a	tumour.	This	allows	it	to
be	precisely	targeted	in	treatment	with	high-energy	X-rays	or	γ-rays.
However,	it	is	worth	noting	that	a	CT	scan	involves	using	X-rays	and	any	exposure	to	ionising	radiation
carries	a	risk	for	the	patient.	These	risks	are	fairly	small;	it	is	estimated,	with	modern	scanning
equipment,	that	the	radiation	dose	received	is	about	one-third	the	dose	received	from	background
radiation	in	a	year,	or	is	equivalent	to	the	dose	received	on	four	long-haul	flights.	Nevertheless,	it	is
important	to	be	aware	of	the	dangers,	particularly	if	there	are	other	underlying	health	problems	or	if	a
woman	is	pregnant.
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Figure	30.11:	Sections	 through	the	head	of	a	10-year-old	boy.	You	can	see	 the	haematoma	(bruising)
arising	from	being	struck	on	the	side	of	the	head;	this	causes	pressure	on	his	brain.

Questions
Suggest	why	a	patient	may	be	asked	to	hold	his	or	her	breath	during	a	CT	scan.
A	patient	with	an	injury	to	the	skull,	perhaps	as	a	result	of	a	road	accident,	is	likely	to	undergo	a	CT
scan.	Explain	why	a	CT	scan	is	preferable	to	a	conventional	X-ray	in	a	case	like	this.

	
	



30.5	Using	ultrasound	in	medicine
Ultrasound	scanning	is	routinely	used	to	check	the	condition	of	a	baby	in	the	womb	(Figure	30.12).	There
do	not	seem	to	be	any	harmful	side-effects	associated	with	this	procedure,	and	it	can	provide	useful
information	on	the	baby’s	development.	Indeed,	for	many	children,	their	first	appearance	in	the	family
photo	album	is	in	the	form	of	an	ante-natal	(before	birth)	scan!

Figure	30.12:	An	expectant	mother	undergoes	an	ultrasound	scan.	The	image	of	her	baby	is	built	up	by
computer	and	appears	on	the	monitor.

This	technique	has	many	other	uses	in	medicine.	It	can	be	used	to	investigate	heart	problems;	the
changes	in	frequency	caused	by	the	Doppler	effect	is	used	to	investigate	the	flow	of	blood	through	the
heart.	Gallstones	or	kidney	stones	(two	very	painful	complaints)	can	also	be	detected	using	ultrasound
and	so	men	as	well	as	women	may	undergo	this	type	of	scan.
The	technique	of	ultrasound	scanning	is	rather	similar	to	the	way	in	which	sailors	use	echo	sounding	and
echo	location	to	detect	the	seabed	and	shoals	of	fish.	Ultrasound	waves	are	directed	into	the	patient’s
body.	These	waves	are	partially	reflected	at	the	boundaries	between	different	tissues	and	the	reflected
waves	are	detected	and	used	to	construct	the	image.

Working	with	ultrasound
Ultrasound	is	any	sound	wave	that	has	a	frequency	above	the	upper	limit	of	human	hearing.	This	is
usually	taken	to	mean	frequencies	above	20	kHz	(20000	Hz),	although	the	limit	of	hearing	decreases	with
age	to	well	below	this	figure.	In	medical	applications,	the	typical	frequencies	used	are	in	the	megahertz
range.
Sound	waves	are	longitudinal	waves.	They	can	only	pass	through	a	material	medium;	they	cannot	pass
through	a	vacuum.	The	speed	of	sound	(and	hence	of	ultrasound)	depends	on	the	material.	In	air,	it	is
approximately	330	m	s−1;	it	is	higher	in	solid	materials.	A	typical	value	for	body	tissue	is	1500	m	s−1.
Using	the	wave	equation	v	=	fλ,	we	can	calculate	the	wavelength	of	2.0	MHz	ultrasound	waves	in	tissue:

This	means	that	2.0	MHz	ultrasound	waves	will	be	able	to	distinguish	detailed	features	whose	dimensions
are	of	the	order	of	1	mm.	Higher-frequency	waves	have	shorter	wavelengths	and	these	are	used	to	detect
smaller	features	inside	the	body.	Unfortunately,	higher-frequency	waves	are	absorbed	more	strongly	and
so	a	more	intense	beam	must	be	used.

Producing	ultrasound
Like	audible	sound,	ultrasound	is	produced	by	a	vibrating	source.	The	frequency	of	the	source	is	the	same
as	the	frequency	of	the	waves	it	produces.	In	ultrasound	scanning,	ultrasonic	waves	are	produced	by	a
varying	electrical	voltage	in	a	transducer.	The	same	device	also	acts	as	a	detector.	(You	should	recall	from
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Chapter	25	that	a	transducer	is	any	device	that	changes	energy	from	one	form	to	another.)
At	the	heart	of	the	transducer	is	a	piezo-electric	crystal,	such	as	quartz.	This	type	of	crystal	has	a	useful
property:	when	a	voltage	is	applied	across	it	in	one	direction,	it	shrinks	slightly	–	see	Figure	30.13a.	When
the	voltage	is	reversed,	it	expands	slightly.	So,	an	alternating	voltage	with	frequency	f	causes	the	crystal
to	contract	and	expand	at	the	same	frequency	f.	We	say	that	the	voltage	induces	a	strain	in	the	crystal.	In
the	best	piezo-electric	substances,	the	maximum	value	of	strain	is	about	0.1%;	in	other	words,	the
crystal’s	width	changes	by	about	one	part	in	a	thousand.

Figure	 30.13:	 The	 piezo-electric	 effect.	 a	 An	 applied	 voltage	 causes	 a	 piezo-electric	 crystal	 to
contract	or	expand.	b	An	applied	stress	causes	an	induced	e.m.f.	across	the	crystal.

In	a	piezo-electric	transducer,	an	alternating	voltage	is	applied	across	the	crystal,	which	then	acts	as	the
vibrating	source	of	ultrasound	waves.	A	brief	pulse	of	ultrasound	waves	is	sent	into	the	patient’s	body;	the
transducer	then	receives	an	extended	pulse	of	reflected	ultrasound	waves.

Detecting	ultrasound
The	transducer	also	acts	as	the	detector	of	reflected	ultrasound	waves.	It	can	do	this	because	the	piezo-
electric	effect	works	in	reverse:	a	varying	stress	applied	to	the	crystal	produces	a	varying	e.m.f.	across
the	crystal	–	see	Figure	30.13b.	To	maximise	the	effect,	the	frequency	of	the	waves	must	match	the
resonant	frequency	of	the	crystal.
The	optimum	size	of	the	crystal	is	half	the	wavelength	 	of	the	ultrasound	waves.
Figure	30.14	shows	the	construction	of	a	piezo-electric	ultrasound	transducer.	Note	the	following
features:

The	 crystal	 is	 now	 usually	 made	 of	 polyvinylidene	 difluoride.	 Previously,	 quartz	 and	 lead	 zirconate
titanate	were	used.
The	outer	case	supports	and	protects	the	crystal.
At	the	base	is	the	acoustic	window,	made	from	a	material	that	is	a	good	transmitter	of	ultrasound.
Behind	the	crystal	 is	a	 large	block	of	damping	material	(usually	epoxy	resin).	This	helps	to	stop	the
crystal	vibrating	when	a	pulse	of	ultrasound	has	been	generated.	This	is	necessary	so	that	the	crystal
is	not	vibrating	when	the	incoming,	reflected	ultrasound	waves	reach	the	transducer.
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Figure	30.14:	A	section	through	an	ultrasound	transducer.

Questions
Quartz	is	an	example	of	a	piezo-electric	material.	The	speed	of	sound	in	quartz	is	5700	m	s−1.

Calculate	the	wavelength	of	ultrasound	waves	of	frequency	2.1	MHz	in	a	quartz	crystal.
If	the	crystal	is	to	be	used	in	an	ultrasound	transducer,	its	thickness	must	be	half	a	wavelength.
Calculate	the	thickness	of	the	transducer.

Piezo-electric	crystals	have	many	applications	other	than	in	ultrasound	scanning.	For	example,	they
are	used	in:

gas	lighters	(to	produce	a	spark)
inkjet	printers	(to	break	up	the	stream	of	ink	into	droplets)
guitar	pickups	(to	connect	the	guitar	to	an	amplifier)
the	auto-focus	mechanism	of	some	cameras	(to	move	the	lens	back	and	forth).

For	each	of	these	examples,	state	whether	the	piezo-electric	effect	is	being	used	to	transfer	energy	in
the	vibrations	of	the	crystal	to	electrical	energy	or	the	other	way	round.

	
	



30.6	Echo	sounding
The	principle	of	an	ultrasound	scan	is	to	direct	ultrasound	waves	into	the	body.	These	pass	through
various	tissues	and	are	partially	reflected	at	each	boundary	where	the	wave	speed	changes.	The	reflected
waves	are	then	detected	and	used	to	construct	an	internal	image	of	the	body.
Figure	30.15	shows	what	happens	when	a	beam	of	ultrasound	reaches	a	boundary	between	two	different
media.	The	beam	is	partially	refracted	(that	is,	the	transmitted	beam	has	changed	direction)	and	partially
reflected.	This	diagram	should	remind	you	of	the	way	in	which	a	ray	of	light	is	refracted	and	reflected
when	it	strikes	the	boundary	between	two	media.	It	is	the	change	in	speed	that	causes	the	refraction	of	a
wave.
For	ultrasound,	we	are	interested	in	the	fraction	of	the	incident	intensity	of	ultrasound	that	is	reflected	at
the	boundary.	This	depends	on	the	acoustic	impedance	Z	of	each	material.	This	quantity	depends	on	the
density	ρ	and	the	speed	of	sound	c	in	the	material.	Acoustic	impedance	is	defined	as	follows:

Figure	30.15:	An	ultrasound	wave	is	both	refracted	and	reflected	when	it	strikes	the	boundary	between
two	different	materials.

where	Z	is	the	acoustic	impedance	of	a	material,	ρ	is	the	density	of	the	substance	and	c	is	the	speed	of	the
ultrasound	in	the	material.

Since	the	unit	of	density	is	kg	m−3	and	the	unit	of	speed	is	m	s−1,	the	unit	of	acoustic	impedance	Z	is	kg
m−2	s−1.

KEY	EQUATION

Table	30.3	shows	values	of	ρ,	c	and	Z	for	some	materials	that	are	important	in	medical	ultrasonography.

Material Density	/	kg	m−3 Speed	of	sound	/	m	s−1 Acoustic	impedance	/
106	kg	m−2	s−1

air 1.3 330 0.0004

water 1000 1500 1.50



•

•
•

water 1000 1500 1.50

Biological 	 	 	

blood 1060 1570 1.66

fat 925 1450 1.34

soft	tissue	(average) 1060 1540 1.63

muscle 1075 1590 1.71

bone	(average;	adult) 1600 4000 6.40

Transducers 	 	 	

barium	titanate 5600 5500 30.8

lead	zirconate	titanate 7650 3790 29.0

quartz 2650 5700 15.1

polyvinylidene	difluoride 1780 2360 4.20

Table	 30.3:	 The	 density	 (ρ),	 speed	 of	 sound	 in	 air	 (c)	 and	 acoustic	 impedance	 (Z)	 of	 some	 materials
important	in	medical	scanning.

Calculating	reflected	intensities
When	an	ultrasound	beam	reaches	the	boundary	between	two	materials,	the	greater	the	difference	in
acoustic	impedances,	the	greater	the	reflected	fraction	of	the	ultrasound	waves.	For	normal	incidence
(that	is,	angle	of	incidence	=	0°)	the	ratio	of	the	reflected	intensity	Ir	to	the	incident	intensity	I0	is	given
by:

where	I0	is	the	intensity	of	the	incident	ultrasonic	beam,	I	is	the	intensity	of	the	reflected	beam,	and	Z1
and	Z2	are	the	acoustic	impedances	of	the	two	materials	(see	Figure	30.16).

The	ratio	 	indicates	the	fraction	of	the	intensity	of	the	beam	that	is	reflected.

KEY	EQUATION

Intensity	reflection	fraction	of	the	boundary	between	two	materials.

Comparing	acoustic	impedances
A	big	change	in	acoustic	impedance	gives	a	large	fraction	of	reflected	intensity.	Inspection	of	Table	30.3
shows	that:

a	 very	 large	 fraction	 	 of	 the	 incident	 ultrasound	 will	 be	 reflected	 at	 an	 air–tissue
boundary
a	large	fraction	will	be	reflected	at	a	tissue–bone	boundary	(as	shown	in	Worked	example	2)
very	little	will	be	reflected	at	a	boundary	between	soft	tissues	including	fat	and	muscle.

This	means	that	bone	shows	up	well	in	an	ultrasound	scan,	but	it	is	difficult	to	see	different	soft	tissues
(Figure	30.16).	Another	problem	is	that	the	patient’s	skin	is	in	contact	with	air,	and	99.95%	of	the
ultrasound	will	be	reflected	before	it	has	entered	the	body.	To	overcome	this,	the	transducer	must	be
‘coupled’	to	the	skin	using	a	gel	whose	impedance	matches	that	of	the	skin.	This	process	of	impedance
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matching	explains	why	the	patient’s	skin	is	smeared	with	gel	before	a	scan.

WORKED	EXAMPLE

A	beam	of	ultrasound	is	normally	incident	on	the	boundary	between	muscle	and	bone.	Use	Table
30.3	to	determine	the	fraction	of	its	intensity	that	is	reflected.

Write	down	the	values	of	Z1	(for	muscle)	and	Z2	(for	bone).

Z1	=	1.71	×	106	kg	m−2	s−1

Z2	=	6.40	×	106	kg	m−2	s−1

Substitute	these	values	in	the	equation	for	 .

Hint:	We	can	use	this	equation	because	we	know	that	the	angle	of	incidence	=	0°.

Hint:	We	can	ignore	the	factor	of	106	in	the	Z	values	because	this	is	a	factor	common	to	all
the	values,	so	they	cancel	out.
So,	33%	of	the	intensity	of	ultrasound	will	be	reflected	at	the	muscle–bone	boundary.

The	acoustic	impedance	of	the	gel	is	typically	1.65	×	106	kg	m−2	s−1	and	that	of	skin	is	1.71	×	106	kg	m
−2	s−1.	With	gel	between	the	skin	and	the	transducer,	the	percentage	of	the	intensity	reflected	is	0.03%.
The	poor	match	of	impedance	between	air	and	tissue	means	that	ultrasound	cannot	penetrate	the	lungs.
The	operator	must	take	care	to	avoid	any	bubbles	of	gas	in	the	intestines.	Bones	are	also	difficult	to	see
through.	For	an	ultrasound	scan	of	the	heart,	the	probe	must	be	directed	through	the	gap	between	two
ribs.
As	ultrasound	waves	pass	through	the	body,	they	are	gradually	absorbed.	Their	absorption	follows	the
same	exponential	pattern	as	we	saw	earlier	for	X-rays.	The	intensity	I	decreases	with	distance	x	according
to	the	equation:

I	=	I0	e−αx
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Figure	30.16:	Ultrasound	scan	of	a	foetus	at	20	weeks;	the	baby’s	skin	is	clearly	visible,	as	are	its	bony
skull	and	ribs.

where	I0	is	the	intensity	of	the	incident	ultrasonic	beam,	I	is	the	intensity	of	the	reflected	beam,	α	is	the
absorption	coefficient,	and	x	is	the	distance	travelled	through	the	material.
Here,	α	is	the	absorption	coefficient,	equivalent	to	the	quantity	µ	in	the	absorption	equation	for	X-rays;	its
value	varies	with	the	nature	of	the	tissue	through	which	the	ultrasound	is	passing,	and	with	the	frequency
of	the	ultrasound.	In	practice,	absorption	is	not	a	serious	problem	in	an	ultrasound	scan	as	scanning
relies	on	the	reflection	of	ultrasound	at	the	boundaries	between	different	tissues.

KEY	EQUATION

I	=	I0	e−αx

Attenuation	of	ultrasound.

Questions
Calculate	the	acoustic	impedance	of	muscle	tissue.	(Density	=	1075	kg	m−3;	speed	of	sound	=	1590	m
s−1.)
Determine	the	fraction	of	the	intensity	of	an	ultrasound	beam	that	is	reflected	when	a	beam	is
incident	normally	on	a	boundary	between	water	and	fat.	(Use	values	from	Table	30.3.)
The	ultrasound	image	shown	in	Figure	30.25	clearly	shows	the	baby’s	skin	and	some	bones.	Explain
why	these	show	up	clearly	while	softer	organs	inside	its	body	do	not.
Explain	why	ultrasound	cannot	readily	be	used	to	examine	the	brain.	Suggest	one	or	more	alternative
scanning	techniques	that	can	be	used	for	this.
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30.7	Ultrasound	scanning
There	are	several	different	types	of	ultrasound	scan	that	are	used	in	practice.	To	illustrate	the	basic
principles,	we	will	concentrate	on	the	A-scan	and	the	B-scan.

A-scan
This	is	the	simplest	type	of	scan.	A	pulse	of	ultrasound	is	sent	into	the	body	and	the	reflected	‘echoes’	are
detected	and	displayed	on	an	oscilloscope	or	computer	screen	as	a	voltage–time	graph.
A	pulse	generator	controls	the	ultrasound	transducer.	It	is	also	connected	to	the	time	base	of	the
oscilloscope.	Simultaneously,	the	pulse	generator	triggers	a	pulse	of	ultrasound	that	travels	into	the
patient	and	starts	a	trace	on	the	screen.	Each	partial	reflection	of	the	ultrasound	is	detected	and	appears
as	a	spike	on	the	screen	(see	Figure	30.17).

Figure	30.17:	An	A-scan.	 Information	about	 the	depth	of	 reflecting	 tissues	can	be	obtained	 from	 the
positions	 of	 the	 spikes	 along	 the	 time	 axis;	 their	 relative	 amplitudes	 can	 indicate	 the	 nature	 of	 the
reflecting	surfaces.

In	Figure	30.17,	pulses	1,	2	and	3	are	reflected	at	the	various	boundaries.	Pulse	1	is	the	reflection	at	the
muscle–bone	boundary	at	B.	Pulse	2	is	the	reflection	at	the	bone–muscle	boundary	at	C.	The	time	Δt	is	the
time	taken	for	the	ultrasound	to	travel	twice	the	thickness	of	the	bone.	Finally,	pulse	3	is	the	reflection	at
the	muscle–air	boundary	at	D.	The	thickness	of	the	bone	can	be	determined	from	this	A-scan.
The	time	interval	between	pulses	1	and	2	=	Δt

where	c	is	the	speed	of	the	ultrasound	in	the	bone	(see	Worked	example	3).

WORKED	EXAMPLE

In	a	particular	A-scan,	similar	to	Figure	30.26,	the	time	interval	between	pulses	1	and	2	is	12	µs.
The	speed	of	ultrasound	in	bone	is	about	4000	m	s−1.	Determine	the	thickness	of	the	bone.

Determine	the	distance	travelled	by	the	ultrasound	in	the	time	interval	of	12	µs.



Step	2 Calculate	the	thickness	of	the	bone.
Hint:	The	distance	you	have	just	calculated	must	be	halved	because	the	ultrasound	has	to
travel	through	the	bone	twice.

Because	ultrasound	waves	are	gradually	attenuated	as	they	pass	through	the	body	(their	energy	is
absorbed	so	that	their	amplitude	and	intensity	decrease),	the	echoes	from	tissues	deeper	in	the	body	are
weaker	and	must	be	amplified.
A-scans	are	used	for	some	straightforward	procedures	such	as	measuring	the	thickness	of	the	eye	lens.

B-scan
In	a	B-scan,	a	detailed	image	of	a	cross-section	through	the	patient	is	built	up	from	many	A-scans.	The
ultrasound	transducer	is	moved	across	the	patient’s	body	in	the	area	of	interest.	Its	position	and
orientation	are	determined	by	small	sensors	attached	to	it.
Each	reflected	pulse	is	analysed	to	determine	the	depth	of	the	reflecting	surface	(from	the	time	of	echo)
and	the	nature	of	the	surface	(from	the	amplitude	of	the	reflected	wave).	A	two-dimensional	image	is	then
built	up	on	a	screen	by	positioning	dots	to	represent	the	position	of	the	reflecting	surfaces	and	with
brightness	determined	by	the	intensity	of	the	reflection,	brighter	dots	indicating	more	reflected
ultrasound	(see	Figure	30.18).

Figure	30.18:	 In	 a	B-scan,	 dots	 are	 produced	 on	 the	 screen	 rather	 than	 pulses	 as	 in	 the	A-scan.	 By
moving	the	transducer,	a	series	of	dots	on	the	screen	traces	out	the	shape	of	the	organ	being	examined.

Figure	30.19	shows	the	result	of	a	typical	B-scan.	Because	it	takes	several	seconds	for	the	scanner	to
move	across	the	body,	problems	can	arise	if	the	organs	of	interest	are	moving–this	gives	a	blurred	image.
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Figure	30.19:	An	ultrasonic	B-scan	of	an	abnormal	thyroid	gland.

Questions
Two	consecutive	peaks	in	an	ultrasound	A-scan	are	separated	by	a	time	interval	of	0.034	ms.
Calculate	the	distance	between	the	two	reflecting	surfaces.	(Assume	that	the	speed	of	sound	in	the
tissue	between	the	two	surfaces	is	1540	m	s−1.)
Explain	why	an	ultrasound	B-scan,	rather	than	X-rays,	is	used	to	examine	a	foetus.

	
	



30.8	Positron	Emission	Tomography
Positron	Emission	Tomography	or	PET	scanning	is	another	tool	in	the	diagnostic	toolbox	of	modern
medicine.	It	has	a	range	of	uses:	investigating,	diagnosing	and	monitoring	treatment	of	cancers,	heart
disease,	gastrointestinal	disorders	and	brain	function.
The	principle	operation	of	PET	is	different	from	CT	and	ultrasound	scanning.	CT	and	ultrasound	look	at
the	patient	from	the	outside,	whereas	PET	looks	at	the	patient	from	the	inside.	A	small	amount	of	tracer,
sometimes	referred	to	as	a	radiotracer,	is	injected	into	a	vein,	travels	round	the	body	and	is	absorbed	by
organs	and	tissues.	It	is	the	radiation	from	this	that	is	used	to	produce	the	image.

Radiotracers
There	are	several	different	radiotracers	used	in	PET,	an	example	being	a	glucose	based	molecule,	onto
which	a	radioactive-nuclide,	fluorine-18,	is	attached.	This	substance	is	known	as	fluorodeoxyglucose.	The
fluorine-18	nuclide	decays	by	emitting	a	β+-particle,	a	positron.	The	advantage	of	using	a	glucose-based
tracer	is	that	it	is	taken	up	at	different	rates	by	different	tissues	or	organs.	Cancer	cells	are	more
metabolically	active	than	surrounding	healthy	cells,	consequently	they	absorb	glucose	at	a	higher	rate
and	thus	emit	radiation	at	a	greater	rate.	This	will	then	appear	on	the	screen	as	a	bright	area,	allowing
doctors	to	identify	diseases	and	also	determine	the	progress	and	effectiveness	of	any	treatment	used	for
the	disease.	PET	scans	are	not	only	used	for	the	detection	of	cancers	but	are	a	diagnostic	tool	in
investigating	blood	flow,	heart	disease	and	brain	injuries,	and	they	are	also	being	used	to	investigate
Alzheimer’s	disease	and	other	forms	of	dementia.
PET	scans	are	unique	in	that	they	are	able	to	pinpoint	molecular	activity	within	the	patient’s	body,	rather
than	looking	at	the	body	from	outside.	Consequently,	they	can	identify	disease	in	its	earliest	stages,
meaning	that	there	is	a	greater	chance	of	successful	treatment.	They	can	also	be	used	to	track	a	patient’s
immediate	and	ongoing	response	to	treatments.

What	happens	in	positron	emission?
PET	scanners	require	a	radioactive	isotope	that	decays	by	β+	emission,	the	emission	of	a	positron,	the
antiparticle	of	the	electron,	which	you	met	in	Chapter	15.	Most	β+	emitters	are	not	naturally	occurring
isotopes	and	are	made	by	firing	protons	at	target	nuclei.
The	positron	moves	through	the	patient’s	tissue	and	within	a	very	short	distance	(significantly	less	than	a
millimetre)	it	will	encounter	an	electron.	The	pair	will	annihilate	and	their	mass	becomes	pure	energy	in
the	form	of	two	γ-rays	that	move	apart	in	opposite	directions.	The	concept	of	mass-energy	is	discussed	in
detail	in	Chapter	29.

Figure	30.20:	Energy	is	released	in	the	annihilation	of	a	positron	and	an	electron.

In	the	annihilation	process,	as	in	all	collisions,	both	mass-energy	and	momentum	are	conserved.	The
initial	kinetic	energy	of	the	positron	is	small	–	negligible	compared	to	their	rest	mass-energy	–	hence,	the
γ-ray	photons	have	a	specific	energy	and	a	specific	frequency	that	are	determined,	solely,	by	the	mass-
energy	of	the	positron–electron	pair.
The	energy	of	a	photon	is	given	by:

E	=	hf

where	h	is	Planck’s	constant,	and	f	is	the	frequency	of	the	photon.



The	momentum	of	a	photon	is	given	by:

where	c	is	the	speed	of	electromagnetic	radiation	in	a	vacuum.

KEY	EQUATION

The	production	of	suitable	radioisotopes
You	will	remember	from	your	work	on	magnetic	fields	that	a	charged	particle	entering	a	magnetic	field	at
right	angles	to	the	field	will	travel	in	a	circular	path.	The	cyclotron	works	on	this	principle,	however,	the
particles	are	continuously	accelerated	by	an	alternating	electric	field	as	they	go	round	the	circle,	thus
they	travel	in	a	spiral	path	before	they	are	released	and	collide	with	the	target	nuclei.	Figure	30.21	shows
an	early	cyclotron.	The	principle	of	the	cyclotron	is	shown	in	Figure	30.22.
In	the	production	of	fluorine-18,	oxygen-18	nuclei	are	bombarded	with	protons	and	the	following	reaction
takes	place:

The	isotope,	fluorine-18,	has	a	half-life	of	just	under	two	hours.	This	means	the	patient	is	not	subjected	to
radiation	for	a	long	period	of	time.	However,	it	also	means	that	the	radiotracer	needs	to	be	made	up
freshly,	probably	on	site,	to	be	most	effective.

Figure	30.21:	The	cyclotron	at	the	Lawrence	Radiation	Laboratory,	Berkeley,	soon	after	completion	in
1939.
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Figure	30.22:	The	principle	of	the	cyclotron.	Note,	the	magnetic	field	is	into	the	plane	of	the	page.

Questions
Suggest	the	reason	why,	in	PET	scanning,	it	is	important	that	the	positron	meets	an	electron	within	a
very	short	distance	from	its	point	of	emission.
Explain	why	the	γ-rays	produced	in	positron–electron	annihilation	must	travel	at	180°	to	each	other.
Fluorine-18	decays	by	β+	emission.	Write	a	nuclear	equation	to	show	this	decay.

Calculate	the	energy	released	when	a	positron	and	an	electron	annihilate.
(Mass	of	an	electron	=	mass	of	a	positron	=	9.1	×	10−31	kg.)
Calculate	the	frequency	of	the	γ-rays	emitted.
Calculate	the	momentum	of	the	one	of	the	γ-rays	emitted.

Detecting	the	γ-rays
The	patient	being	scanned	is	placed	on	a	bed	with	a	series	of	rings	of	detectors,	in	a	donut	type	shape.
The	patient	on	the	bed	is	moved	through	the	detectors,	so	that	a	series	of	images	of	‘slices’	through	the
patient	are	made	in	similar	manner	to	those	made	by	a	CT	scan.	Indeed,	PET	scans	are	often	combined
with	CT	scans	so	that	more	information	is	gathered.

Figure	30.23:	A	patient	being	prepared	for	a	PET/CT	scan	by	a	radiologist.	Note	the	donut	shaped	ring,



which	contains	the	detectors	and	through	which	the	patient	will	be	moved.

The	detectors	of	the	γ-ray	photons	consist	of	two	parts:	a	crystal	that	scintillates	and	a	photomultiplier.
When	a	high	energy	γ-ray	photon	is	incident	on	the	crystal,	an	electron	is	excited	into	a	very	high	energy
state.	As	the	electron	travels	through	the	crystal,	it	loses	energy	and	excites	more	electrons;	these
electrons	then	decay	back	to	their	original	state,	emitting	visible	light	photons.	The	photons	produced	by
the	scintillator	are	then	converted	into	an	electrical	signal	by	the	photomultiplier	tube	–	these	signals	are
then	fed	to	a	computer	that	can	plot	back	where	the	photon	pair	was	originally	produced.

Reconstruction	of	the	image
Figure	30.24	shows	a	simplified	view	of	the	detectors	in	a	PET	scanners.	They	form	a	series	of	rings
around	the	patient.	The	γ-ray	photons,	formed	by	an	electron–positron	annihilation,	travel	from	a	point
very	near	to	the	event.	They	travel	in	a	straight	line	and	in	opposite	directions	and	strike	the	detectors	as
shown.	A	line	(known	as	the	line	of	response)	can	be	drawn,	joining	the	two	detectors.	Using	the	time
lapse	between	the	two	photons	arriving	at	the	detectors,	the	position	on	the	line	of	response	can	be
established.	In	practice,	there	are	many	annihilations	and	sophisticated	computers	analyse	the	data	and
convert	it	into	an	image.	The	numbers	of	photons	arriving	from	a	particular	point	determine	the
concentration	of	the	tracer	at	that	point.	Where	there	are	many	arriving	per	unit	time,	it	means	that	there
is	a	high	concentration	of	tracer	and	this	will	appear	as	a	bright	point	on	the	image.

Figure	30.24:	The	arrangement	of	detectors	in	a	PET	scanner.

REFLECTION
It	is	about	120	years	since	X-rays	were	discovered.	Modern	medicine	has	many	methods	for	looking
inside	the	bodies	of	people	who	are	unwell	or	have	suffered	injuries.	Use	the	internet	to	find	as	many
different	methods	as	you	can.	Try	and	draw	a	timeline	to	show	when	these	methods	were	developed.
What	did	you	learn	about	yourself	as	you	worked	on	this	activity?	Did	you	find	it	a	useful	way	of
learning?

	
	



SUMMARY

X-rays	are	short	wavelength,	high	frequency,	electromagnetic	radiation.

X-rays	are	formed	when	electrons	are	decelerated.

Intensity	is	the	power	transmitted	per	unit	cross-sectional	area.

Intensity	of	a	beam	of	X-rays	shows	an	exponential	decrease	as	the	beam	passes	through	matter.

Image	intensifiers	and	contrast	media	are	used	to	improve	the	quality	of	X-ray	images.

Ultrasound	is	a	longitudinal	wave	with	a	frequency	greater	than	20	kHz.

Transducers	that	use	the	piezo-electric	effect	are	used	to	generate	and	detect	ultrasound.

Acoustic	impedance	of	a	material	(Z)	depends	on	the	density	of	the	material	and	the	speed	of	the
sound	in	the	material	and	is	given	by	the	formula:

Z	=	ρc

The	fraction	of	the	intensity	of	an	ultrasound	reflected	at	a	boundary	between	different	materials	is
given	by	the	formula:

An	impedance	matching	gel	is	used	to	avoid	a	large	degree	of	reflection	occurring	as	the	ultrasound
travels	from	the	air	to	the	skin	of	the	patient.

Radioactive	tracers	are	used	in	diagnosing	tumours.

In	a	PET	scan,	the	tracer	emits	positrons	(β+-particles).

When	a	particle	and	an	antiparticle	meet,	they	annihilate.

In	an	annihilation	event,	both	momentum	and	mass–energy	are	conserved.

The	energy	of	an	X-ray	photon	is	given	by	the	formula	E	=	hf	and	its	momentum	 .
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EXAM-STYLE	QUESTIONS

X-rays	are	produced	by	firing	electrons	at	a	metal	anode	target. 	

Which	statement	is	correct? [1]

The	frequencies	of	the	characteristic	spectrum	lines	are	determined	by	the
potential	used	to	accelerate	the	electrons. 	

The	frequencies	of	the	characteristic	spectrum	lines	are	determined	by	the
metal	used	to	make	the	target. 	

The	maximum	frequency	of	the	braking	radiation	is	determined	by	the
metal	used	to	make	the	target. 	

The	minimum	frequency	of	the	braking	radiation	is	determined	by	the
potential	used	to	accelerate	the	electrons. 	

Which	statement	about	PET	scanning	is	correct? [1]

A	positron	is	emitted	by	the	radiotracer	that	interacts	with	an	electron	in
the	detector	producing	two	γ-rays	that	move	apart	at	180°	to	each	other. 	

A	positron	is	emitted	by	the	radiotracer	that	interacts	with	an	electron	in
the	detector	producing	two	γ-rays	that	move	apart	at	right	angles	to	each
other. 	

A	positron	is	emitted	by	the	radiotracer	that	interacts	with	an	electron	in
the	surrounding	tissue	producing	two	γ-rays	that	move	apart	at	180°	to
each	other. 	

A	positron	is	emitted	by	the	radiotracer	that	interacts	with	an	electron	in
the	surrounding	tissue	producing	two	γ-rays	that	move	apart	at	right	angles
to	each	other. 	

Explain	what	is	meant	by	ionising	radiation	and	explain	why	it	can	be
harmful	to	humans. [2]

Which	of	the	following	scans	use	ionising	radiation? [2]

X-ray	shadow	imaging
ultrasound	A-scan
ultrasound	B-scan
PET	scan
CT	scan 	

	 [Total:	4]

Calculate	the	minimum	wavelength	(in	air)	of	X-rays	produced	when	the
accelerating	potential	across	the	source	is	20	kV. [2]

Explain	why	a	gel	is	used	between	the	skin	and	the	transducer	when	an
ultrasound	scan	of	a	foetus	is	taken. [2]

For	ultrasound	of	frequency	3.5	MHz,	the	acoustic	impedance	of	muscle	is	1.78
×	106	kg	m−2	s−1,	and	that	of	soft	tissue	is	1.63	×	106	kg	m−2	s−1. 	

Calculate	the	percentage	of	the	incident	ultrasound	reflected	at	a	muscle–soft
tissue	boundary. [3]

A	transducer	produces	ultrasonic	waves	of	frequency	800	kHz.	The	speed	of
sound	in	the	crystal	is	5200	m	s−1. 	

Calculate	the	optimum	thickness	for	the	crystal. [2]

State	and	explain	two	reasons	why	full-body	CT	scans	are	not	offered	for
regular	checking	of	healthy	patients. [2]

Explain,	with	the	aid	of	a	simple,	labelled	diagram,	how	X-rays	are
produced. [5]

Discuss	the	energy	changes	in	the	production	of	X-rays. [3]

	 [Total:	8]

This	graph	shows	the	spectrum	of	X-rays	produced	from	an	X-ray	source. 	
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Describe	the	process	by	which: 	

the	three	sharp	peaks	of	high-intensity	X-rays	are	produced [2]

the	broad	band	of	X-rays	is	produced. [2]

The	X-rays	in	the	shaded	region,	labelled	A,	are	filtered	out	using	an
aluminium	filter.	Explain: 	

why	it	is	advantageous	to	filter	these	X-rays	out [2]

why	aluminium	is	a	suitable	material	to	filter	them	out. [2]

Calculate	the	maximum	frequency	of	X-rays	produced	by	this	tube. [3]

	 [Total:	11]

An	X-ray	beam,	containing	X-rays	with	a	variety	of	frequencies	and	that	has
an	intensity	of	4.0	×	105	W,	is	incident	on	an	aluminium	plate	of	thickness
5.0	cm.	The	average	linear	attenuation	coefficient	is	250	m−1. 	

Calculate	the	intensity	of	the	transmitted	beam. [3]

Explain	the	advantages	of	passing	the	X-rays	through	this	aluminium
plate	prior	to	their	being	incident	on	a	patient. [3]

	 [Total:	6]

Explain	what	is	meant	by	acoustic	impedance	and	outline	its	role	in	the	use
of	ultrasound	scans. [3]

Brain	tissue	has	a	density	of	1.04	×	103	kg	m−3	and	ultrasound	travels	at
1.58	×	103	m	s−1	through	it. 	

Calculate	the	acoustic	impedance	of	brain	tissue. [2]

This	is	the	trace	formed	on	the	screen	of	an	oscilloscope	when	ultrasound
is	reflected	from	the	front	and	rear	surfaces	of	the	head	of	a	fetus.	The
time-base	of	the	oscilloscope	is	set	at	10	µs	div−1. 	

Figure	30.26
	

Explain	why	the	second	peak	is	lower	than	the	fetus. [1]

Calculate	the	diameter	of	the	head	of	the	fetus. [3]
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	 [Total:	9]

Outline	the	theory	of	the	PET	scanner. [5]

It	is	suggested	that	a	scanner	could	be	designed	using	the	annihilation	of	a
proton	and	an	antiproton. 	

Calculate: 	

the	energy	released	in	the	proton–antiproton	annihilation [2]

the	wavelength	of	the	γ-ray	photons	produced	in	the	annihilation. [1]

In	one	type	of	PET	scanner,	the	tracer	isotope	is	Rb-82.	Write	an	equation
for	the	decay	of	this	isotope. [2]

(Mass	of	proton	=	1.67	×	10−27	kg.) 	

	 [Total:	5]

With	reference	to	PET	scanning,	explain	the	meaning	of	the	term
tracer. [3]

Explain	what	is	meant	by	the	term	line	of	response	and	how	it	is	used
to	identify	the	precise	site	of	cancerous	tissue. [2]

With	reference	to	PET	scanning,	explain	what	is	meant	by	an
annihilation	event. [3]

Name	the	important	quantities	which	are	conserved	in	an	annihilation
event. [3]

	 [Total:	11]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	that	X-rays	are	short-
wavelength,	high-frequency
electromagnetic	radiation,	produced
when	electrons	are	decelerated

30.1 	 	 	

recall	that	intensity	of	an	X-ray	beam	is
the	power	transmitted	per	unit	cross-
sectional	area

30.1,	30.2 	 	 	

understand	intensity	of	a	collimated	X-
ray	beam	decreases	exponentially
according	to	the	equation	I	=	I0	e−µx,
where	µ	is	the	attenuation	coefficient	of
the	medium.	µ	has	units	of	m−1	(or	cm
−1	or	mm−1)

30.2 	 	 	

recognise	that	X-ray	images	can	be
improved	using	image	intensifiers	and
contrast	media	(such	as	barium	or
iodine)

30.3 	 	 	

understand	that	ultrasound	is	a
longitudinal	wave	with	a	frequency
greater	than	20	kHz

30.5 	 	 	

recall	that	ultrasound	transducers	use
the	piezo-electric	effect	to	generate	and
detect	ultrasound	waves

30.5 	 	 	

understand	that	the	acoustic	impedance
Z	of	a	material	depends	on	its	density	ρ
and	the	speed	c	of	sound:
Z	=	ρc

30.6 	 	 	

recall	and	use	the	formula	for	the
fraction	of	the	intensity	of	an	ultrasound
wave	reflected	at	a	boundary:

30.6 	 	 	

recognise	that	to	transfer	a	high
proportion	of	the	intensity	of	an
ultrasound	pulse	into	the	patient’s	body,
an	impedance-matching	gel	must	be
used	with	acoustic	impedance	almost
the	same	as	that	of	the	skin

30.6 	 	 	

understand	that	a	tracer	(radiotracer)	is
a	substance	that	can	be	injected	into
the	body	and	is	then	absorbed	by	tissue
and	organs

30.8 	 	 	

recall	that	the	tracer	decays	by	β+
emission	in	a	PET	scan

30.8 	 	 	

understand	that	when	a	particle	meets
its	antiparticle	that	annihilation	occurs

30.8 	 	 	

understand	that	momentum	and	mass–
energy	are	both	conserved	in	an
annihilation	event

30.8 	 	 	



annihilation	event

calculate	the	energy	and	frequency	of
the	γ-rays	emitted	in	a	positron–electron
annihilation	event

30.8 	 	 	

understand	that	the	γ-ray	photons	from
an	annihilation	event	travel	outside	the
body	and	can	be	detected

30.8 	 	 	

understand	that	the	positions	of	the
annihilation	events	can	be	determined
from	the	detector	positions	and	the
arrival	times	of	the	photons

30.8 	 	 	

understand	that	the	tracer
concentration	at	particular	tissues	or
organs	can	be	calculated	from	the
numbers	of	γ-ray	photons	arriving	per
unit	time.

30.8 	 	 	
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	Chapter	31

Astronomy	and	cosmology

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
understand	the	term	luminosity	as	the	total	power	of	radiation	emitted	by	a	star
recall	and	use	the	inverse	square	law	for	radiant	flux	intensity	F	in	terms	of	the	luminosity	L	of	the
source:	

understand	that	an	object	of	known	luminosity	is	called	a	standard	candle
understand	the	use	of	standard	candles	to	determine	distances	to	galaxies
recall	and	use	Wien’s	displacement	 law	 	 to	estimate	 the	peak	surface	 temperature	of	a
star

use	the	Stefan-Boltzmann	law	L	=	4πσr2T4

use	Wien’s	displacement	law	and	the	Stefan-Boltzmann	law	to	estimate	the	radius	of	a	star
understand	 that	 the	 lines	 in	 the	 emission	 spectra	 from	 distant	 objects	 show	 an	 increase	 in
wavelength	from	their	known	values
use	 	for	the	redshift	of	electromagnetic	radiation	from	a	source	moving	relative	to	an
observer
explain	why	redshift	leads	to	the	idea	that	the	Universe	is	expanding
recall	and	use	Hubble’s	Law	v	≈	H0d	and	explain	how	this	leads	to	the	Big	Bang	theory.

BEFORE	YOU	START
Your	 knowledge	 of	 electromagnetic	 waves,	 including	 spectra,	 would	 be	 valuable	 in	 the
understanding	of	this	chapter.
Can	you	recall	intensity	of	a	wave	and	its	units?



• The	idea	of	the	Doppler	effect	of	sound	will	be	extended	to	spectra	from	distant	stars.	When	is	the
observed	wavelength	shorter,	or	longer?

LOOKING	INTO	THE	PAST
Figure	31.1	shows	galaxies	as	seen	through	a	powerful	telescope.	Each	galaxy	may	have	as	many	as
1011	stars,	and	there	may	be	as	many	as	1011	galaxies	in	the	Universe.	Light	from	these	galaxies	has	a
finite	speed:	3.0	×	108	m	s−1	in	a	vacuum.	These	galaxies	are	so	distant	that	light	from	them	may	have
taken	billions	of	years	to	reach	us.	So,	what	we	have	in	this	photograph	is	an	image	of	the	past.
Andromeda	is	our	closest	galaxy.	The	light	from	this	galaxy	would	take	2.3	million	years	to	reach	us.
When	we	see	this	galaxy	though	a	telescope,	we	are	looking	at	its	image	from	2.3	million	years	ago!
Just	to	put	this	into	perspective,	someone	looking	at	the	Earth	from	this	galaxy	now,	would	see	a	time
when	our	ape-like	ancestors	roamed	the	planet.
In	this	chapter,	we	will	deduce	that	galaxies	further	away	from	us	are	moving	faster.	This,	in	turns,
implies	that	our	Universe	had	a	beginning–it	was	created	some	14	billion	years	ago	in	an	event	known
as	the	Big	Bang.	Since	then,	the	fabric	of	the	Universe	has	been	stretching,	carrying	with	it	the
galaxies.
Can	you	estimate	the	size	and	the	mass	of	the	Universe?

Figure	31.1:	A	cluster	of	distant	galaxies;	some	created	only	a	few	million	years	after	the	creation	of
the	Universe.

	
	



31.1	Standard	candles
All	the	stars	we	see	in	the	night	sky	are	from	our	own	galaxy–the	Milky	Way.	Figure	31.2	shows	stars	in
the	constellation	of	Gemini.	The	stars	do	not	look	the	same;	they	differ	in	brightness	and	colour.	These
stars	are	not	all	the	same	distance	from	us,	and	they	do	not	all	emit	the	same	power.	So,	we	cannot
deduce	their	distance	from	just	how	bright	they	appear	in	the	night	sky.

Figure	31.2:	Stars	have	different	colours	and	brightness.	Can	you	tell	which	star	is	the	closest?

In	astronomy,	luminosity	of	a	star	is	defined	as	the	total	radiant	energy	emitted	per	unit	time.	This	is	the
same	as	the	total	power	emitted	by	a	star.	In	SI	units,	luminosity	L	is	measured	in	W	or	J	s−1.	The	Sun	is
the	nearest	star	to	us,	and	astronomers	have	determined	its	luminosity	to	a	high	degree	of	accuracy.	The
luminosity	of	the	Sun	(solar	luminosity),	often	written	as	L⊙,	is	about	3.83	×	1026	W.

As	you	will	see	later,	you	can	determine	solar	luminosity	from	the	intensity	of	solar	radiation	reaching	the
Earth.
In	astronomy,	a	standard	candle	is	an	astronomical	object	of	known	luminosity.	Astronomers	can
determine	the	distance	of	a	standard	candle	by	measuring	the	intensity	of	the	electromagnetic	radiation
arriving	at	the	Earth.
Standard	candles	have	been	successfully	used	to	determine	the	distance	of	far-flung	galaxies.	It	is
amazing	that	we	can	do	this	just	by	observing	the	starlight	reaching	us	on	Earth.
The	two	well-known	standard	candles	are	Cepheid	variable	stars	and	Type	1A	supernovae.

Cepheid	variable	stars
In	1908,	Henrietta	Leavitt	discovered	that	the	brightness	of	Cepheid	variable	stars	varied	periodically,
and	the	period	of	this	variation	was	related	to	the	average	luminosity	of	the	star.	By	measuring	the	period,
astronomers	could	determine	the	luminosity	of	the	star.	The	star’s	distance	could	then	be	calculated	from
the	observed	radiant	intensity	at	the	Earth.	Finding	a	Cepheid	variable	star	in	a	distant	galaxy	meant	that
the	distance	of	the	galaxy	itself	could	be	calculated.

Type	1A	supernovae
Type	1A	supernovae	stars	implode	rapidly	towards	the	end	of	their	lives,	and	scatter	matter	and	energy
out	into	space.	This	implosion	event	can	be	brighter	than	the	galaxy	itself.	The	luminosity	of	the	star	at
the	time	of	the	implosion	is	always	the	same.	From	this,	astronomers	can	estimate	the	star’s	distance
from	the	Earth.
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31.2	Luminosity	and	radiant	flux	intensity
The	Sun	is	the	nearest	star	to	the	Earth.	The	second	nearest	star	is	Proxima	Centauri,	4.0	×	1016	m	away.
Distances	as	large	as	4.0	×	1016	m	are	extremely	difficult	to	visualise–they	are	way	beyond	any	of	our
day-to-day	points	of	reference.	So,	astronomers	tend	to	use	an	alternative	unit	for	distance	–	the	light-
year	(ly).	A	light-year	is	the	distance	travelled	by	light	in	a	vacuum	in	a	time	of	one	year.	Therefore:
1	ly	=	speed	of	light	in	vacuum	×	one	year	in	seconds

Proxima	Centauri	is	4.2	ly	away.	It	would	take	light	from	Proxima	Centauri	4.2	years	to	reach	us.
(Note:	You	do	not	need	to	know	about	light-years,	but	they	help	to	visualise	vast	distances.)
Table	31.1	summarises	some	data	on	the	brightest	stars–do	not	forget	that	the	Sun	is	a	star	too.

Rank	order Name	of	star Distance	/	light-
years

Temperature	/	K Luminosity	/	L⊙

1 Sun 1.58	×	10−5 5800 1.0

2 Sirius 8.6 9900 25

3 Canopus 310 7000 1100

4 Alpha	Centauri 4.4 5800 1.5

5 Arcturus 37 4300 170

6 Vega 25 9600 40

Table	31.1:	Data	on	 the	 six	brightest	 stars,	 including	 the	Sun.	The	 luminosity	 is	given	 in	 terms	of	 the
solar	luminosity	L⊙;	1	L⊙	=	3.83	×	1026	W.

We	can	see	from	Table	31.1	that	the	observed	brightness	of	a	star	is	linked	to	both	its	distance	from	the
Earth	and	its	luminosity.	We	would	expect	a	luminous	star,	such	as	Canopus,	to	be	bright	in	the	night	sky.
Alpha	Centauri	is	brighter	in	the	night	sky	than	Arcturus,	not	because	of	its	luminosity,	but	because	of	its
closeness	to	us.	You	will	see	later	that	the	luminosity	of	a	star	depends	not	only	on	its	surface
temperature	but	also	on	its	physical	size.
Can	we	relate	the	brightness	of	a	star	to	its	luminosity?	Yes,	as	long	as	we	understand	the	underlying
assumptions	that:

the	power	from	the	star	is	uniformly	radiated	through	space
there	is	negligible	absorption	of	this	radiated	power	between	the	star	and	the	Earth.

With	these	assumptions,	we	can	determine	the	intensity	of	electromagnetic	radiation	observed	at	the
Earth.
The	observed	intensity	is	known	as	radiant	flux	intensity	F.	This	is	defined	as	the	radiant	power	passing
normally	through	a	surface	per	unit	area.
Figure	31.3	shows	how	F	can	be	calculated	for	a	star	at	a	distance	d	from	its	centre.

The	power	of	the	star	is	its	luminosity	L,	and	the	surface	area	of	a	sphere	is	4πd2.
Therefore:

The	SI	units	for	radiant	flux	intensity	are	W	m−2.

For	a	given	star,	the	luminosity	L	is	constant,	so	according	to	the	equation,	the	radiant	flux	intensity	F
obeys	an	inverse	square	law	with	distance	d.	So,	doubling	the	distance	from	the	centre	of	the	star	(2d)
will	decrease	F	by	a	factor	of	4,	and	tripling	the	distance	(3d)	will	decrease	F	by	a	factor	of	9,	and	so	on.
You	can	demonstrate	this	inverse	square	law	using	a	bright	filament	lamp	and	a	light-meter	in	a	darkened
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laboratory	–	see	Practical	Activity	31.1.

Figure	31.3:	The	power	of	the	star	spreads	out	uniformly	through	a	spherical	shell.

Distance	of	galaxies
Astronomers	on	the	Earth	can	determine	the	radiant	flux	intensity	F	of	a	distant	star.	The	equation	

	can	then	be	rearranged	to	determine	the	distance	d	of	a	star	of	known	luminosity	L,	for
example,	a	standard	candle	such	as	a	Cepheid	variable	star	in	a	distant	galaxy.
Now	look	at	Worked	examples	1	and	2.	In	Worked	example	1,	the	radiant	flux	intensity	from	the	Sun	at
the	Earth	is	calculated.	In	Worked	example	2,	the	distance	of	a	star	in	the	Andromeda	galaxy	is	calculated
from	its	radiant	flux	intensity	at	the	Earth.

WORKED	EXAMPLES

The	radius	of	the	Sun	is	6.96	×	108	m	and	its	luminosity	is	3.83	×	1026	W.
The	orbital	radius	of	the	Earth	is	1.50	×	1011	m.
Calculate	the	radiant	flux	intensity	at	the	surface	of	the	Sun	and	at	the	position	of	the	Earth.

Calculate	the	radiant	flux	intensity	at	the	Sun’s	surface:

Calculate	the	radiant	flux	intensity	at	the	Earth’s	position.
We	can	do	this	using	the	inverse	square	law	relationship	between	F	and	d.
The	distance	increases	by	a	factor	of:

Therefore,	F	will	decrease	by	a	factor	of	215.522

So,

Note:	An	alternative	would	be	to	just	use	 ,	with	L	=	3.83	×	1026	W	and	d	=	1.50	×	1011	m.
Try	it,	you	will	get	the	same	answer.	You	do	not	need	the	radius	of	the	Sun	to	get	the	right	answer.
The	radiant	flux	intensity,	measured	at	the	Earth,	from	a	Cepheid	variable	star	in	Andromeda	is	1.4
×	10−16	W	m−2.	The	luminosity	of	the	star	is	1.0	×	1030	W.
Calculate	the	distance	of	this	star.

Rearrange	the	equation	for	radiant	flux	intensity.



Step	2

1
2

3
a
b

i
ii

c
i
ii

4

5

Substitute	and	calculate	the	distance	of	the	star.

This	distance	is	equivalent	to	2.5	million	light-years.

PRACTICAL	ACTIVITY	31.1

Inverse	square	law	for	radiant	flux	intensity
We	can	simulate	the	 inverse	square	 law	nature	of	 light	spreading	from	a	star	using	a	bright	 filament
lamp	and	a	light-meter.	Commercial	light-meters	are	not	calibrated	to	show	radiant	flux	intensity	F	in	W
m−2.	Light-meters	measure	a	quantity	known	as	illuminance.	We	can	assume	that	illuminance,	often	in
a	unit	known	as	lux,	is	directly	proportional	to	radiant	flux	intensity.
Carry	out	the	experiment	in	a	darkened	room.
Measure	the	illuminance	at	various	distances	d	from	the	centre	of	the	lamp.
Since	radiant	 flux	 intensity	 is	 inversely	proportional	 to	d2,	and	directly	proportional	 to	 illuminance,	a
graph	of	illuminance	against	 	will	be	a	straight	line	through	the	origin.
In	a	laboratory,	there	will	always	be	some	reflection	of	light	from	the	walls	and	ceiling.	The	best	place
and	time	for	the	experiment	is	outdoors	at	night!

Questions
Where	necessary,	take:
L⊙	=	3.83	×	1026	W

1	ly	≈	9.5	×	1015	m
State	two	factors	that	affect	radiant	flux	intensity	from	a	star.
The	radiant	flux	intensity	F	of	light	from	a	lamp	at	a	distance	of	10	cm	is	0.32	W	m−2.	Calculate	F
from	the	same	lamp	at	a	distance	of	15	cm.	State	any	assumption(s)	you	make.
Use	data	from	Table	31.1	to	determine,	to	two	significant	figures:

the	distance	of	Sirius	from	the	Earth	in	metres.
the	luminosity	(in	W)	of

Canopus
Vega.

the	radiant	flux	intensity	measured	at	the	Earth	from:
Sirius
Alpha	Centauri.

This	question	is	about	Sirius	and	Arcturus.
With	the	help	of	calculations	and	data	from	Table	31.1,	show	that	Sirius	is	brighter	than	Arcturus.
The	radiant	flux	intensity	from	a	star	measured	at	the	Earth	is	2.7	×	10−9	W	m−2.	The	luminosity	of
the	star	is	1300	L⊙.
Calculate	the	distance	of	this	star	from	the	Earth	in	metres.

	
	



31.3	Stellar	radii
The	Sun	can	be	seen	as	a	glowing	ball	of	gas	in	the	sky.	If	you	briefly	look	at	the	Sun	through	a	special
filter,	like	a	welder’s	helmet,	you	can	identify	it	as	a	yellow	disc	in	space.	The	Sun	is	enormous	–	it	only
looks	small	because	it	is	far	away	from	us.	We	can	determine	the	diameter	of	the	Sun	fairly	easily	(see
Practical	Activity	31.2).	However,	when	we	look	at	stars	in	the	night	sky,	they	appear	as	tiny	specks	of
light	–	there	is	no	disc	to	be	seen	(Figure	31.4).	The	stars	are	just	too	far	away.	Even	the	closest	stars
viewed	through	powerful	telescopes	appear	as	specks	of	light.
How	can	astronomers	determine	the	size	of	stars?	In	this	topic,	you	will	see	how	two	simple	laws	can	be
used	to	determine	stellar	radii.

Figure	31.4:	Even	the	closest	stars	appear	as	specks	of	light	–	so	how	do	astronomers	determine	their
size?

PRACTICAL	ACTIVITY	31.2

The	diameter	of	the	Sun
You	can	estimate	the	diameter	of	our	closest	star,	the	Sun,	using	a	simple	pin-hole	camera.	You	can
make	this	camera	using	a	shoe-box.	One	end	of	the	box	has	a	sheet	of	darkened	paper	(or	aluminum
foil)	with	a	tiny	hole	made	with	a	sharp	pin.	The	opposite	end	of	the	box	has	a	sheet	of	tracing	paper,
which	acts	as	a	screen.	A	circular	image	of	the	Sun	is	formed	on	the	screen	when	the	camera	is	pointed
towards	the	Sun.	See	Figure	31.5.

Figure	31.5:	You	can	determine	the	diameter	D	of	the	Sun	using	a	simple	pin-hole	camera.

Measure	the	distance	x	between	the	pin-hole	and	the	screen.	The	distance	of	the	Sun	from	the	Earth	is
1.5	×	1011	m.	The	diameter	D	of	the	Sun	can	be	determined	using	simple	trigonometry:

Therefore:
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Question
A	student	conducted	the	experiment	from	Practical	Activity	31.2.	The	results	from	the	experiment
are	shown	below:
x	=	300	mm					d	=	3	mm
Use	this	data	to	estimate	the	diameter	of	the	Sun.
The	actual	value	for	the	diameter	of	the	Sun	is	1.4	×	109	m.
Determine	the	percentage	difference	between	your	calculated	value	and	the	actual	value.

Wien’s	displacement	law
The	hottest	stars	are	blueish-white	in	colour.	Cooler	stars	are	a	deep	shade	of	red.	We	can	see	almost	the
same	effect	with	the	filament	of	a	lamp.	Increase	the	temperature	of	the	filament	by	increasing	the
current	in	the	filament.	At	first,	the	filament	will	glow	dull	red	when	it	is	cooler,	then	reddish-orange,	and
eventually	white	as	it	gets	hotter.
There	is	a	link	between	the	observed	wavelength	of	light	and	temperature.	Table	31.2	shows	the	colour	of
a	star	in	the	night	sky	and	the	range	of	its	surface	temperature.
A	hot	object,	such	as	a	star,	can	be	modelled	as	a	black	body.	A	black	body	is	an	idealised	object	that
absorbs	all	incident	electromagnetic	radiation	falling	on	it.	It	has	a	characteristic	emission	spectrum	and
intensity	that	depend	only	on	its	thermodynamic	temperature.	Figure	31.6	shows	typical	intensity	against
wavelength	graphs	for	objects	at	different	temperatures.

Colour	of	star Surface	temperature	of	star	/	K

blue Greater	than	33	000

blue	to	blue-white 10	000	–	30	000

white 7500	–	10	000

yellowish	white 6000	–	7500

yellow 5200	–	6000

orange 3700	–	5200

red Less	than	3700

Table	31.2:	The	observed	colour	of	a	star	is	related	to	its	temperature.

Figure	31.6:	The	intensity–wavelength	graph	depends	on	the	temperature	of	the	object.	For	an	object	at
a	thermodynamic	temperature	T,	the	intensity	against	wavelength	curve	peaks	at	a	wavelength	λmax.

The	higher	the	temperature	of	a	body:
the	shorter	the	wavelength	at	the	peak	(maximum)	intensity
the	greater	the	intensity	of	the	electromagnetic	radiation	at	each	wavelength.

In	1893,	German	physicist	Wilhelm	Wien	discovered	a	relationship	between	the	thermodynamic
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temperature	T	of	the	object	and	the	wavelength	λmax	at	the	peak	intensity:

λmaxT	=	constant

The	relationship	is	known	as	Wien’s	displacement	law	.	The	experimental	value	of	the	constant	is	2.9	×
10−3	m	K.

The	surface	temperature	of	the	Sun	is	5800	K.	This	gives	a	λmax	value	of	about	5.0	×	10−7	m	or	500	nm.
Light	of	this	wavelength	appears	yellow	(which	is	not	surprising	for	the	Sun).

Questions
Use	the	data	given	in	Figure	31.6	to	show	the	validity	of	Wien’s	displacement	law	for	5000	K	and
4000	K.
For	a	temperature	of	5800	K,	the	wavelength	at	peak	intensity	of	electromagnetic	radiation	is	500	nm.
Calculate	the	surface	temperature	of	a	star	with	wavelength	350	nm	at	peak	intensity.
Copy	this	table.

Star Surface	temperature	T	/	K λmax	/	nm

Sun 5800 500

Polaris 6000 	

Canopus 7000 	

Gacrus 	 810

Use	Wien’s	displacement	law	to	complete	the	table.	Write	your	answers	to	two	significant	figures.

The	Stefan-Boltzmann	law
A	quick	inspection	of	Table	31.1	shows	that	the	luminosity	of	a	star	does	not	depend	just	on	the	surface
temperature	of	the	star.	Luminosity	also	depends	on	the	physical	size	of	the	star–its	radius.	For	example,
the	super	red	giant	star	KY	Cygni	has	a	surface	temperature	of	3500	K	but	its	luminosity	is	200	000	times
that	of	our	Sun.	KY	Cygni	is	cooler	than	the	Sun,	but	its	large	surface	area	makes	it	very	luminous.
The	luminosity	of	a	star	depends	on	two	factors:

its	surface	thermodynamic	temperature	T
its	radius	r.

In	1879,	Slovenian	physicist	Josef	Stefan	developed	an	expression	for	the	luminosity	L	of	a	star.	This	is	the
Stefan-Boltzmann	law:

L	=	4πσ	r2T4

KEY	EQUATIONS
Wien’s	displacement	law:

Stefan-Boltzmann	law:

where	σ	is	a	constant	known	as	the	Stefan-Boltzmann	constant.	The	experimental	value	for	σ	is	5.67	×	10–
8	W	m–2	K–4.

Using	Wien’s	displacement	law	and	the	Stefan-Boltzmann	law
to	determine	stellar	radii
The	radius	of	a	star	can	be	calculated	from	Wien’s	displacement	law	and	the	Stefan-Boltzmann	law.	The
procedure	would	be	as	follows:
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Use	 Wien’s	 displacement	 law	 to	 determine	 the	 temperature	 T	 of	 the	 star.	 This	 would	 involve
determining	the	wavelength	γmax	at	maximum	intensity	for	the	star,	and	then	using	a	reference	star
(such	as	the	Sun)	to	determine	T.
Use	the	Stefan-Boltzmann	law	to	determine	the	radius	r	of	the	star.	The	luminosity	L	of	the	star	can
be	determined	by	measuring	the	radiant	flux	intensity	F	of	the	star.

The	procedure	is	illustrated	in	Worked	example	3.

WORKED	EXAMPLE

The	surface	temperature	of	the	Sun	is	5800	K	and	wavelength	of	light	at	peak	intensity	is	500	nm.
The	wavelength	at	peak	intensity	for	Sirius-B	(a	white	dwarf	star)	is	120	nm.	The	luminosity	of	this
star	is	0.056	times	that	of	the	Sun.	The	luminosity	of	the	Sun	is	3.83	×	1026	W.
Calculate	the	radius	of	Sirius-B.

Use	Wien’s	displacement	law	to	calculate	the	temperature	of	Sirius-B.
λmaxT	=	constant

5800	×	500	=	T	×	120
T	=	24	167	K	≈	24	200	K
Use	the	Stefan-Boltzmann	law	to	calculate	the	radius	of	Sirius-B.

Sirius-B	is	roughly	the	size	of	our	Earth!	It	is	a	very	hot	star,	but	not	very	luminous	because
of	its	small	size.

Question
The	luminosity	of	the	star	Aldebaran	is	520	times	that	of	the	Sun.	The	wavelength	of	light	at	peak
intensity	for	Aldebaran	is	740	nm	and	the	wavelength	of	light	at	peak	intensity	for	the	Sun	is	500	nm.

Explain	whether	Aldebaran	is	cooler	or	hotter	than	the	Sun.
Calculate	the	ratio:

radius	of	Aldebaran	/	radius	of	the	Sun.
	
	



31.4	The	expanding	Universe
The	Big	Bang	theory	is	a	model	of	the	evolution	of	the	Universe	from	an	extremely	hot	and	dense	state
some	13.8	million	years	ago	–	the	event	was	called	the	Big	Bang.
The	Big	Bang	was	also	responsible	for	the	birth	of	the	fabric	of	space	(and	time)	–	this	fabric	has	been
expanding	ever	since	then.	At	the	early	stages	after	the	Big	Bang,	fundamental	particles	(such	as	quarks)
and	forces	(such	as	gravitation)	came	into	existence.	Subsequent	expansion	led	to	cooling	and	formation
of	atoms,	stars	and	galaxies.	The	one	question	that	cosmologists	cannot	answer	(yet)	is	why	the	Big	Bang
happened	in	the	first	place.	There	are	lots	of	thoughts	and	theories,	but	nothing	that	can	be	tested.
In	this	topic,	we	will	explore	evidence	for	the	Big	Bang	by	using	the	ideas	of	physics	developed	in	the
earlier	chapters	of	this	book–notably	spectra	(Chapter	12)	and	Doppler	effect	(Chapter	12).

Hubble’s	law
Astronomers	can	see	the	light	from	distant	galaxies	using	powerful	telescopes.	The	telescopes	can	look	at
the	light	through	a	diffraction	grating.	Analysis	of	the	spectrum	of	the	light	from	distant	galaxies	shows
that	they	are	all	moving	away	from	us.	The	more	distant	a	galaxy,	the	faster	it	moves.	How	do	we	know
from	the	spectrum	that	galaxies	are	moving	away	from	us	(receding)?
We	examined	the	Doppler	effect	of	sound	in	Chapter	12.	The	observed	wavelength	of	sound	was	longer
for	a	receding	source	and	shorter	for	an	approaching	source.	The	same	happens	with	electromagnetic
waves.	The	observed	wavelengths	of	all	spectral	lines	from	distant	galaxies	are	longer	than	the	ones
observed	in	the	laboratory.	This	is	known	as	redshift.	Figure	31.7	shows	the	red-shifting	of	the
absorption	spectral	lines	from	a	cluster	of	galaxies	some	1	billion	light-years	away.
The	redshift	of	spectral	lines	from	distant	galaxies	must	imply	that	all	galaxies	are	receding	from	us.	This
is	what	American	astronomer	Vesto	Slipher	discovered	in	1917.	Another	American	astronomer,	Edwin
Hubble,	combined	his	own	observations	with	Slipher’s	discovery	to	create	Hubble’s	law.
Hubble’s	law	states	that	the	recession	speed	v	of	a	galaxy	is	directly	proportional	to	its	distance	d	from
us.
Therefore,

v	∝	d

or

v	=	H0d

Figure	31.7:	The	absorption	lines	in	the	spectrum	of	the	galaxies	are	all	shifted	to	longer	wavelengths	–
redshifted.	The	top	spectrum	is	the	spectrum	from	a	‘stationary	source’,	the	Sun.

where	v	is	the	recession	speed,	d	is	the	distance	of	the	galaxy	and	H0	is	the	Hubble	constant.

The	SI	unit	for	H0	is	second−1,	or	s−1.

The	experimental	value	for	H0	is	about	2.4	×	10−18	s−1.	Figure	31.8	shows	a	recession	speed	v	against
distance	d	graph	for	galaxies.	The	straight-line	of	best	fit	passes	through	the	origin,	and	the	gradient	of
the	line	is	equal	to	H0.

KEY	EQUATION
Hubble’s	law:
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v	=	H0d

Figure	31.8:	Hubble’s	law	shows	that	recession	speed	of	galaxy	∝	distance	from	us.	The	gradient	of	the
best-fit	 line	 is	 equal	 to	 H0	 in	 s−1.	 The	 scatter	 of	 the	 data	 shows	 considerable	 uncertainties	 in	 the
observation.

Question
A	galaxy	is	at	a	distance	of	9.5	×	1024	m	from	us	and	is	moving	away	with	a	speed	of	2.1	×	107	m	s−1.

Calculate	the	Hubble	constant	based	on	this	data.
Estimate	the	speed	in	km	s−1	of	a	galaxy	at	a	distance	of	1.9	×	1025	m.

Doppler	redshift
It	is	worth	pointing	out	that	the	term	redshift	does	not	imply	spectral	lines	becoming	red;	all	spectral
lines	show	an	increase	in	wavelength.	The	fractional	increase	in	the	wavelength	depends	on	the	recession
speed	v	of	the	source	(galaxy).
For	non-relativistic	galaxies	–	those	moving	with	speeds	far	less	than	the	speed	of	light	in	a	vacuum	c	–	we
can	use	the	relationship:

where	λ	is	the	wavelength	of	the	electromagnetic	waves	from	the	source,	Δλ	is	the	change	in	the
wavelength,	f	is	the	frequency	of	the	electromagnetic	waves	from	the	source,	Δf	is	the	change	in
frequency,	v	is	the	recession	speed	of	the	source	and	c	is	the	speed	of	light	in	vacuum.

KEY	EQUATION
Doppler	redshift:

Astronomers	and	cosmologists	often	assign	a	value	for	the	term	‘redshift’.	For	example,	a	galaxy	shows
redshift	of	7.0	%	means	that:

Worked	example	4	shows	how	redshift	can	be	used	to	determine	the	speed	of	a	distant	galaxy.

WORKED	EXAMPLE



4

Step	1

Step	2

12

13

In	the	laboratory,	an	emission	spectral	line	is	observed	at	a	wavelength	of	656.4	nm.	The	same
spectral	line,	in	the	spectrum	from	a	distant	galaxy,	has	wavelength	663.1	nm.
Calculate	the	speed	v	of	the	galaxy.

Calculate	the	change	in	the	wavelength	of	the	spectral	line.
The	observed	wavelength	is	longer;	therefore,	the	galaxy	is	receding.
Δλ	=	663.1	−	656.4	=	6.7	nm
Now	calculate	the	speed	v	using	the	Doppler	redshift	equation.

Hint:	You	do	not	need	to	convert	the	nm	to	m,	because	the	ratio	 	will	be	the	same;	just
make	sure	you	use	the	same	unit	for	Δλ	and	λ.

Questions
The	fractional	change	in	the	wavelength	of	the	observed	light	from	a	galaxy	is	0.15;	its	redshift	is	15
%.
Calculate	its	recession	speed.	State	any	assumptions	made.
The	Tadpole	galaxy	has	a	recession	speed	of	9400	km	s-1.
Calculate	the	fractional	change	in	the	wavelength	of	the	observed	spectrum.

Evidence	for	the	Big	Bang
All	galaxies	in	the	Universe	are	moving	away	(receding)	from	each	other,	and	not	from	the	Earth.	An
observer	in	another	galaxy	will	reach	the	same	conclusion.	The	galaxies	have	motion	because	space	itself
is	stretching.	This	is	quite	difficult	to	visualise.	The	best	we	can	do	is	to	imagine	the	galaxies	as	dots	on
the	surface	of	an	ever-expanding	balloon	(see	Figure	31.9).

Figure	31.9:	The	galaxies	are	modelled	as	dots	on	 the	surface	of	a	balloon.	Expansion	of	 the	balloon
makes	all	the	dots	move	away	from	each	other.

The	expanding	balloon	model	can	also	be	used	to	explain	the	redshift	of	light	from	galaxies.	As	the
Universe	expanded,	the	wavelength	of	photons	was	stretched	out.
Hubble’s	law	provided	the	first	evidence	for	the	birth,	and	the	subsequent	expansion,	of	the	Universe.
Distant	galaxies	appear	to	be	moving	faster.	However,	we	must	remember	that	the	light	has	a	finite
speed,	so	as	we	stare	deeper	into	space,	we	are	looking	further	into	the	past.	The	further	back	in	time	we
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go,	the	faster	the	galaxies	are	receding	from	each	other.	Rolling	back	time	in	this	way	–	like	playing	a
movie	in	reverse	–	can	only	lead	to	the	conclusion	that	the	Universe	must	have	had	a	beginning	…	the	Big
Bang.
How	long	ago	was	the	Big	Bang?	We	can	estimate	this	from	the	Hubble	constant	H0.	In	Question	11,	the
speed	of	the	receding	galaxy	at	a	distance	of	9.5	×	1025	m	was	2.1	×	107	m	s−1.	If	we	assume	that	this
speed	has	remained	unchanged,	we	can	estimate	the	time	when	our	galaxy	and	this	receding	galaxy	were
at	the	same	place	(the	time	of	the	Big	Bang):

So,	the	age	of	the	Universe	is	roughly	4.5	×	1018	s,	or	14	billion	years.
Support	for	the	Big	Bang	theory	comes	from	many	other	experimental	evidences.	One	of	these	is	worth
mentioning	here	–	the	temperature	of	the	Universe	itself.	The	expansion	of	the	Universe	led	to	cooling;
theories	predicted	the	current	temperature	of	the	Universe	should	be	about	2.7	K.	Data	collected	and
analysed	from	telescopes	onboard	satellites	have	shown	that	the	peak	intensity	of	the	electromagnetic
radiation	coming	from	all	directions	of	space	occurs	at	a	wavelength	of	about	1	mm	(microwaves).	The
intensity	against	wavelength	graph	is	similar	to	the	ones	shown	in	Figure	31.6.	According	to	Wien’s
displacement	law,	this	corresponds	to	a	temperature	of	about	3	K.
Physics	does	make	you	think.	Everything	around	us,	including	us,	was	created	during	the	Big	Bang;	we
could,	therefore,	suggest	that	we	all	have	the	same	age!

Question
Use	the	information	given	in	the	table	in	Question	9	about	the	Sun	to	show	that	the	current
temperature	of	the	Universe	matches	with	microwaves	of	wavelength	1	mm	at	peak	intensity.

REFLECTION
Without	looking	at	your	textbook,	list	all	the	laws	from	this	chapter.
Draw	a	flow	diagram	to	show	how	the	radius	of	a	star	can	be	determined.
Use	the	internet	to	find	the	most	distant	object	in	the	Universe	and	its	recession	speed.
What	was	the	most	important	thing	you	learned	personally	when	working	through	this	chapter?

	
	



SUMMARY

Luminosity	of	a	star	is	defined	as	the	total	radiant	power	it	emits.	Luminosity	has	the	unit	watts	(W).

Standard	candles	are	used	to	determine	the	distance	of	galaxies.	A	standard	candle	is	an	astronomical
object	(such	as	a	Cepheid	variable	star)	that	has	known	luminosity.

Radiant	flux	intensity	is	defined	as	the	radiant	power	transmitted	normally	through	a	surface	per	unit
area.	Radiant	flux	intensity	has	the	units	W	m−2.	The	radiant	flux	intensity	F	at	a	distance	d	from	the
centre	of	a	star	of	luminosity	L	is	given	by	the	equation:

Wien’s	displacement	law:
λmaxT	=	constant
where	T	is	the	thermodynamic	temperature	of	the	object	and	λmax	is	the	wavelength	at	the	peak
intensity.

The	Stefan-Boltzmann	law:

where	σ	is	a	constant	known	as	the	Stefan-Boltzmann	constant,	L	is	the	luminosity	of	the	object	(star),
r	is	the	radius	of	the	object	and	T	is	the	surface	thermodynamic	temperature	of	the	object.

Hubble’s	law:
The	recession	speed	of	a	galaxy	is	directly	proportional	to	its	distance	from	us.
The	equation	for	Hubble’s	law	is:	v	=	H0d
where	v	is	the	recession	speed,	d	is	the	distance	of	the	galaxy	and	H0	is	the	Hubble	constant.

Doppler	redshift	equation:

where	λ	is	the	wavelength	of	the	electromagnetic	waves	from	the	source,	Δλ	is	the	change	in	the
wavelength,	f	is	the	frequency	of	the	electromagnetic	waves	from	the	source,	Δf	is	the	change	in
frequency,	v	is	the	recession	speed	of	the	source	and	c	is	the	speed	of	light	in	vacuum.

The	Big	Bang	theory	is	a	model	of	the	creation	of	the	Universe,	from	an	extremely	hot	and	dense	state,
and	its	subsequent	evolution.	The	redshift	of	absorption	(or	emission)	spectral	lines	from	distant
galaxies	provides	evidence	for	the	Big	Bang.
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EXAM-STYLE	QUESTIONS

Which	statement	is	correct	about	radiant	flux	intensity? [1]

It	depends	on	the	area	of	the	measuring	device. 	

It	is	measured	in	W	m−2. 	

It	is	the	same	as	luminosity. 	

It	is	the	total	radiant	power	emitted	from	a	star. 	

A	group	of	astronomers	have	determined	the	radiant	flux	intensity	F	from	a
star	and	its	distance	d.	The	percentage	uncertainty	in	F	is	1.2	%	and	the
percentage	uncertainty	in	d	is	2.5	%. 	

What	is	the	percentage	uncertainty	in	the	calculated	value	of	the	luminosity	of
the	star? [1]

1.3	% 	

3.0	% 	

3.7	% 	

6.2	% 	

A	particular	emission	spectral	line	is	measured	in	the	laboratory	to	have	a
frequency	of	7.3	×	1014	Hz. 	

Calculate	the	wavelength	of	this	spectral	line	in	the	laboratory. [1]

Calculate	the	observed	wavelength	of	this	same	spectral	line	in	the
spectrum	of	a	galaxy	moving	away	from	the	Earth	at	a	speed	of: 	

11	Mm	s−1 [3]

7.0	%	the	speed	of	light. [3]

The	spectrum	of	all	distant	galaxies	is	redshifted.	State	and	explain	what
you	can	deduce	about	the	Universe. [2]

	 [Total:	9]

State	Hubble’s	law. [1]

The	recession	speed	v	against	distance	d	graph	for	some	galaxies	is	shown. 	

Figure	31.10
	

Determine	the	Hubble	constant	from	this	graph.	Explain	your	answer. [3]

The	Big	Bang	occurred	some	14	billion	years	ago.

1	year	≈	3.15	×	107	s 	

Estimate	the	farthest	distance	we	can	observe.	Explain	your	answer. [3]

	 [Total:	7]

Define	the	luminosity	of	a	star. [1]

A	red	giant	is	a	star	bigger	than	our	Sun.	Explain	how	the	surface	of	a	red
giant	star	can	be	cooler	than	the	Sun,	yet	have	a	luminosity	much	greater
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than	the	Sun. [2]

An	astronomer	has	determined	the	surface	temperature	of	a	white	dwarf
star	to	be	7800	K	and	its	radius	as	8.5	×	106	m.	Calculate	the	luminosity	of
this	star. [3]

The	surface	temperature	T	of	a	star	depends	on	the	wavelength	λmax	at	the
peak	intensity	of	the	emitted	radiation	from	the	star. 	

The	T	against	λmax	graph	for	a	cluster	of	stars	in	our	galaxy	is	shown. 	

Figure	31.11
	

Use	the	graph	to	show	Wien’s	displacement	law	is	obeyed. [2]

Estimate	the	surface	temperature	of	a	star	with	λmax	=	400	±	10	nm.	In
your	answer,	include	the	absolute	uncertainty. [4]

	 [Total:	12]

Light	from	a	galaxy	is	passed	through	a	diffraction	grating.	The	diagram	shows
part	of	the	emission	spectrum. 	

Figure	31.12
	

The	strong	emission	spectral	line	has	wavelength	662	nm. 	

Calculate	the	energy	of	a	photon	of	wavelength	662	nm. [2]

Explain	how	a	spectral	line	is	produced	by	electrons	within	atoms. [2]

In	the	laboratory,	the	same	spectral	line	has	wavelength	656	nm. 	

Calculate	the	speed	of	the	galaxy. [3]

State	the	direction	of	travel	of	the	galaxy. [1]

State	and	explain	what	the	wavelength	of	the	same	spectral	line	would	be
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for	a	much	more	distant	galaxy. [2]

	 [Total:	10]

Define	radiant	flux	intensity. [1]

State	the	relationship	between	radiant	flux	intensity	F	and	distance	d	from
the	centre	of	a	star. [1]

Neptune	is	the	farthest	known	planet	from	the	Sun	in	the	Solar	System.	Its
distance	from	the	Sun	is	30	times	greater	than	the	distance	of	the	Earth
from	the	Sun.	The	radiant	flux	intensity	from	the	Sun	at	the	Earth	is	1400
W	m−2. 	

A	space	probe	is	close	to	Neptune. 	

Calculate	the	maximum	radiant	power	received	by	an	instrument	of	cross-
sectional	area	1.0	cm2	on	this	space	probe. [3]

	 [Total:	5]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

understand	the	terms	luminosity	and
radiant	flux	intensity

31.1,	31.2 	 	 	

understand	the	inverse	square	law
nature	of	radiant	flux	intensity

31.2 	 	 	

understand	the	meaning	of	the	standard
candle

31.1 	 	 	

use	Wien’s	displacement	law	and	the
Stefan-Boltzmann	law

31.3 	 	 	

use	 	for	receding	source
(stars	and	galaxies)

31.4 	 	 	

use	Hubble’s	law 31.4 	 	 	

understand	that	redshift	of	spectral
lines	from	galaxies	provides	evidence
for	the	Big	Bang	theory.

31.4 	 	 	
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	Chapter	P2

Practical	skills	at	A	Level

LEARNING	INTENTIONS

In	this	chapter	you	will	learn	how	to:
develop	 a	 systematic	 approach	 to	 carrying	 out	 experiments,	 including	 planning,	 setting	 up
apparatus,	investigating	and	recording	results,	analysing	data	and	writing	conclusions
plan	 an	 investigation	 to	 test	 a	 relationship	 or	 investigate	 a	 problem,	 identifying	 the	 dependent,
independent	and	control	variables
use	logarithms	and	logarithmic	graphs
combine	uncertainties,	extending	work	from	Practical	Skills	at	AS	Level
plot	error	bars	on	graphs	and	find	uncertainties	in	gradients	and	intercepts.

BEFORE	YOU	START
Do	you	know	how	to:

estimate	an	uncertainty?
tell	the	difference	between	systematic,	mean	and	random	errors?
present	data	in	a	suitable	table?
draw	a	simple	graph	with	suitable	axes	and	labels?
describe	a	simple	experiment	giving	the	steps	logically	one	after	the	other?
identify	simple	problems	with	an	experiment	and	suggest	changes	to	improve	an	experiment?
use	logarithms	to	base	e	and	base	10?
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P2.1	Planning	and	analysis
The	practical	work	in	the	second	year	of	your	A	level	course	builds	on	what	you	have	covered	in	the	first
year.	Tests	and	examinations	you	may	take	during	your	studies	will	ask	you	to	demonstrate	your	abilities
in	two	key	areas:

planning	experiments
analysis	and	evaluation	of	your	results,	including	any	conclusions	you	can	draw.

Why	do	you	think	that	experimental	work	is	so	important	and	has	made	such	a	difference	to	modern
physics?	What	can	you	do	to	improve	your	experimental	technique?
In	this	chapter,	we	will	look	at	the	different	skills	that	you	need	to	demonstrate	your	practical	abilities.
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P2.2	Planning
As	you	progress	through	your	A	level	physics	studies,	you	should	think	about	and	continually	develop	your
approach	to	planning	experiments.	The	experiments	you	will	be	asked	to	plan	by	your	teacher	will	usually
provide	you	with	a	scenario	and	sometimes	a	relationship	or	an	equation	that	you	are	to	use	and	test.
Often,	particular	items	of	apparatus	are	mentioned	and	you	should	use	these	items,	even	if	you	think
there	is	a	better	method.	Sometimes,	the	experiment	will	seem	familiar	to	you	and	sometimes	it	will	be
completely	new.	Before	you	start,	it	is	important	to	read	the	scenario	carefully.	It	is	also	important	to
read,	understand	and	re-read	any	parts	of	a	question	you	need	to	answer,	before	starting	on	your	plan.
In	producing	your	plan,	you	should	draw	a	diagram	showing	the	actual	apparatus	to	be	used,	and	pay
particular	attention	to	the:

procedure	to	be	followed
measurements	to	be	taken
control	of	variables
analysis	of	the	data
safety	precautions	to	be	taken.

Defining	the	problem:	identifying	the	variables
It	may	seem	obvious,	but	the	first	thing	is	to	identify	the	problem.	To	do	that	you	must	identify	the:

independent	variable	in	the	experiment
dependent	variable	in	the	experiment
control	variables	(the	quantities	that	are	to	be	controlled	or	kept	constant).

It	is	usually	a	good	idea	to	start	with	a	clear	statement	about	the	variables	as	the	first	part	of	your	plan.
Here	is	an	example	of	the	sort	of	problem	you	might	face	in	planning	an	experiment.
The	deflection	of	a	balloon	by	a	jet	of	air	is	shown	in	Figure	P2.1.	You	need	to	plan	an	investigation	to
show	that	tan	θ	is	inversely	proportional	to	v2,	where	θ	is	the	angle	between	the	ground	and	the	string	of
the	balloon	and	v	is	the	speed	of	the	air	hitting	the	balloon.	You	are	unlikely	to	have	seen	this	experiment
before,	but	this	should	not	concern	you.
In	this	example,	the	speed	v	of	the	air	is	the	variable	that	you	will	need	to	alter	and	so	this	is	the
independent	variable;	the	angle	θ	is	the	variable	that	changes	as	a	result	and	so	this	is	the	dependent
variable.

Figure	P2.1:	A	balloon	is	deflected	as	the	air	moves	at	different	speeds.

But	what	quantities	are	kept	constant?	These	are	the	quantities	that	are	controlled.	You	may	be	able	to
think	of	many,	such	as	the	total	mass	of	the	balloon	and	the	mass	placed	underneath	it.	This	total	mass	is
certainly	one	quantity	that	should	be	kept	constant,	but	it	is	not	something	that	is	likely	to	change	during
the	course	of	the	experiment.	In	terms	of	planning	the	experiment,	you	need	to	think	about	quantities	that
may	easily	change	during	the	experiment	if	care	is	not	taken.	For	example,	you	might	realise	that:

the	balloon	may	be	deflected	downwards,	particularly	if	the	air	blows	more	strongly;	then	the	air	will
hit	the	top,	rather	than	the	middle,	of	the	balloon
the	balloon	may	warm	up	and	expand	in	size;	then	more	air	will	hit	the	balloon.



•
•

1

•
•
•
•
•

•
•
•

•

•

In	either	case,	the	experiment	will	then	not	just	be	testing	the	effect	of	the	air	speed.	Your	plan	should
clearly	state	what	you	need	to	keep	constant.	In	our	example:

make	sure	that	the	jet	of	air	is	always	horizontal	and	hits	the	middle	of	the	balloon
keep	the	temperature	of	the	air	inside	the	balloon	constant.

As	you	can	see,	you	need	to	think	carefully	about	the	experiment.	Avoid	giving	wrong	suggestions,	for
example,	keeping	the	length	of	the	string	constant.	If	the	string	is	longer	the	balloon	may	be	out	of	the	jet
of	air,	and	so	it	is	not	entirely	a	wrong	suggestion,	but	it	is	not	a	primary	quantity	to	be	kept	constant.

Question
An	experiment	is	being	planned	to	measure	how	the	resistance	of	a	wire	depends	on	the	cross-
sectional	area	of	the	wire.	What	are	the	independent	and	dependent	variables?	Suggest	three
quantities	that	might	be	controlled.

Methods	of	data	collection
The	next	task	is	to	think	about	how	you	are	going	to	carry	the	experiment	out.	Once	you	have	a	method	in
mind,	you	should	be	able	to	describe:

the	method	to	be	used	to	vary	the	independent	variable
how	the	independent	variable	is	to	be	measured
how	the	dependent	variable	is	to	be	measured
how	other	variables	are	to	be	controlled
the	arrangement	of	apparatus	for	the	experiment	and	the	procedures	to	be	followed,	with	the	aid	of	a
clear,	labelled	diagram.

It	may	be	worthwhile	jotting	down	your	thoughts	about	the	experiment	on	a	rough	piece	of	paper	before
you	start,	but	do	make	sure	that	you	write	up	all	your	points.	It	is	particularly	important	to	say	what	you
actually	measure	and	how	the	measurement	is	made.	It	may	seem	obvious	to	you	that	a	particular
quantity	is	measured,	but	unless	you	write	it	down	it	is	not	part	of	your	plan.
Always	check	that	in	your	account	you	have	clearly	said	what	you	will:

measure	and	how	you	will	measure	it
change	and	how	you	will	change	it
keep	constant	and	how	this	is	achieved.

Let’s	use	the	example	of	the	balloon	deflected	by	a	current	of	air	to	show	how	you	could	approach	this
part	of	the	plan.

Describing	the	experiment
First,	describe	how	to	change	the	independent	variable	and	state	what	instrument	is	used	to	measure	it.
The	apparatus	shown	in	Figure	P2.1	does	not	help	very	much	and	you	must	use	your	general	knowledge
and	suggest,	for	example,	that	a	wind	fan	be	used.	To	change	v	will	mean	either	changing	the	distance
from	the	fan	to	the	balloon	or	adjusting	the	power	supply	voltage	to	the	fan.
You	will	also	a	need	a	wind	speed	indicator,	sometimes	called	an	anemometer,	to	measure	the
independent	variable.	Perhaps	you	have	never	seen	or	used	a	wind	speed	indicator,	but	clearly	there	must
be	an	instrument	to	actually	measure	v.	You	may	have	to	think	very	carefully	to	find	a	sensible	instrument
when	the	quantity	is	unusual.
The	instrument	to	measure	the	dependent	variable	is	much	simpler	–	a	protractor	–	although	it	may	have
to	be	a	large	protractor.	Alternatively,	you	could	use	a	ruler	to	measure	the	height	h	from	the	bench	to	the
top	of	the	string	and	the	length	l	of	the	string,	and	then	use	 	to	find	θ.

At	this	stage,	try	to	suggest	how	to	keep	at	least	one	of	your	‘controlled	quantities’	constant.	For	example,
for	the	suggestions	made	earlier:

compensate	for	deflection	of	the	balloon	downwards	by	a	faster	wind	by	lowering	the	fan,	so	that	air
from	the	fan	stays	horizontal	and	is	always	aimed	at	the	centre	of	the	balloon.
keep	 the	 temperature	 of	 the	 air	 inside	 the	 balloon	 constant	 by	 leaving	 the	 balloon	 in	 a	 room	with
constant	 temperature	 for	many	hours	before	 the	experiment	 starts,	and	ensuring	 that	 the	 fan	used
blows	air	from	the	room.

As	you	can	see,	you	have	to	think	carefully	about	what	happens	during	the	experiment.
As	you	now	have	a	clear	idea	of	the	experiment	in	your	mind,	draw	a	labelled	diagram	showing	everything
that	you	have	mentioned.	In	this	example,	you	could	draw	the	fan,	possibly	its	supply,	a	protractor,	and
even	an	anemometer.
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Step	3

Now	describe	your	planned	experiment,	making	sure	that	you	describe	a	logical	sequence	of	steps	to
follow.	If	you	find	this	difficult,	a	labelled	diagram	of	each	step	can	sometimes	be	useful.	For	example,	you
might	draw	a	diagram	where	you	remove	the	balloon	and	put	your	wind	speed	measurement	device	in
place	of	the	balloon	to	measure	v.	Did	you	realise	that	the	reading	for	v	must	be	made	exactly	where	the
balloon	was	placed?

Additional	details
It	is	also	helpful	to	give	additional	details.	In	particular,	make	sure	you	suggest	anything	that	needs	to	be
done	to	ensure	there	is	a	large	change	in	the	dependent	variable.
In	the	experiment	with	the	balloon,	you	need	a	large	change	in	θ	as	v	changes.	The	readings	would	not	be
useful	if	θ	was	always	very	close	to	one	value,	for	example,	90°.	How	can	this	be	achieved?
Obviously,	the	largest	air	speed	must	be	strong	enough	to	cause	a	significant	deflection.	If	the	deflection
is	too	small,	then	the	mass	under	the	balloon	can	be	decreased;	if	it	is	too	large,	then	the	mass	can	be
increased.	It	might	be	sensible	to	have	the	air	speed	as	large	as	possible	and	adjust	the	mass	under	the
balloon	until	θ	is	about	30°,	and	then	check	that	θ	varies	from	30°	to	90°	as	the	fan	is	slowly	moved
further	away.	Of	course,	the	mass	under	the	balloon	is	then	kept	constant.
You	might	also	think	of	any	difficulties	in	carrying	out	the	experiment.	For	example,	draughts	must	be
avoided	and	you	must	wait	until	the	balloon	has	stopped	swinging	before	taking	a	reading	of	θ.

Safety
It	may	seem	strange,	but	you	should	always	comment	on	safety	when	asked	to	carry	out	any	experiment.
In	some	situations,	the	risks	may	be	unimportant,	and	it	may	be	sufficient	to	mention	simple	ideas	such	as
wearing	goggles	to	protect	the	eyes	when	heating	liquids	or	when	handling	stretched	wires,	using	a
safety	screen,	ensuring	that	the	apparatus	is	stable	and	not	easily	knocked	over,	using	a	sand	tray	under
heavy	weights	to	make	sure	that	weights	do	not	fall	on	your	foot	and	switching	off	currents	when	not	in
use	so	that	wires	do	not	overheat.
In	our	example	with	the	balloon,	keeping	away	from	the	rotating	blades	in	the	fan	and	wearing	goggles	to
avoid	air	blowing	into	your	eye	should	be	sufficient.	Do	give	some	detail	in	your	suggestions	and	do	not
just	say	‘use	goggles’.

WORKED	EXAMPLE

Plan	an	experiment	to	measure	the	resistivity	ρ	of	glass,	which	is	about	1010	Ω	m.	You	have
available	a	number	of	sheets	of	glass	of	the	same	size	but	with	different	thicknesses.	Resistivity	ρ	is
defined	as	 .

Identify	the	variables.
The	independent	variable	is	the	thickness	l	of	the	glass.
The	dependent	variable	is	the	resistance	R	of	the	glass.	Finding	R	involves	measuring
the	p.d.	across	the	glass	and	the	current	in	the	glass.
The	control	variable	is	the	area	A	of	the	glass.	Since	this	is	mentioned	in	the	question,
suggest	also	that	the	temperature	must	be	constant.

Describe	the	method	of	data	collection	in	logical	steps.
To	alter	the	independent	variable,	use	glass	sheets	of	different	thickness	but	the	same	area.
The	thickness	of	each	piece	of	glass	is	measured	with	a	micrometer	at	several	places	and
averaged.
The	area	A	is	required.	This	can	be	found	by	measuring	the	length	and	breadth	of	each
sheet	with	a	rule	and	multiplying	the	values	together.
Draw	a	circuit	diagram	of	an	ammeter	in	series	with	the	glass	sheet	and	a	power	supply,
with	a	voltmeter	across	the	glass.	Connections	are	made	to	the	large	surfaces	of	the	glass.
This	can	be	done	using	aluminium	foil,	or	metal	plates	as	in	a	capacitor,	which	closely	touch
each	large	face	of	the	glass	sheet.	Use	a	diagram	to	show	how	this	is	done.
The	logical	steps	are	then	to	record	ammeter	and	voltmeter	readings	with	one	thickness	of
glass.	Then	repeat	the	readings	with	different	thicknesses,	suggesting	sensible	thicknesses
of	glass,	perhaps	every	mm	from	1	mm	to	10	mm.	If	you	are	going	to	perform	the
experiment	these	thicknesses	may	be	available,	but	if	you	are	merely	planning	the
experiment	then	you	must	suggest	sensible	values.
Add	any	additional	details.	How	can	you	obtain	reasonable	values?	Think	about	the	size	and
thickness	of	the	glass	to	be	used	and	whether	you	can	detect	a	reasonable	change	in	the
dependent	variable,	the	resistance.	You	might,	for	example,	suggest	using	a	sheet	of	glass	1
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m2	in	area	and	1	mm	thick.	Its	resistance	is	then:

Can	this	be	measured	with	ordinary	laboratory	apparatus?	What	voltages	and	what	meters
are	suitable?	A	voltage	of	10	V	produces	a	current	of	1	μA,	which	is	measurable,	but	100	V
gives	a	current	of	10	μA,	which	may	be	easier	to	measure	but	more	dangerous.	With	glass	of
thickness	between	1	and	10	mm	the	current	will	be	1	to	10	μA	and	so	the	ammeter	should
measure	from	1	to	10	μA	or	up	to	10	μA.
As	you	can	see,	this	means	that	you	need	some	idea	of	the	size	of	quantities	that	can	be
measured.	In	this	example,	you	need	to	know	what	currents	and	voltages	can	be	measured
with	ordinary	laboratory	equipment.
You	may	also	give	additional	detail	by	describing	how	to	attach	the	metal	foil	as	contacts
onto	the	large	faces	of	the	glass	sheet	with	weights	on	top,	or	suggest	that	the	glass	be
cleaned	and	dried.
State	any	safety	points.	Glass	can	cut	a	person’s	skin	and	so	gloves	should	be	worn.	If
voltages	above	about	50	V	are	to	be	used,	then	use	rubber	gloves	to	avoid	an	electric	shock
or	cover	all	exposed	metal	parts	with	insulation.
Give	your	method	of	analysis.	Remember,	every	derived	quantity	must	be	explained,	so	do
not	forget	to	state	that	for	each	thickness	the	voltage	and	current	readings	are	used	to	find
the	resistance	with	the	formula	 .

Since	 ,	choose	to	plot	a	graph	with	R	on	the	y-axis	and	l	on	the	x-axis.	The	graph
should	be	a	straight	line	through	the	origin	–	a	diagram	may	help	here.

The	gradient	of	the	graph	is	 ,	so	ρ	=	gradient	×	A.

Questions
What	other	graph	can	be	plotted	in	Worked	example	1,	and	how	is	its	gradient	used	to	find	ρ?
A	nail	is	placed	with	its	sharp	end	just	touching	a	piece	of	wood.	When	a	mass	falls	with	a	velocity	v
and	hits	the	nail,	it	drives	the	nail	into	the	wood.	It	is	suggested	that	the	depth	d	that	the	nail	moves
into	the	wood	is	related	to	v	by	the	equation	d	=	kv2,	where	k	is	a	constant.

Suggest:
the	independent,	dependent	and	control	variables
how	the	velocity	of	the	falling	mass	can	be	measured	as	it	hits	the	nail
sensible	values	for	d	and	how	they	may	be	achieved	and	measured
the	graph	to	be	plotted	and	what	it	shows	if	the	relationship	is	true.

Write	a	logical	step-by-step	method	to	test	the	relationship.
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P2.3	Analysis	of	the	data
Whether	you	are	dealing	with	data	you	have	collected	in	an	experiment,	or	data	provided	to	you,	you	will
need	to	analyse	it.	You	need	to	describe	how	the	data	is	used	in	order	to	reach	a	conclusion,	and	give
details	of	any	derived	quantities	that	are	calculated.
First,	look	carefully	at	the	quantities	in	the	relationship	you	have	suggested	(or	at	the	formula	that	may
be	suggested	when	you	are	given	an	experiment	to	carry	out).	In	our	example	with	the	balloon,	tanθ	is
inversely	proportional	to	v2,	which	means	that	the	formula	is	 ,	where	k	is	a	constant.

If	possible,	you	should	suggest	plotting	a	graph	that	you	know	is	a	straight	line	if	the	equation	is	correct.
In	our	example,	since	the	equation	for	a	straight	line	is	y	=	mx	+	c,	the	y-axis	of	the	graph	should	be	tanθ
and	the	x-axis	should	be	 .

You	must	clearly	state:
what	is	plotted	on	each	axis	of	your	graph
that	the	relationship	is	valid	if	the	graph	gives	a	straight	line	through	the	origin.

You	may	prefer	to	draw	a	sketch	graph	to	show	what	you	mean,	but	always	state	clearly	what	type	of
graph	you	are	going	to	use.

More	complicated	analysis	of	data
In	P1	Practical	skills	at	AS	Level,	we	saw	how	to	interpret	equations	of	the	form	y	=	mx	+	c	and	how	to
use	a	straight-line	graph	to	find	the	constants	m	and	c.	However,	you	also	need	to	be	able	to	deal	with
quantities	related	by	equations	of	the	form	y	=	axn	and	y	=	aekx.	For	these,	you	need	to	be	able	to	use
logarithms	(logs).
There	are	two	common	types	of	logarithm	(see	Chapter	20).	The	first	type	is	sometimes	called	a	natural
logarithm,	or	a	logarithm	to	base	e,	and	is	written	as	ln.	The	second	type	is	a	logarithm	to	base	10	and	is
written	as	lg.	The	ln	type	is	more	useful	when	dealing	with	an	exponential	formula	such	as	ekx	but,
otherwise,	either	type	may	be	used.	Look	closely	at	any	question	to	see	which	type	is	used.	Do	not	mix	the
different	types	together	in	the	answer	to	one	question.
The	unit	of	a	quantity	involving	logarithms	is	specified	in	an	unusual	way.	For	example,	the	natural
logarithm	of	a	quantity	s	measured	in	metres	is	written	as	ln	(s	/	m)	and	not	as	ln	(s)	/	m	or	ln	(s)	/	ln	(m).
You	can	see	that	the	unit	is	written	inside	the	bracket	with	the	quantity.

You	need	to	be	able	to	take	logarithms	of	equations	of	the	form	y	=	axn	and	y	=	aekx.	(Recall	that	an
equation	remains	balanced	if	the	same	operation	is	performed	on	each	side.)

Consider	the	equation:					y	=	axn

Taking	logarithms	of	both	sides	gives:

lg	y	=	lg	a	+	n	lg	x

ln	y	=	ln	a	+	n	ln	x

Now	consider	the	equation:					y	=	aekx

Taking	logarithms	of	both	sides	gives:

ln	y	=	ln	a	+	kx

(To	obtain	these	results,	we	have	used	the	rules	for	logarithms	that	you	ought	to	know:

log	of	a	product log	(ab)	=	log	(a)	+	log	(b)
log	of	a	ratio

log	of	a	power log	(an)	=	n	log	(a)

Questions
Calculate:

lg	10
ln	10
lg	100
lg	5
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the	antilogarithm	to	base	10	of	1	(i.e.,	find	x	where	lg	x	=	1)
the	antilogarithm	to	base	e	of	0.5	(i.e.,	find	x	where	ln	x	=	0.5).

The	number	48	=	3	×	24.	Calculate	lg	48	and	lg	3	+	4	lg	2.	Why	are	they	the	same?

Which	graph	to	plot?
In	handling	data,	our	aim	is	usually	to	process	the	data	to	obtain	a	straight	line	graph.	Then	we	can
deduce	quantities	from	the	gradient	and	the	intercepts.	Table	P2.1	shows	graphs	that	can	be	plotted	for
different	relationships,	and	the	quantities	that	can	be	deduced	from	the	graphs.

Relationship Graph Gradient Intercept	on	y-
axis

because	…

y	=	mx	+	c y	against	x m c 	

y	=	axn ln	y	against
ln	x
lg	y	against
lg	x

n ln	a
lg	a

ln	y	=	n
ln	x	+	ln	a
lg	y	=	n
lg	x	+	lg	a

y	=	aekx ln	y	against	x k ln	a ln	y	=	kx	+	ln	a

Table	P2.1:	Choice	of	axes	for	straight-line	graphs.

A	relationship	of	the	form	y	=	axn
A	ball	falls	under	gravity	in	the	absence	of	air	resistance.	It	falls	a	distance	s	in	time	t.	The	results	are
given	in	the	first	two	columns	of	Table	P2.2.	A	graph	of	distance	fallen	against	time	gives	the	curve	shown
in	Figure	P2.2.

Time	t	/	s Distance	fallen	s	/	m ln	(t	/	s) ln	(s	/	m)

0.20 0.20 −1.61 −1.61

0.40 0.78 −0.92 −0.25

0.60 1.76 −0.51 0.57

0.80 3.14 −0.22 1.14

1.00 4.90 0.00 1.59

1.20 7.05 0.18 1.95

Table	P2.2:	Results	for	a	ball	falling	under	gravity.



Figure	P2.2:	A	distance–time	graph	plotted	using	the	data	in	Table	P2.2.

Because	this	is	a	curve,	it	tells	us	little	about	the	relationship	between	the	variables.	If,	however,	we
suspect	that	the	relationship	is	of	the	form	y	=	axn,	we	can	test	this	idea	by	plotting	a	graph	of	ln	s
against	ln	t	(a	‘log–log	plot’).	Table	P2.2	shows	the	values	for	ln	s	and	ln	t,	and	the	resulting	graph	is
shown	in	Figure	P2.3.	(Notice	that	here	we	are	using	natural	logs,	but	we	could	equally	well	use	logs	to
base	10.)

Figure	P2.3:	A	log–log	plot	for	the	data	shown	in	Table	P2.2.

Because	the	graph	is	a	straight	line,	the	relationship	must	be	of	the	form	y	=	axn	But	what	are	the	values
for	a	and	n?
From	the	graph,	the	gradient	is	equal	to	the	value	of	n,	the	power	of	t:



So	the	equation	is	of	the	form	s	=	at2.	The	intercept	on	the	y-axis	is	equal	to	ln	a,	so:

ln	a	=	1.6

By	taking	the	antilogarithm	we	get:

a	=	4.95	m	s−2	≈	5.0	m	s−2

If	we	think	of	the	equation	for	free	fall	 ,	the	constant	 .	But	g	=	9.8	m	s−2,	which	is
consistent	with	the	value	we	get	for	our	constant.

A	relationship	of	the	form	y	=	aekx
A	current	flows	from	a	charged	capacitor	when	it	is	connected	in	a	circuit	with	a	resistor.	The	current
decreases	exponentially	with	time	(the	same	pattern	we	see	in	radioactive	decay).
Figure	P2.4	shows	the	circuit	and	Table	P2.3	shows	typical	values	of	current	I	and	time	t	from	such	an
experiment.

Figure	P2.4:	A	circuit	for	investigating	the	discharge	of	a	capacitor.

Current	I	/	mA Time	t	/	s ln	(I	/	mA)

10.00 0.00 2.303

6.70 0.20 1.902

4.49 0.40 1.502

3.01 0.60 1.102

2.02 0.80 0.703

1.35 1.00 0.300

Table	P2.3:	Results	from	a	capacitor	discharge	experiment.

The	graph	obtained	from	these	results	(Figure	P2.5)	shows	a	typical	decay	curve,	but	we	cannot	be	sure
that	it	is	exponential.	To	show	that	the	curve	is	of	the	form	I	=	I0ekt,	we	plot	ln	I	against	t	(a	‘log-linear
plot’).	Values	of	ln	I	are	included	in	Table	P2.3.	(Here,	we	must	use	logs	to	base	e	rather	than	to	base	10.)
The	graph	of	ln	I	against	t	is	a	straight	line	(Figure	P2.6),	confirming	that	the	decrease	in	current	follows
an	exponential	pattern.	The	negative	gradient	shows	exponential	decay,	rather	than	growth.
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Figure	P2.5:

Figure	P2.6:

The	gradient	of	the	graph	gives	us	the	value	of	the	constant	k:

From	the	graph,	we	can	also	see	that	the	intercept	on	the	y-axis	has	the	value	2.30	and	hence	(taking	the
antilogarithm)	we	have	I0	=	9.97	≈	10	mA.	Hence,	we	can	write	an	equation	to	represent	the	decreasing
current	as	follows:

I	=	10	e−2.0t

We	could	use	this	equation	to	calculate	the	current	at	any	time	t.

Questions
In	the	expressions	that	follow,	x	and	y	are	variables	in	an	experiment.	All	the	other	quantities	in	the
expressions	are	constants.
In	each	case,	state	the	graph	you	would	plot	to	produce	a	straight	line.	Give	the	gradient	of	each	line
in	terms	of	the	constants	in	the	expression.
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The	period	of	oscillation	T	of	a	small	spherical	mass	supported	by	a	length	l	of	thread	is	given	by	the
expression:

where	g	is	the	acceleration	due	to	gravity.
Design	a	laboratory	experiment	using	this	expression	to	determine	the	acceleration	due	to	gravity.
You	should	draw	a	diagram	showing	the	arrangement	of	your	equipment.	In	your	account,	you	should
pay	particular	attention	to:

the	procedure	to	be	followed
the	measurements	to	be	taken
analysis	of	the	data	to	determine	g
any	safety	precautions	that	you	would	take.

	
	



P2.4	Treatment	of	uncertainties
All	results	should	include	an	estimate	of	the	absolute	uncertainty.	For	example,	when	measuring	the	time
for	a	runner	to	complete	the	100	m	you	may	express	this	as	(12.1	±	0.2)	s.	This	can	also	be	expressed	as	a
percentage	uncertainty	(see	Chapter	P1);	the	percentage	uncertainty	is	equal	to	 ,	so
we	write	the	value	as	12.1	s	±	1.7%,	or	even	12.1	s	±	2%.

Combining	uncertainties
You	should	read	through	again	the	topic	in	Chapter	P1	on	combining	uncertainties	and	also	how	to
measure	uncertainty	if	you	are	not	sure.

Uncertainties	and	graphs
We	can	use	error	bars	to	show	uncertainties	on	graphs.	Table	P2.4	shows	results	for	an	experiment	on
stretching	a	spring.

Load	/	N Length	of	spring	/	cm Extension	/	cm

0 12.4	±	0.2 0.0

1.00 14.0	±	0.2 1.6	±	0.4

2.00 15.8	±	0.2 3.4	±	0.4

3.00 17.6	±	0.2 5.2	±	0.4

4.00 18.8	±	0.2 6.4	±	0.4

5.00 20.4	±	0.2 8.0	±	0.4

Table	P2.4:	Results	from	an	experiment	on	stretching	a	spring.

When	plotting	the	graph,	the	points	are	plotted	as	usual,	and	then	they	are	extended	to	show	the	maximum
and	minimum	likely	values,	as	shown	in	Figure	P2.7.	Then	the	best	fit	line	is	drawn.

Figure	P2.7:	A	graph	representing	the	data	in	Table	P2.4,	with	error	bars	and	a	line	of	best	fit	drawn.

To	estimate	the	uncertainty	in	the	gradient,	we	draw	not	only	the	best	fit	line	but	also	a	worst	acceptable
line,	passing	through	the	extremes	in	the	error	bars	as	shown	in	Figure	P2.8.
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Figure	P2.8:	The	same	graph	as	in	Figure	P2.7,	with	a	‘worst	acceptable’	line	drawn	(dashed).

The	gradients	for	both	best	fit	and	worst	fit	lines	are	calculated	and	the	uncertainty	is	the	difference	in
their	gradients:

uncertainty	=	(gradient	of	best	fit	line)	−	(gradient	of	worst	acceptable	line)

In	our	experiment,	the	gradients	are:

line	of	best	fit:

line	of	worst	fit:

So	the	uncertainty	in	the	gradient	=	1.6	−	1.4	=	±	0.2	cm	N−1

The	gradient	is	therefore:	1.6	±	0.2	cm	N−1.

Uncertainties	and	logarithms
When	a	log	graph	is	used	and	we	need	to	include	error	bars,	we	must	find	the	logarithm	of	the	measured
value	and	the	logarithm	of	either	the	largest	or	the	smallest	likely	value.	The	uncertainty	in	the	logarithm
will	be	the	difference	between	the	two.

WORKED	EXAMPLE

The	resistance	of	a	resistor	is	given	as	(47	±	5)	Ω.	The	value	of	ln	(R	/	Ω)	is	to	be	plotted	on	a	graph.
Calculate	the	value	and	uncertainty	in	ln	(R	/	Ω).

Calculate	the	logarithm	of	the	given	value:
ln	(R	/	Ω)	=	ln	47	=	3.85
Calculate	the	logarithm	of	the	maximum	likely	value:
maximum	likely	value	=	47	+	5	=	52	Ω
ln	52	=	3.95
The	uncertainty	is	the	difference	between	the	two	logarithms:
uncertainty	in	ln	R	=	3.95	−	3.85	=	0.10
Thus,	ln	(R	/	Ω)	=	3.85	±	0.10



8

9

a

b

c
d
e
f
g

Questions
The	values	of	load	shown	in	Table	P2.4	are	given	without	any	indication	of	their	uncertainties.	Suggest
a	reason	for	this.
A	student	measures	the	radius	r	and	the	resistance	R	of	several	equal	lengths	of	wire.	The	results	are
shown	in	Table	P2.5.	It	is	suggested	that	R	and	r	are	related	by	the	equation:

R	=	arb

where	a	and	b	are	constants.
A	graph	is	plotted	with	ln	R	on	the	y-axis	and	ln	r	on	the	x-axis.	Express	the	gradient	and	y-
intercept	in	terms	of	a	and	b.
Values	of	r	and	R	measured	in	an	experiment	are	given	in	Table	P2.5.

r	/	mm R	/	Ω ln	r	/	mm ln	R	/	Ω
2.0	±	0.1 175.0 	 	
3.0	±	0.1 77.8 	 	
4.0	±	0.1 43.8 	 	
5.0	±	0.1 28.0 	 	
6.0	±	0.1 19.4 	 	

Table	P2.5:	Measurements	for	Question	9.

Copy	and	complete	the	table	by	calculating	and	recording	values	of	ln	(r	/	mm)	and	ln	(R	/	Ω)	and
include	the	absolute	uncertainties	in	ln	(r	/	mm).
Plot	a	graph	of	ln	(r	/	mm)	against	ln	(R	/	Ω).	Include	error	bars	for	ln	(r	/	mm).
Draw	the	line	of	best	fit	and	a	worst	acceptable	straight	line	on	your	graph.
Determine	the	gradient	of	the	line	of	best	fit.	Include	the	uncertainty	in	your	answer.
Using	your	answer	to	part	e,	determine	the	value	of	b.
Determine	the	value	of	a	and	its	uncertainty.

	
	



P2.5	Conclusions	and	evaluation	of	results
In	the	previous	experiment	in	P2.4,	we	can	conclude	that	the	extension/load	for	the	spring	in	this	example
is	(1.6	±	0.2)	cm	N−1.	If	a	hypothesis	is	made	that	the	extension	is	proportional	to	the	load	then	there	is
enough	evidence	here	for	the	conclusion	to	be	supported,	as	a	straight	line	can	be	drawn	from	the	origin
through	all	the	error	bars.	If	this	is	not	possible	then	the	hypothesis	is	not	validated.
Now,	suppose	that	the	hypothesis	is	that	the	spring	obeys	Hooke’s	law	and	stretches	by	5.0	cm	when	a
load	of	2.5	N	is	applied.	The	first	part	is	validated	for	the	reasons	given.	However,	an	extension	of	5.0	cm
for	a	load	of	2.5	N	gives	a	value	of	2.0	cm	N−1	for	the	gradient.	This	is	clearly	outside	the	range	allowed
for	by	the	uncertainty	in	our	measurements,	and	therefore	the	hypothesis	is	not	supported.

REFLECTION
Make	a	checklist	of	all	the	important	points	that	you	are	likely	to	forget	or	which	led	to	you	losing
marks	in	any	of	the	exercises.
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SUMMARY

Planning	includes:

identifying	variables	that	are	independent,	dependent	and	controlled
the	procedure	to	be	followed,	including	a	diagram,	where	appropriate,	and	the	measurements	to
be	taken
how	the	measurements	will	be	analysed,	including	the	graph	to	be	plotted	and	how	the	final	result
is	calculated	using	the	graph,	for	example,	how	the	result	is	calculated	from	values	of	the	gradient
and	the	intercept	of	the	graph
extra	detail,	for	example,	how	to	obtain	large	changes	in	the	dependent	variable,	an	assessment	of
risk,	a	relevant	safety	precaution	and	how	variables	are	kept	constant.

Analysis	of	data	includes:

rearranging	expressions	including	taking	logarithms	to	obtain	constants	in	expressions	such	as:

y	=	mx	+	c,	y	=	axn	and	y	=	aeκx

plotting	 graphs	 with	 error	 bars	 and	 calculating	 uncertainty	 by	 the	 difference	 between	 the
gradients	of	the	best	fit	and	worst	acceptable	lines
calculating	derived	quantities	with	correct	units	and	appropriate	number	of	significant	figures.
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EXAM-STYLE	QUESTIONS

Each	reading	on	a	thermometer	can	be	made	with	an	uncertainty	of	±0.5	°C.
The	thermometer	is	used	to	measure	a	temperature	rise	from	20	°C	to	80	°C. 	

What	is	the	percentage	uncertainty	in	the	measurement	of	this	temperature
rise? [1]

0.6% 	

0.8% 	

1.7% 	

2.5% 	

The	period	T	and	the	length	l	of	a	simple	pendulum	are	measured	to	be	T	=	1.5
±	0.1	s	and	l	=	0.560	±	0.001	m. 	

The	formula	 	is	used	to	find	the	acceleration	of	free	fall	g. 	

What	is	the	best	estimate	of	the	uncertainty	in	the	value	of	g? [1]

0.2% 	

3% 	

7% 	

13% 	

The	volume	of	air	inside	a	bottle	affects	its	resonant	frequency. 	

What	are	the	dependent	and	independent	variables? [1]

Suggest	one	quantity	to	be	controlled. [1]

How	would	you	produce	sounds	of	different	frequency	to	show	that	the
bottle	resonates? [1]

How	would	you	find	the	frequency	of	the	sound	that	makes	the	bottle
resonate? [1]

How	would	you	find	the	volume	of	air	inside	the	bottle? [1]

How	would	you	change	the	volume	of	air	inside	the	bottle	while	keeping	all
other	factors	constant? [1]

Suggest	a	safety	precaution	involving	sound. [1]

	 [Total:	7]

The	terminal	velocity	of	an	air	bubble	that	rises	in	water	is	affected	by	the	size
of	the	bubble. 	

What	are	the	dependent	and	independent	variables? [1]

Suggest	a	quantity	to	be	controlled. [1]

How	would	you	measure	the	terminal	velocity	of	an	air	bubble	that	rises	in
water? [1]

How	would	you	generate	bubbles	of	air	of	different	sizes	in	water? [1]

	 [Total:	4]

The	count	rate	from	a	radioactive	source	emitting	γ-radiation	is	inversely
proportional	to	the	square	of	the	distance	from	the	source.	Sources	emitting	γ-
radiation	also	emit	α-	and	β-radiation	and	are	roughly	spherical	with	a	diameter
of	2	cm. 	

What	are	the	dependent	and	independent	variables? [1]

Suggest	a	quantity	to	be	controlled. [1]

How	could	you	make	sure	that	only	γ-radiation	is	detected? [2]

How	would	you	measure	the	count	rate?	Draw	a	diagram	of	the	apparatus
and	explain	how	it	is	used. [2]

How	would	you	make	the	uncertainty	in	the	count	rate	as	small	as
possible? [1]

Suggest	one	difficulty	in	measuring	the	distance	and	how	this	difficulty
may	be	reduced. [2]
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Suggest	a	safety	precaution. [1]

	 [Total:	10]

The	size	of	a	small	toy	balloon	depends	on	atmospheric	pressure. 	

What	are	the	dependent	and	independent	variables? [1]

Suggest	a	quantity	to	be	controlled. [1]

Draw	a	diagram	of	an	apparatus	to	investigate	the	change	in	size	of	the
balloon	as	atmospheric	pressure	changes. [2]

State	how	the	pressure	is	changed	in	your	apparatus	and	how	it	is
measured? [2]

Suggest	a	safety	precaution. [1]

	 [Total:	7]

Quantities	A	and	B	have	the	following	values:	A	=	3.0	±	0.2	cm,	B	=	2.0	±	0.1
cm.	Find	the	value	of	the	following	expressions	and	their	absolute
uncertainties. 	

AB [1]

[1]

A2 [1]

A	−	B [1]

A2	−	B2 [1]

[1]

	 [Total:	6]

Explain	how	you	draw	the	best	fit	line	and	the	worst	fit	line	on	a	graph	and
how	you	find	the	uncertainty	in	the	intercept	on	the	y-axis. [2]

Questions	9	to	13	ask	you	to	design	an	experiment	based	on	the	information
given.	All	these	questions	have	the	same	marking	structure,	with	marks
allocated	to	the	different	aspects	as	shown. 	

the	procedure	to	be	followed [3]

the	measurements	to	be	taken [5]

the	analysis	of	data [2]

the	safety	precautions	to	be	taken [1]

additional	detail. [4]

The	resistance	R	of	a	light-dependent	resistor	(LDR)	varies	with	the	distance	d
from	a	very	bright	source	of	light.	It	is	suggested	that	R	and	d	are	related	by
the	formula	R	=	kdn,	where	k	and	n	are	constants.	Design	a	laboratory
experiment	to	test	this	relationship.	The	LDR	has	a	resistance	of	50	Ω	in	bright
light	and	200	kΩ	in	the	dark. [15]

A	ruler	with	a	small	mass	at	one	end	is	clamped	at	the	other	end,	as	shown,
and	oscillates	up	and	down	when	plucked	by	hand. 	

Figure	P2.9
	

It	is	suggested	that	the	period	of	oscillation	T	of	the	ruler	is	related	to	the
length	l	by	the	relationship	T	=	kln,	where	k	and	n	are	constants.	Design	a
laboratory	experiment	to	test	this	relationship	and	to	find	the	value	of	n. [15]

A	current-carrying	coil	produces	a	magnetic	field.	It	is	suggested	that	the
magnetic	field	strength	B	at	the	centre	of	the	coil	is	proportional	to	the	current



12

13

14

a

b

i

ii
iii

iv

v

vi

15

a

b

I	in	the	coil.	Design	a	laboratory	experiment	that	uses	a	Hall	probe	to	test	this
relationship.

[15]

A	bar	magnet	dropped	into	a	coil	induces	an	e.m.f.	in	the	coil.	It	is	suggested
that	E,	the	maximum	induced	e.m.f.,	is	proportional	to	v,	the	speed	of	the
magnet.	Design	a	laboratory	experiment	to	test	this	relationship.	You	might
like	to	look	at	Figure	26.24	in	Chapter	26. [15]

A	student	has	a	number	of	different	transformers	of	varying	numbers	of	turns.
An	alternating	input	current	to	the	transformer	induces	an	output	e.m.f.	It	is
suggested	that	the	output	e.m.f.	Vs	is	directly	proportional	to	the	frequency	f	of
the	applied	current.	Design	a	laboratory	experiment	to	test	this	relationship. [15]

The	period	T	of	a	simple	pendulum	is	related	to	its	length	l	by	the	equation:

	

where	g	is	the	acceleration	of	free	fall. 	

A	graph	is	plotted	with	T2	on	the	y-axis	and	l	on	the	x-axis.	Express	the
gradient	in	terms	of	g. [1]

A	student	measures	the	time	t	for	10	oscillations	for	different	lengths	l.
This	table	shows	her	data. 	

l	/	m t	/	s T T2

0.300 11.1	±	0.1 	 	
0.400 12.8	±	0.1 	 	
0.500 14.2	±	0.1 	 	
0.600 15.8	±	0.1 	 	
0.700 16.9	±	0.1 	 	
0.800 18.1	±	0.1 	 	

Table	P2.6
	

Calculate	and	record	values	of	T	and	T2,	including	the	absolute
uncertainties	in	T	and	T2. [3]

Plot	a	graph	of	T2	/	s2	against	l	/	m	including	error	bars	for	T2. [2]

Draw	a	straight	line	of	best	fit	and	a	worst	acceptable	line	on	your
graph. [2]

Determine	the	gradient	of	your	line	and	include	the	uncertainty	in	your
answer. [2]

Use	your	value	of	the	gradient	to	determine	g	and	include	the	absolute
uncertainty	in	your	value. [2]

Using	your	value	of	g	and	its	uncertainty,	calculate	the	value	of	t	when
the	length	l	is	0.900	m.	Include	the	absolute	uncertainty	in	your
answer. [2]

	 [Total:	14]

Readings	are	taken	of	the	resistance	R	of	a	thermistor	at	different
temperatures	T.	It	is	suggested	that	the	relationship	between	R	and	T	is	R	=
kTn,	where	k	and	n	are	constants. 	

A	graph	is	plotted	with	lg	R	on	the	y-axis	and	lg	T	on	the	x-axis.	State	the
value	of	the	gradient	and	the	y-intercept	in	terms	of	k	and	n. [2]

Values	for	T	and	R	are	shown	in	this	table. [4]

T	/	K R	/	Ω lg	(T	/	K) lg	(R	/	Ω)

273 550	±	10 	

283 480	±	10 	 	

293 422	±	10 	 	
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303 370	±	10 	 	

313 330	±	10 	 	

Table	P2.7
	

Complete	the	table	and	include	absolute	uncertainties	in	lg	(R	/	Ω). 	

Plot	a	graph	of	lg	(R	/	Ω)	against	lg	(T	/	K).	Include	error	bars. [2]

Draw	the	line	of	best	fit	and	a	worst	acceptable	line	on	your	graph. [2]

Determine	the	gradient	of	your	line	of	best	fit	and	the	uncertainty	in
your	value. [2]

Determine	the	y-intercept	of	your	graph	(this	is	where	the	x-value,	in
this	case,	lg	(T	/	K),	is	zero).	Give	the	uncertainty	in	your	value. [2]

Determine	values	for	n	and	k	and	the	uncertainties	in	your	answers. [3]

	 [Total:	17]

	

	
	



SELF-EVALUATION	CHECKLIST
After	studying	the	chapter,	complete	a	table	like	this:

I	can See	topic… Needs	more
work Almost	there Ready	to

move	on

identify	independent	variables,
dependent	variables	and	variables	to	be
kept	constant

P2.2 	 	 	

describe	methods	and	procedures	to
vary,	measure	and	keep	variables
constant

P2.2 	 	 	

assess	safety	risks	and	describe
precautions	to	reduce	risk

P2.2 	 	 	

understand	the	type	of	graphs	to	plot	to
produce	straight	lines	for	relationships
of	the	form:

y	=	mx	+	c,	y	=	axn	and	y	=	aeκx

P2.3 	 	 	

plot	lines	of	best	fit	and	a	worst
acceptable	line	on	a	graph	including	the
use	of	error	bars

P2.4 	 	 	

convert	absolute	into	percentage
uncertainty	and	vice	versa

P2.4 	 	 	

calculate	uncertainty	estimates	in
derived	quantities	and	in	the	gradient	of
a	graph

P2.4 	 	 	

express	a	quantity	as	a	value,	an
uncertainty	estimate	and	a	unit.

P2.4 	 	 	
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Appendix	1:	Physical	quantities
and	units
Physical	quantities	have	a	numerical	value	and	a	unit.	In	physics,	it	is	essential	to	give	the	units	of
physical	quantities.	For	example,	mass	can	be	measured	in	kilograms.	Hence	you	might	write	the	mass	of
the	trolley	as:
mass	of	trolley	=	0.76	kg
It	would	be	a	serious	error	to	omit	the	unit	kg	at	the	end	of	the	numerical	value.
The	scientific	system	of	units	is	called	the	Système	Internationale	d’Unités	(or	SI	system).	The	seven	base
units	of	this	system	are	listed	in	Table	1.	Each	of	the	units	is	carefully	defined,	but	the	definitions	need
not	concern	us	here.
All	other	units	can	be	derived	from	the	seven	base	units.	For	example:

volume	is	measured	in	cubic	metres	(m3)

velocity	is	measured	in	metres	per	second	(m	s−1)

density	is	measured	in	kilograms	per	cubic	metre	(kg	m−3).

Physical	quantity Unit

mass kilogram,	kg

length metre,	m

time second,	s

temperature kelvin,	K

electric	current ampere,	A

amount	of	substance mole,	mol

luminous	intensity candela,	cd

Table	1:	The	seven	base	units	of	the	SI	system.	(Note	that	you	are	not	required	to	use	the	candela	in	this
book.)

Prefixes
In	physics,	you	will	have	to	cope	with	very	small	and	very	large	numbers.	Numbers	are	written	using
powers	of	10	to	make	them	less	awkward.	This	is	known	as	scientific	notation.	Prefixes	are	used	as	an
abbreviation	for	some	of	the	powers	of	10.	For	example,	the	height	of	a	5400	m	high	mountain	may	be
written	as	either	5.4times	103	m	or	5.4	km.	The	prefixes	you	will	need	most	often	are	shown	in	Table	2.

Prefix Symbol Value

pico p 10−12

nano n 10−9

micro μ 10−6

milli m 10−3

centi c 10−2

deci d 10−1

kilo k 103

mega M 106



giga G 109

tera T 1012

Table	2:	Some	of	the	prefixes	used	in	the	SI	system.

Estimation
When	you	carry	out	an	experiment	or	a	calculation,	it	is	sensible	to	look	at	the	answer	that	you	get	(and
the	results	of	intermediate	calculations)	to	see	if	they	seem	reasonable.	The	only	way	you	can	know	if	an
answer	is	absurd	is	if	you	are	aware	of	some	benchmarks.	Some	suggestions	are	given	below.	Try	to	add
to	this	list	as	you	go	through	your	physics	course.

mass	of	a	person 70	kg
height	of	a	person 2.0	m
walking	speed 1	m	s−1

speed	of	a	car	on	the	motorway 30	m	s−1

volume	of	a	can	of	drink 300	cm3

density	of	water 1000	kg	m−3

weight	of	an	apple 1	N
typical	current	in	domestic	appliance 13	A
e.m.f.	of	a	car	battery 12	V

	
	



Appendix	2:	Data	and	formulae
Data
acceleration	of	free	fall* g 9.81	m	s−2

speed	of	light	in	free	space c 3.00	×	108	m	s−1

elementary	charge e 1.60	×	10−19	C
unified	atomic	mass	unit 	 1	u	=	1.661	×	10−27	kg
rest	mass	of	proton mp 1.67	×	10−27	kg
rest	mass	of	electron me 9.11	×	10−31	kg
Avogadro	constant NA 6.02	×	1023	mol−1

molar	gas	constant R 8.31	J	K−1	mol−1

Boltzmann	constant k 1.38	×	10−23	J	K−1

gravitational	constant G 6.67	×	10−11	N	m2	kg−2

permittivity	of	free	space ε0 8.85	×	10−12	C2	N−1	m−2	(F	m−1)
Planck	constant h 6.63	×	10−34	J	s
Stefan-Boltzmann	constant σ 5.67	×	10–8	W	m–2	K–4

*Note	that	this	is	the	value	of	g	that	you	should	use	in	answering	questions;	g	varies	significantly	over	the
Earth’s	surface,	with	values	ranging	from	9.78	m	s−2	at	the	equator	to	9.83	m	s−2	at	the	poles.

Formulae
uniformly	accelerated	motion

hydrostatic	pressure Δp	=	Δρgh
upthrust F	=	ρgV
Doppler	effect

electric	current I	=	nAvq
resistors	in	series R	=	R1	+	R2	+	…
resistors	in	parallel

gravitational	potential

gravitational	potential	energy

pressure	of	an	ideal	gas

simple	harmonic	motion a	=	−ω2x
velocity	of	a	particle	in	s.h.m.

electric	potential

electric	potential	energy

capacitors	in	series

capacitors	in	parallel
discharge	of	a	capacitor

Hall	voltage



alternating	current	or	voltage x	=	x0sin	ωt
radioactive	decay
decay	constant

intensity	reflection	coefficient

The	Stefan-Boltzmann	law L	=	4πσr2T4

Doppler	redshift

work	done	on	or	by	a	gas W	=	pΔV
energy	of	charged	capacitor

	
	



Appendix	3:	Mathematical
equations	and	conversion
factors
Conversion	factors
electronvolt 1	eV	=	1.60	×	10−19	J
Day 1	day	=	8.64	×	104	s
Year 1	year	≈	3.16	×	107	s
Light	year 1	light	year	≈	9.5	×	1015	m

Mathematical	equations
arc	length	=	rθ
circumference	of	circle	=	2πr

area	of	circle	=	πr2

curved	surface	area	of	cylinder	=	2πrh

volume	of	cylinder	=	πr2h

surface	area	of	a	sphere	=	4πr2

Pythagoras’	theorem:	
cosine	rule:	

sine	rule:	

for	small	angle	θ	:	sin	θ	≈	tan	θ	≈	θ	and	cos	θ	≈	1

	
	



Appendix	4:	The	Periodic	Table
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